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Abstract 

Background: N7-methylguanosine (m7G) methyltransferases and microRNAs (miRNAs) are closely 
associated with tumor progression. However, the role of m7G methyltransferase-related miRNAs as 
prognostic markers in oral squamous cell carcinoma (OSCC) has not been studied. This study aimed to explore 
the m7G methyltransferase-related miRNAs in OSCC, establish a prognostic model based on m7G 
methyltransferase-related miRNAs, investigate their correlation with immune cell infiltration, and assess their 
potential prognostic value. 
Methods: Transcriptional and clinical data of patients with OSCC were obtained from The Cancer Genome 
Atlas (TCGA) database. TargetScan and miRWalk were used to predict m7G methyltransferase-related 
miRNAs. Subsequently, differentially expressed m7G methyltransferase-related miRNAs in TCGA-OSCC 
were selected. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were 
used to build an m7G methyltransferase-related miRNA risk prognostic model for TCGA-OSCC. Patients 
were stratified into high- and low-risk groups. The predictive and diagnostic accuracies of the risk prognostic 
model were further validated using Kaplan–Meier survival analysis, receiver operating characteristic (ROC) 
curve analysis, independent prognosis analysis, and nomogram plots. Finally, quantitative real-time polymerase 
chain reaction (qPCR) was used to validate the expression levels of m7G methyltransferase-related miRNAs in 
postoperative cancer and adjacent normal tissues from 60 patients with OSCC. 
Results: Through Cox and LASSO regression analysis, six candidate miRNAs (hsa-miR-338-3p, 
hsa-miR-1251-3p, hsa-miR-3129-5p, hsa-miR-4633-3p, hsa-miR-216a-3p, and hsa-miR-6503-3p) most relevant 
to the prognosis of patients with OSCC were identified to construct an m7G methyltransferase-related 
miRNA risk prognostic model. In this model, the overall survival (OS) of the high-risk group was significantly 
shorter than that of the low-risk group (P < 0.001). The model effectively predicted prognosis and served as an 
independent prognostic indicator for patients with OSCC. Compared with the low-risk group, the high-risk 
group exhibited a significantly increased capacity for immune cell infiltration (P < 0.05), while the activation and 
initiation abilities of immune cells were decreased. Finally, six m7G methyltransferase-related miRNAs were 
validated in OSCC tissue samples. 
Conclusion: The risk prognostic model based on six m7G methyltransferase-related miRNAs can predict the 
OS rate of patients with OSCC and has the potential to guide individualized treatment. This prognostic model 
is closely associated with immune cell infiltration in patients with OSCC. 

Keywords: oral squamous cell carcinoma, N7-methylguanosine methyltransferase, microRNA, prognosis, immune 
microenvironment 

1. Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) is the sixth most common cancer, with 
approximately 700,000 diagnosed cases [1,2]. Oral 
squamous cell carcinoma (OSCC) accounts for 
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approximately 90% of all malignant tumors of the 
head and neck region [1,3]. OSCC is a heterogeneous 
tumor originating from the inner layer of the oral 
mucosa, with a global incidence, particularly in 
developing countries. Its incidence is higher in male 
patients than in female patients [4]. Although primary 
tumor resection remains the standard treatment [5], 
OSCC's high invasiveness often leads to postoperative 
recurrence and metastasis [6], resulting in a relatively 
low survival rate of 5 years [7]. Although targeted 
therapy and immunotherapy have improved 
outcomes [8,9], their application is limited by 
individual variability and issues related to drug 
resistance [10]. Therefore, effective biomarkers are 
needed to predict OSCC prognosis, enable accurate 
assessment of patient prognosis, and guide 
subsequent treatment. 

N7-methylguanosine is a commonly occurring 
RNA post-transcriptional modification formed by 
methylation of the seventh nitrogen atom of guanine 
at the RNA purine position [11]. It plays vital roles in 
different RNA stages such as RNA transcription, 
processing, degradation, and translation. In addition 
to being presented at 5' end and internal positions of 
mRNA in eukaryotes [12–14], m7G modification is 
also widely found in rRNA, tRNA, and miRNA 
[15,16]. However, unusual m7G modifications are 
often linked to tumor occurrence and progression 
[17]. The m7G regulatory factors methyltransferase 1 
(METTL1) and WD Repeat Domain 4 (WDR4) 
participate in the regulation of various cancer types, 
including HNSCC, liver cancer, bladder cancer, and 
lung cancer, by changing the m7G modification levels 
of miRNAs and tRNAs [18,19]. METTL1 and WDR4 
are significantly upregulated, increasing m7G 
modifications in tRNAs, which enhances oncogenic 
mRNA translation, promoting tumor progression and 
poor prognosis. METTL1 knockout alters the link 
between cancer cells and their microenvironment in 
HNSCC. The ratio of CD4+ T cells to Tregs is 
significantly reduced, whereas the permeation of 
CD4+ memory T cells, CD4+ naïve T cells, and CD8+ 
naïve T cells increases [19]. These findings highlight 
the crucial roles of METTL1 and WDR4 in HNSCC. 

MicroRNAs (miRNAs) are single-stranded 
noncoding RNAs with lengths ranging from 19–25 
nucleotides. They have vital functions in 
post-transcriptional regulation by binding to mRNAs 
and long noncoding RNAs that influence important 
biological processes such as cell proliferation, 
differentiation, and apoptosis [20]. In addition, 
miRNAs are closely related to immune response and 
angiogenesis [21,22]. However, studies have 
confirmed that the dysregulation of miRNAs is 
closely linked to cell metastasis and drug resistance in 

cancer cells. Several miRNAs have been identified as 
possible diagnostic and prognostic biomarkers for 
OSCC and used to construct prognostic models [23–
26]. However, the role of m7G methyltransferase- 
related miRNAs in OSCC remains unclear. Therefore, 
it is essential to further investigate their significance 
as prognostic biomarkers for patients with OSCC and 
provide insights into novel OSCC treatment methods. 

Based on this evaluation, we predicted the 
upstream miRNAs associated with the 
N7-methyltransferase METTL1 and the WDR4 
complex. Using the TCGA database, a risk prognosis 
model for m7G methyltransferase-related miRNAs 
was constructed and validated in our study. 

2. Materials and Methods 
2.1 Data Collection and Processing 

Transcriptome mRNA sequencing data (240 
tumor and 17 normal samples) and miRNA 
sequencing data (245 tumor and 17 normal samples) 
of patients with OSCC were acquired from the TCGA 
database (https://portal.gdc.cancer.gov/) [27]. 
Corresponding clinical information, including patient 
age, sex, tumor grade, TNM stage, survival time, and 
tumor status, was also retrieved. We processed the 
data using Perl software by parsing and extracting 
mRNA and miRNA expression levels, generating 
respective expression matrices with genes or miRNAs 
as rows and samples as columns. We created a clinical 
data matrix with patients in rows and clinical features 
in columns. These matrices were integrated based on 
patient identifiers to correlate all the data types for 
each patient. The quality control steps included 
checking for missing values, normalizing expression 
data, and filtering out low-quality features, ensuring 
that subsequent analyses were based on high-quality 
and well-integrated datasets [27].  

2.2 m7G Modification-Related miRNA 
Screening and Enrichment Analysis 

The R package "limma" was employed for 
comparison of expression intensities of both m7G 
methyltransferase genes METTL1 and WDR4 in 
TCGA-OSCC tissues and normal tissues. Next, 
upstream miRNAs targeting METTL1 and WDR4 
were predicted using the TargetScan database 
(https://www.targetscan.org/) and miRWalk 
(http://mirwalk.umm.uni-heidelberg.de/), 
respectively. This intersection was used to obtain a list 
of miRNAs related to m7G modifications. 
Subsequently, the "edgeR" R package was utilized to 
analyze the expression intensities of these m7G 
modification-associated miRNAs inside TCGA-OSCC 
and normal tissues. FDR < 0.05 and |log2Foldchange| 
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> 1 were applied to identify significantly differentially 
expressed m7G modification-related miRNAs, and a 
network relationship diagram was drawn using the 
Cytoscape 2.8 tool [28]. Finally, the FunRich tool was 
used to enhance the differential expression of these 
m7G modification-associated miRNAs. 

2.3 Construction and Evaluation of Prognostic 
Model with Basis on m7G Modification-Related 
miRNAs 

Initially, 245 patients with OSCC were randomly 
categorized into training and testing sets in a ratio of 
7:3. The training set comprised 172 patients for model 
construction and the testing set included 73 patients 
to validate the model's performance. Subsequently, 
the Kaplan–Meier "survival" R package was used for 
Cox regression analysis to assess the prognostic 
significance of the differentially expressed m7G 
modification-associated miRNAs (P < 0.05). The 
"glmnet" R package was then applied for least 
absolute shrinkage and selection operator (LASSO) to 
refine and select miRNAs for constructing the 
prognostic model. The risk score calculation formula 
for each patient was described as follows: Risk Score = 
(0.326 * expression of hsa-miR-338-3p) + (1.597 * 
expression of hsa-miR-1251-3p) + (2.288 * expression 
of hsa-miR-4633-3p) + (0.743 * expression of hsa-miR- 
216a-3p) + (0.348 * expression of hsa-miR-6503-3p) – 
(0.494 * expression of hsa-miR-3129-5p). 

Next, using the median risk scores in the training 
set as the threshold, patients with OSCC in the 
training, testing, and entire TCGA sample sets were 
stratified into high- or low-risk groups for subsequent 
examination and validation. The Kaplan–Meier curve 
(log-rank analysis) was employed to assess the 
survival level differences between the high- and 
low-risk groups. A prime component evaluation was 
utilized to evaluate accurate grouping, and model 
accuracy was assessed by calculating the area under 
the receiver operating characteristic (ROC) curve. A 
concordance index was used to assess the 
discriminative ability of the model. Finally, univariate 
and multivariate Cox proportional hazards analyses 
were conducted to evaluate the risk scores of the 
model to check the clinical features and 
self-regulating predictive biomarkers in patients with 
OSCC. 

2.4 Nomogram Construction 
To enhance clinical applicability, the "rms" R 

package was used to create a nomogram, integrating 
model risk scores and patient clinical data. This 
nomogram helped quantify factors affecting the 
analysis of patients with OSCC and predict the 
survival period of patients. A calibration curve was 

then generated to assess the model’s predictive 
accuracy, demonstrating consistency between 
predicted and actual survival times. 

2.5 Association Analysis between Prognostic 
Model and Tumor Immune Microenvironment 

The R packages "estimate,” "GSEABase," and 
"GSVA" were employed to execute the ESTIMATED 
algorithm as well as conduct single sample Gene Set 
Enrichment Analysis [29]. This allowed the evaluation 
of 23 immune cell infiltrations and 13 immune- 
associated functional scores for each TCGA-OSCC 
model. Subsequently, we assessed immune cell 
penetration and patient immunity within the high- 
and low-risk groups. In addition, expression level 
difference analyses were performed to identify 
checkpoints for immune-associated genes among the 
various subgroups. Finally, to evaluate the antitumor 
immune function scores for each patient, we used 
Immunophenotype Element Server and Tracking 
Tumor (http://biocc.hrbmu.edu.cn/TIP/index.jsp) to 
compare the antitumor immunity systems between 
the two risk groups. 

2.6 Prediction of Potential Regulatory 
Mechanisms and Sensitivity for Potential 
Therapeutic Drugs between High- and 
Low-Risk Subgroups 

Enhancement of gene sets was employed to 
identify signal passages and differentially expressed 
genes between the high- and low-risk groups. This 
was performed to unveil the potential regulatory 
mechanisms contributing to the prognostic 
differences between these two risk subgroups. 
Additionally, utilizing R software and the 
"pRRophetic" package, we calculated half- maximal 
inhibitory concentration (IC50), commonly used to 
assess antitumor drug efficacy. Drug sensitivity was 
also detected in the high- and low-risk groups. Lower 
IC50 values indicated high sensitivity of the drugs for 
treatment. 

2.7 Detection of Relative m7G Expression 
Levels in Modification-Related miRNAs within 
Clinical OSCC Tissues 

Clinical OSCC tissues and paired adjacent 
normal tissues were acquired from 60 patients at the 
Oral and Maxillofacial Surgery Section of the Peking 
University Shenzhen Hospital. These patients had not 
undergone cancer treatment before surgery. The 
tissue samples were rapidly transferred and stored in 
liquid nitrogen, which was approved by the Ethical 
Society of Peking University Shenzhen Hospital 
(grant number: 2022-117). Informed consent was 
obtained from all patients or their relatives. Total 
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RNAs was purified from OSCC and normal tissues 
using TRIzol reagent (Takara Bio Inc., Kusatsu, 
Japan). cDNA for miRNA examination was generated 
using the stem-loop method (Accurate Bio Inc., 
Hunan, China) [13]. Subsequently, real-time 
quantitative PCR was performed using SYBR® Green 
Premix Pro Taq HS qPCR Kit II (Accurate Bio Inc, 
Hunan, China) on a LightCycler® 480 PCR 
instrument (Roche, Indianapolis, IN, USA). The 
expression of the six m7G methyltransferase- 
associated miRNAs were normalized to U6 and 
calculated using the 2^-ΔΔCt method in triplicate. The 
primer sequences are listed in Supplementary Table 1. 

2.8 Statistical Analysis 
The statistical analysis of public data was 

performed using R (version 4.2.1), and experimental 
data were visualized and statistically analyzed using 
GraphPad Prism 9.5.1. Significance testing for 
differences was conducted using the Wilcoxon test, 
and correlation analysis was performed using the 
Spearman's rank relationship method, Statistical 
significance was set at p<0.05. 

3. Results 
3.1 Identification of Differentially Expressed 
m7G Methyltransferase-Associated miRNAs in 
TCGA-OSCC Tissues 

Analysis of TCGA transcriptome data revealed 
that the RNA levels of m7G methyltransferase 
METTL1 and WDR4 were significantly higher in 
OSCC tissues than in normal tissues (Figure 1A, B). 
METTL1 and WDR4 were significantly and positively 
correlated (r = 0.51, P < 0.001; Figure 1C). 
Subsequently, the upstream miRNAs related to the 
m7G methyltransferase METTL1-WDR4 complex 
were predicted using the TargetScan and miRWalk 
online databases (Figure 1D). In total, 346 miRNAs 
associated with m7G methylation were identified. 
Among them, 56 miRNAs were differentially 
expressed in TCGA-OSCC tissues (Figure 1E), with 24 
upregulated and 32 downregulated miRNAs (FDR < 
0.05, |log2 Fold Change| > 1). Among the 56 
miRNAs, 46 targeted METTL1 and 10 targeted WDR4 
(Figure 1F). 

3.2 Functional Evaluation for m7G 
Methyltransferase-Associated miRNAs in 
TCGA-OSCC 

Functional enhancement evaluation of m7G 
methyltransferase-associated miRNAs using the 
FunRich tool revealed enrichment in 89 items related 
to biological processes, 147 items related to molecular 
functions, 443 items related to cellular components, 

and 494 items related to biological pathways. In terms 
of biological processes, these miRNAs were 
significantly enriched in cell communication, signal 
transduction, nucleic acid metabolism, and immune 
response (Figure 2A). In terms of cellular components, 
these miRNAs were distributed in the nucleus, 
cytoplasm, exosomes, and plasma membrane (Figure 
2B). The molecular functions were primarily 
associated with transcription factor activity, serine or 
threonine kinase activity, cell adhesion molecule 
activity, and T-cell receptor activity (Figure 2C). 
Additionally, m7G methyltransferase-associated 
miRNAs were found to be involved in glypican-, 
IFN-γ-, and IL5-mediated signaling pathways (Figure 
2D). 

3.3 Construction and Validation of m7G 
Methyltransferase-Associated miRNA 
Prognostic Model 

Cox and LASSO regression analyses were 
performed for the 56 m7G methyltransferase- 
associated miRNAs and six representative prognostic 
miRNAs (Figure 3A, B). The corresponding Cox 
coefficients are shown in Table 1. LASSO analysis was 
validated through cross-validation (Figure 3C). 
Subsequently, 3'UTR targeting analysis revealed 
binding sites in the 3'UTR region of the METTL1 and 
WDR4 mRNA for these six miRNAs (Figure 3D). 
Using these six m7G methyltransferase-associated 
miRNAs, a predictive risk model was developed for a 
training set of 172 samples. Based on the median risk 
score of the training set (0.91896), the 172 
TCGA-OSCC cases were categorized into low- or 
high-risk groups. The number of deaths in the 
high-risk group was significantly higher than that in 
the low-risk group (P < 0.001). As the danger score 
increased, patient deaths also increased (Figure 4A). 
Subsequently, model applicability was further 
validated in the test and all-sample sets. Based on the 
median risk score from the training set, patients in the 
test and all-sample sets were categorized into low- or 
high-risk groups (Figure 4B, C). According to the 
Kaplan–Meier survival curve results, the survival 
time of the low-risk group was significantly longer 
than that of the high-risk group.  

 

Table 1. The six candidate miRNAs and their corresponding 
coefficients involved in the model construction. 

 miRNAs Coefficient 
hsa-miR-338-3p 0.326343 
hsa-miR-1251-3p 1.59744 
hsa-miR-4633-3p 2.288034 
hsa-miR-216a-3p 0.742978 
hsa-miR-6503-3p 0.347863 
hsa-miR-3129-5p -0.49423 
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Figure 1. Expression and regulatory network analysis of m7G methyltransferase complex METTL1/WDR4 mRNA and associated miRNAs in 
TCGA-OSCC. (A, B) METTL1 and WDR4 expression levels in the TCGA-OSCC cohort. (C) Correlation evaluation of expression between WDR4 and METTL1. (D) 
Prediction scores of miRNAs binding to METTL1 and WDR4 mRNA using TargetScan and miRWalk online databases (Venn diagram). (E) Volcano plot depicting differential 
expressed m7G methyltransferase-associated miRNAs between normal and tumor tissues in the TCGA-OSCC cohort. (F) Co-expression network of miRNA-m7G-associated 
genes. 
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Figure 2. Enrichment analysis of 56 m7G methyltransferase-associated miRNAs. (A) Biological processes, (B) cellular components, (C) molecular functions, and 
(D) biological pathways of m7G methyltransferase-associated miRNAs. 

 
 
The primer component investigation results for 

the all-sample set showed that the transcriptional 
features of the high- and low-risk patient groups were 
significantly different (Figure 5A). This was 
characterized by substantial inter-group differences 
and good intra-group repeatability, indicating distinct 
transcriptional features between the two risk groups 
and allowing for effective differentiation. To evaluate 
the prognostic model, ROC curves were generated for 
the training set, yielding AUC scores above 0.7 at 1, 3, 
and 5 years. The model demonstrated strong accuracy 
in predicting survival at these intervals (Figure 5B). 
This phenomenon was further confirmed in the test 
and all-sample sets (Figure 5C, D). Additionally, the 
concordance index (C-index) of our risk score model 
was better than that of clinical features, such as age, 
sex, tumor grade, and TNM phase, confirming its 
reliability as a diagnostic tool for OSCC (Figure 5E). 

3.4 Establishment and Validation of 
Nomogram 

According to the univariate Cox analysis results 
shown in Figure 6A, the risk score and TNM staging 
were significantly related to patient diagnosis (P < 
0.01). Multivariate Cox regression testing results 

further indicated that both the risk score and TNM 
stage could independently serve as prognostic 
biomarkers for OSCC (P < 0.05), offering valuable 
insights into patient outcomes (Figure 6B). 

Based on the independent prognostic analysis 
results, a nomogram graph that included the model's 
risk score and the patient’s TNM stage was drawn to 
increase the application of the experimental model 
(Figure 6C). This nomogram aimed to determine the 
overall survival (OS) rate of patients with OSCC at 1, 3 
and 5 years. The calibration curve showed increased 
consistency within the estimated time limit and the 
actual observed survival time in patients with OSCC 
(Figure 6D). This result indicated that the survival 
time of patients with OSCC could be efficiently 
predicted using the nomogram. Moreover, the 
nomogram’s ROC curves displayed AUC values of 
approximately 0.7 for 1, 3, and 5 years (s), 
outperforming other clinical variables (Figure 6E–G). 
This suggests that the nomogram, along with the basis 
of the model's danger values, provides more accurate 
predictions of OS rates in patients with OSCC than 
predictions based on independent clinical variables. 
This highlights the nomogram's potential for precise 
clinical diagnosis. 
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Figure 3. Establishment of the m7G methyltransferase-associated miRNA prognostic model. (A) Univariate Cox regression analysis of six m7G 
methyltransferase-associated miRNAs shown in a forest plot. (B) LASSO regression analysis. (C) Cross-validation. (D) Prediction results of binding sites at the 3'UTR of METTL1 
and WDR4 mRNA for six miRNAs. 
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Figure 4. Prognostic model for m7G methyltransferase-associated miRNAs constructed based on TCGA-OSCC patient data. (A) Risk value distribution and 
Kaplan–Meier survival curve for the training set. (B) Risk value distribution and Kaplan–Meier survival curve for the testing set. (C) Risk value distribution and Kaplan–Meier 
survival curve for the entire TCGA sample. 

 

3.5 High- and Low-Risk Groups Exhibited 
Distinct Tumor Immune Microenvironments 

To expand the immunotherapy options for 
patients with OSCC owing to limited treatment 
options, we conducted immune-related analyses on a 
prognostic model. Using the ESTIMATE algorithm, 
we found that the immune score in the high-risk 
group was higher than that in the low-risk group 
(Figure 7A), indicating greater immune cell 
penetration in the high-risk group. This implies a 
potential link between the risk score and resistant 
microenvironment in patients with OSCC. 
Subsequently, the ssGSEA algorithm was used to 
assess the permeation levels for 23 resistant cell 
varieties and enrichment scores for 13 
protection-related pathways in patients between the 
two hazardous categories. The results showed that the 
high-risk group had a stronger potential for resistant 
permeation and higher proportions of initiated CD8+ 
T cells, type I T helper cells, CD56 natural killer cells, 
and immature dendritic cells than the low-risk group 
(Figure 7B). Additionally, cytolytic activity and 
inflammation promotion were significantly 
upregulated in the high-risk group (Figure 7C). The 
expression of multiple immunity-verifying genes was 

also significantly elevated in the high-risk group 
(Figure 7D), indicating that the resistant 
microenvironments of high-risk patients may be 
abnormally active. 

Furthermore, the TIP meta-server method was 
used to evaluate the anti-cancer-immune functions in 
high- and low-risk patients across the cancer-immune 
phase, including cancerous antigen release, antigen 
presentation, T-cell recognition, and cancer cell 
killing. As shown in Figure 7E, the high-risk group 
showed significantly stronger immune cell infiltration 
than the low-risk group (P < 0.05). However, 
regarding immune cell priming and activation, the 
high-risk group shown weaker activity than the 
low-risk group. These results suggest that the 
promotion of immune cell activation within the 
high-risk group and the improvement of immune cell 
penetration within the low-risk group might 
contribute to better clinical outcomes in patients with 
OSCC. 

3.6 Pathway Enrichment Analysis and Tumor 
Drug Sensitivity Analysis between High- and 
Low-Risk Groups 

We conducted an enrichment study for gene sets 
to explore potential regulatory processes that differed 
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between high- and low-risk groups. Additionally, we 
performed a tumor drug sensitivity analysis on 
TCGA-OSCC patient data to provide a theoretical 
foundation for personalized treatment. The pathway 
enrichment results, as illustrated in Figure 8A, 
revealed significant upregulation of the oxidative 
phosphorylation pathway in the high-risk group. 
Furthermore, as depicted in Figure 8C, a comparison 
of the generally utilized IC50 scores of cancer 
therapeutic drugs between the two categories showed 
a markedly lower IC50 value for the oxidative 
phosphorylation inhibitor phenformin in the high-risk 
subgroup (P < 0.001). Moreover, the patient risk 
scores were significantly negatively associated with 
phenformin IC50 values (r = –0.24, P < 0.001). These 
findings suggest that phenformin may be an effective 
therapeutic drug for patients with high-risk OSCC. In 
the low-risk group, signaling pathways, such as those 
associated with epithelial–mesenchymal transition 
and transforming growth factor-beta, were notably 
upregulated (Figure 8B). Additionally, the 
comparison revealed that the multikinase inhibitor 
AMG-706 (motesanib) presented significantly low 
IC50 values in low-risk group (P < 0.001). These results 

indicate that motesanib might be more effective in 
patients with low-risk OSCC. As a multikinase 
inhibitor, motesanib can interfere with various 
biological functions such as angiogenesis, cell growth, 
and EMT (Figure 8D). These findings suggest that our 
m7G methyltransferase-related miRNA prognostic 
model performs well in guiding drug treatment in 
patients with OSCC. 

3.7 Expression Level Detection of m7G 
Methyltransferase-Related miRNAs in OSCC 
Tissues 

The expression levels of six prognostic model 
m7G methyltransferase-related miRNAs were 
assessed using qPCR in postoperative OSCC tissues 
and their corresponding neighboring noncancerous 
tissues. As shown in Figure 9A–F, the expression 
levels of hsa-miR-216a-3p, hsa-miR-1251-3p, hsa-miR- 
3129-5p, hsa-miR-4633-3p, and hsa-miR-6503-3p were 
elevated in OSCC tissues relative to those in 
noncancerous tissues. However, hsa-miR-338-3p 
showed lower expression in OSCC tissues than in 
noncancerous tissues. However, further statistical 
analysis revealed that only hsa-miR-338-3p (P < 0.01), 

 

 
Figure 5. Accuracy of the constructed m7G methyltransferase-associated miRNA prognostic model in predicting survival rates for patients with OSCC. 
(A) Principal component analysis of TCGA whole-sample data. (B) Time-reliant ROC curve for the training set. (C) Time-reliant ROC curve for the testing set. (D) 
Time-reliant ROC curve for the complete TCGA sample. (E) Concordance index analysis comparing risk scores with clinical variables such as age, sex, tumor grade, and TNM 
stage. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6031 

hsa-miR-3129-5p (P < 0.01), hsa-miR-4633-3p (P < 
0.05), and hsa-miR-6503-3p (P < 0.001) differed 
significantly between OSCC and noncancerous 
tissues. Considering the comprehensive analysis of 

TCGA data, hsa-miR-338-3p and hsa-miR-3129-5p can 
be considered more reliable miRNAs for the m7G 
methyltransferase-related miRNA prognosis model 
genes. 

 
 

 
Figure 6. Construction of a nomogram. (A, B) Forest plots showing results of univariate and multivariate regression analyses for risk scores. (C) Nomogram combining 
risk values from the prognostic model with patient TNM staging. (D) Calibration curve for the nomogram. (E–G) ROC curves of the nomogram for predicting survival at 1, 3 
and 5 years. 
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Figure 7. Immune infiltration and tumor microenvironment in high- and low-risk OSCC groups. (A) Comparison of immune levels between high- and low-risk 
groups. (B) Comparison of infiltration levels for 23 resistant cell types within high- and low-risk groups. (C) Comparison of elevated values for 13 resistance-associated pathways 
within high- and low-risk groups. (D) Comparison of resistant gene expression levels between high- and low-risk groups. (E) Assessment of anti-cancer-immune activity in the 
cancer-immunity cycle for patients with OSCC in the high- and low-risk groups. 
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Figure 8. Pathway enrichment investigation and chemotherapy drug sensitivity analysis within high- and low-risk groups. (A, B) Pathway enrichment analysis 
results within high- and low-risk groups. (C, D) IC50 values of phenformin and AMG-706 for the two risk groups. 

 

4. Discussion 
OSCC is a highly heterogeneous tumor. Different 

tumor progression and prognoses may be observed 
even in patients with OSCC with similar tumor 
grading and clinical staging. While there are various 
treatment methods such as surgery, chemotherapy, 
and radiotherapy that can, to some extent, improve 

the survival time of patients with OSCC, the 
prognosis has been unsatisfactory for those in 
advanced stages and with metastatic OSCC. The 
predictive capabilities of some confirmed biomarkers 
are limited and insufficient for OSCC diagnosis, 
treatment, and patient survival evaluation. Therefore, 
exploring new prognostic markers for the accurate 
prediction of OSCC patient prognosis and providing 
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guidance for personalized treatment to avoid 
undertreatment and overtreatment are crucial. 
miRNAs are associated with cancer development and 
treatment. Studies have suggested a crucial function 
of m7G methyltransferase-related genes in the 
incidence and growth of cancer, especially the m7G 
regulatory factors METTL1 and WDR4. It has been 
confirmed that the expression of these two factors is 
significantly upregulated in neck and head squamous 
carcinoma, leading to an increase in the m7G 
modification level of tRNA and the promotion of 
tumor progression [19,30]. Subsequently, m7G 
methyltransferase-associated miRNAs have been 
increasingly used in cancer research. Models 
predicting patient prognosis have been successfully 
constructed using m7G methyltransferase-related 
miRNAs in liver cancer, breast cancer, renal clear cell 
carcinoma, and lung adenocarcinoma, confirming 
their potential value and role as tumor prognostic 
factors [31–35]. However, there have been no reports 
on m7G methyltransferase-associated miRNAs in 
OSCC. Therefore, the latent interface of m7G 
methyltransferase-related miRNAs can be used to 
determine their probable predictive value. 

We used the m7G methyltransferases METTL1 
and WDR4 to predict miRNAs associated with m7G 
methylation. We identified 56 differentially expressed 
m7G methylation-related miRNAs in OSCC tissues. 
These miRNAs are primarily involved in the 
regulation of tumor metabolism and immune-related 
pathways. Abnormal activation of these signaling 
pathways induces OSCC growth, invasion, 
metastasis, and changes in the tumor-resistant 
microenvironment [36–38]. We constructed a novel 
OSCC risk prognostic model using six representative 
m7G methylation-related miRNAs (hsa-miR-338-3p, 
hsa-miR-1251-3p, hsa-miR-4633-3p, hsa-miR-216a-3p, 
hsa-miR-6503-3p, and hsa-miR-3129-5p). Among 
these miRNAs, hsa-miR-338-3p, hsa-miR-1251-3p, 
hsa-miR-4633-3p, hsa-miR-216a-3p, and hsa-miR- 
6503-3p are considered risk factors for OSCC, whereas 
hsa-miR-3129-5p is considered a protective factor. 
Although these six miRNAs have been reported in 
other cancers, studies on OSCC are limited. Zhao et al. 
found that miR-338-3p is an oncogene in 
mucoepidermoid carcinoma [39], while Abbas et al. 
discovered that miR-216a-3p may promote oral cancer 
progression by targeting adenylate cyclase 2 (ADCY2) 
[40]. Additionally, Martinez et al. found that the 
upregulation of miR-6503-3p is associated with 
decreased stability of primary cilia in thyroid cells, 
potentially triggering autoimmune thyroid diseases 
[41]. Cao et al. found that the upregulation of lncRNA 
MALAT1 mediates doxorubicin immunity and 
hepatocellular carcinoma progression through 

miR-3129-5p [42,43]. Based on these six m7G 
methylation-related miRNAs, we constructed a 
prognostic risk model to develop new strategies for 
the prognosis and treatment of OSCC. Furthermore, 
qPCR was used to analyze miRNA expression in 
OSCC tissues and adjacent normal tissues. The results 
showed major expression differences in 
hsa-miR-338-3p, hsa-miR-3129-5p, hsa-miR-4633-3p, 
and hsa-miR-6503-3p between the OSCC tissues and 
adjacent normal samples. Through integrated analysis 
of TCGA dataset results, hsa-miR-338-3p and 
hsa-miR-3129-5p were found to be the most reliable 
miRNAs for predicting the m7G methylation-related 
miRNA model. Specifically, hsa-miR-3129-5p, a 
protective factor against OSCC, was upregulated in 
OSCC tissues, possibly inhibiting OSCC progression 
by enhancing its targeting of WDR4. Conversely, 
hsa-miR-338-3p, a risk factor for OSCC, was 
significantly downregulated in OSCC tissues, 
consistent with a previous analysis. 

Owing to the high heterogeneity and complex 
etiological factors of OSCC tumors, TNM staging is 
also challenging for predicting or describing the 
individual risks and prognoses of patients with OSCC 
at the same stage. In comparison with TNM staging, 
our constructed m7G methyltransferase-related 
miRNA prognostic model exhibited self-assessment 
values for 1, 3, and 5 years prognosis, all exceeding 
0.7. This indicated that the prognostic model built on 
m7G methyltransferase-related miRNAs exhibited 
excellent presentation for predicting the diagnosis of 
patients with OSCC. Furthermore, the concordance 
index curve demonstrated that our prognostic model 
was more reliable for assessing patient prognosis than 
TNM staging and other clinical indicators. 
Independent prognostic analysis confirmed the 
effectiveness of the diagnostic model as a 
self-regulating indicator for patients with OSCC. 

The possible regulatory processes underlying the 
differences between the two subgroups were 
investigated. Notably, we found an upregulated 
oxidative phosphorylation pathway in the high-risk 
group compared with the low-risk group. This 
suggests that inhibitors of oxidative phosphorylation 
might have had a stronger antitumor effect in the 
high-risk group of patients with OSCC. Additionally, 
higher enrichment of gene sets associated with 
Parkinson's disease and myocardial contraction was 
found in this group, suggesting that patients with 
these conditions may have higher risk scores. 
Interestingly, the potential associations between these 
diseases open more possibilities for the development 
of new drugs for the treatment of OSCC. For instance, 
Eizuka et al. discovered that L-3,4-dihydroxyphenyl-
alanine, a permitted drug for the treatment of 
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Parkinson's disease, could potentially become a new 
drug for the treatment of OSCC. This is because it 
hinders OSCC development by down-regulating 
SYT12 expression [44,45]. 

The tumor microenvironment varies among 
patients, and these differences contribute to the 
proliferation, migration, and invasion capabilities of 
OSCC cells, explaining the significant variations in 
prognosis among patients [46–48]. High-risk patients 
exhibited increased immune penetration, indicating 
higher immunity. However, considering patient 
survival curves, this abnormally active immune status 
did not improve patient prognosis. Additionally, 
most immune-related gene expression levels were 
higher in the high-risk group, suggesting that 
increased inflammation and elevated immune 
checkpoint activity may contribute to immuno-
deficiency, partially explaining the poor prognosis of 
high-risk patients with OSCC. Moreover, compared to 

low-risk patients, high-risk patients had relatively 
weaker immune cell activation functions, although 
immune permeation into the tumor was significantly 
stronger. This implies that promoting immune cell 
activation in high-risk patients and improving 
immune cell penetration in low-risk patients may 
improve the clinical prognosis of patients with OSCC 
[49]. Furthermore, we propose that the upregulation 
of immune checkpoint-associated genes in high-risk 
patients may represent potential targets for 
immunotherapy in this population. Notably, 
TNFRSF14 (HVEM) and its receptor BTLA (CD272) 
were significantly upregulated in high-risk patients. 
The upregulation of TNFRSF14 in tumor cells 
contributes to the inhibition of antitumor resistance 
by BTLA, leading to disease development and worse 
diagnostic outcomes [50,51]. Therefore, targeting 
BTLA-HVEM in high-risk patients may be a feasible 
immunotherapeutic approach. 

 

 
Figure 9. Expression levels of six candidate miRNAs associated with m7G methyltransferase genes in OSCC tissues. (A–F) Relative expression levels of six 
miRNAs were assessed using qPCR within 60 pairs of OSCC tissues and adjacent normal tissues. 

 
Currently, radiotherapy and chemotherapy are 

the main approaches for the postoperative treatment 
of patients with OSCC. In chemotherapy, 
platinum-based drugs such as 5-fluorouracil, 
paclitaxel, and doxorubicin are the most commonly 
used drugs. However, owing to individual differences 
among patients and multidrug resistance, the 
application of these drugs in OSCC treatment is 
limited, often leading to chemotherapy failure [52,53]. 

Therefore, to guide personalized treatment more 
effectively, we compared the IC50 values of general 
anticancer drugs between the two subgroups. These 
results indicated that phenformin may be more 
suitable for the treatment of high-risk patients. 
Phenformin, an oxidative phosphorylation inhibitor, 
disrupts the energy metabolism of tumor cells and 
inhibits angiogenesis within tumors by inhibiting 
oxidative phosphorylation, effectively suppressing 
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OSCC growth [35,53–55]. Conversely, motesanib 
(AMG-706) may be more suitable for treating low-risk 
patient subgroups. It is a potent multi-kinase inhibitor 
that can overcome resistance to doxorubicin and 
paclitaxel by inhibiting ABCB1 efflux action [43,56–
58]. Therefore, motesanib is expected to serve as an 
adjuvant chemotherapy drug, enhancing the 
sensitivity of low-risk patients to chemotherapeutic 
drugs and increasing the effectiveness of treatment. 

This study has a few limitations. Firstly, the 
analyzed data were derived from public databases 
with limited sample sizes. In addition, experimental 
data were lacking. Therefore, future studies should 
explore the functions and processes of m7G 
methyltransferase-associated miRNAs in patients 
with OSCC. Future studies should also focus on 
elucidating the deep-seated mechanisms by which 
m7G methyltransferase-related miRNAs trigger the 
activation of immune checkpoint molecules to 
uncover potential targets for specific immunotherapy 
in OSCC. 

In conclusion, our results revealed the diagnostic 
score of m7G methyltransferase-related miRNAs. We 
also developed an m7G methyltransferase-related 
miRNA prognostic model associated with distinct 
clinical outcomes and immune characteristics in 
patients with OSCC. Our findings lay the foundation 
for developing new prognostic models for OSCC, 
with important clinical significance for personalized 
treatment strategies in patients with OSCC.  
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