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Abstract 

Background: Triple-negative breast cancer (TNBC) is a poor prognostic subtype of breast cancer due 
to limited treatment. Macrophage plays a critical role in tumor growth and survival. Our study intends to 
explore the heterogeneity of macrophage in TNBC and establish a macrophage-related prognostic model 
for TNBC prognostic stratification. 
Materials and Methods: Seurat package was conducted to analyze the single-cell RNA expression 
profilers. The cell types were identified by the markers derived from public research and online database. 
The cell-cell interactions were calculated by the CellChat package. Monocle package was used to visualize 
the cell trajectory of macrophages. The prognostic model was constructed by six macrophage-related 
genes after a series of selections. The expression of six genes were validated in normal and TNBC tissues. 
And several potential agents for high-risk TNBC patients were analyzed by Connectivity Map analysis. 
Results: Nine cell types were identified, and the macrophages were highly enriched in TNBC samples. 
five distinct subgroups of macrophage were identified. Notably, SPP1+ tumor-associated macrophages 
exhibited a poor prognosis. The prognostic model was constructed by HSPA6, LPL, IDO1, ALDH2, TK1, 
and QPCT with good predictive accuracy at 3-, 5- years overall survival for TNBC patients in both training 
and external test cohorts. Finally, several drugs were identified for the high-risk TNBC patients decided 
by model. 
Conclusion: Our study provides a valuable source for clarifying macrophage heterogeneity in TNBC, 
and a promising tool for prognostic risk stratification of TNBC. 
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Introduction 
Breast cancer (BRCA) has remained to be one of 

the most common malignancies in females worldwide 
in recent years[1-3]. Triple-negative breast cancer 
(TNBC) is considered to be the molecular subtype 

with the poorest prognosis in BRCA due to tumor 
heterogeneity and limited treatment[4]. The lack of 
effective treatments for TNBC other than 
chemotherapy results in shorter median survival 
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times for TNBC patients compared to patients with 
other molecular subtypes[5, 6]. Therefore, it is 
imperative to accurately stratify the prognosis of 
TNBC patients and find novel therapeutic targets. 

Tumor-associated macrophages (TAMs), as 
heterogeneous immune cells, have been confirmed to 
be critical for tumor progression[7, 8]. Tumor- 
associated macrophages (TAMs) generally include M2 
and M1 macrophages, which play pro-tumor and 
anti-tumor roles during tumor progression, 
respectively[9, 10]. With the further exploration of 
TAM in recent years, the pro-tumor effect of TAM in 
the tumor microenvironment has been further 
revealed. TAMs are able to interact with stromal and 
stromal cells to form an microenvironment for tumor 
growth and metastasis[11]. Also, a large number of 
studies showed that TAMs could play a suppressive 
role on natural killer cells and cytotoxic T cells[7], 
leading to survival of tumor cells. Therefore, 
macrophage-related markers identification may help 
predict the prognosis and immune state for tumor 
patients. The maturation of single-cell RNA 
sequencing (scRNA-seq) technology has led to a 
better understanding of the subgroups of TAMs and 
the discovery of novel prognostic markers and 
therapeutic targets. Li et al.[12] found SPP1 (+) and 
C1QC (+) TAMs gene signatures could classify 
cervical patients into subgroups with different 
immune states, tumor stages, and prognoses. Yang et 
al.[13] revealed that two distinct immune suppressive 
TAMs (CCL18+ macrophages and SPP1+ 
macrophages) existed in non-small lung cancer and 
high expression of SPP1, FN1, C1QC in immune cell 
was associated with poor prognosis in early-stage 
non-small lung cancer. However, few studies have 
focused on the TAM subgroup in TNBC to predict 
patient outcomes through scRNA-seq technology. 
Although a previous study has analyzed the 
tumor-associated macrophages in TNBC, it only 
focused on the prognostic value of M2-macrophages 
[14]. More single-cell samples and bulk samples 
should be included to elucidate the functional and 
prognostic roles of TAMs in TNBC. 

Herein, we comprehensively analyzed the role of 
TAMs in TNBC by integrating single cell and bulk 
RNA datasets. Five distinct subgroups of TAMs in 
TNBC tissues were identified and macrophages- 
related genes were obtained. Subsequently, the 
prognostic risk model we constructed which showed 
a great predictive effect for 3-, 5- years overall survival 
in TNBC patients. Finally, we identified several 
agents for the individualized treatment of high-risk 
patients. Our findings describe the heterogenicity of 
TAMs in TNBC, and provide a provide a theoretical 
basis for prognostic risk stratification and 

individualized treatment of TNBC. 

Materials and Methods 
Data collection 

The TNBC single-cell RNA dataset was obtained 
from the GEO database (https://www.ncbi.nlm 
.nih.gov/geo/query/acc.cgi?acc=GSE199515). In 
detail, the 3 TNBC samples derived from human were 
included in our study. Additionally, the bulk RNA 
datasets were downloaded from cBioPortal database 
[15] and TCGA database, including METABRIC and 
TCGA-BRCA datasets. The TCGA-BRCA dataset was 
downloaded by TCGAbiolinks package. The patients 
diagnosed with TNBC with prognostic information in 
both METABRIC dataset (319 samples) and 
TCGA-BRCA dataset (107 TNBC and 113 normal 
samples) were enrolled in this study. 

Data preprocessing 
The high-quality cells were obtained by 

following procedures. (1) 200< nFeature_RNA; (2) 500 
< nCount_RNA; (3) percentage_mt ≤15%; (4) 
log10FeaturePerUMI ≥ 0.8. DoubleFinder[16] package 
was conducted to remove potential doublelet. 
Harmony package was utilized to remove the batch 
effect of different sample. glmGamPoi package was 
conducted to normalized the scRNA-seq expression 
data by SCTtransform method. The top 3000 highly 
variable genes were recognized for principal 
component analysis. The UMAP and t-SNE in Seurat 
were used to reduce the feature dimension and 
visualized the different cell clusters[17]. The cell 
markers used for cell identification were obtained 
from public database and research[18, 19]. 

CIBERSOFTx analysis 
To infer the proportions of distinct cell types in 

each TNBC sample in TCGA dataset, we upload the 
single cell gene matrix and bulk RNA gene matrix on 
CIBERSOFTx website[20]. In detail, 100 cells of each 
type were randomly selected to make the single cell 
gene matrix. The Wilcoxon test was conducted to 
exam the statistical differences. P < 0.05 was 
considered as statistically significant. 

Cell-cell interaction analysis 
CellChat package was used to infer the 

interaction number and strength among distinct cell 
types in scRNA-seq dataset[21]. And the 
ligand-receptor pairs between macrophage and other 
cell types were further analyzed. P-value < 0.05 was 
thought as statistically significant. 

Pseudotime analysis 
Macrophages were extracted for re-clustered in 
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five subgroups using SCTtransform method. Monocle 
was utilized to infer the pseudotime trajectory of 
macrophage. The DDRTree method was performed 
for dimensionality reduction. The max component 
was set as 2. The markers of tumor-associated 
macrophages were collected from the public research 
to annotate the macrophage types[22]. GSEA analysis 
was performed to analyze the biological function for 
macrophage subgroups. The group were divided into 
high and low group by the best cutoff of cell 
proportion using survminer package. Also, the 
Kaplan-Meier curve was performed to assess the 
prognostic outcome. Values with P < 0.05 were 
considered statistically significant. 

Differential expression and functional 
enrichment analyses 

The differential-expression analysis was 
performed by edegR package[23] to identified the 
significant genes between normal and TNBC samples. 
The 1482 differential expression genes (DEG) were 
obtained. The KEGG pathway and disease ontology 
analyses were used to annotate the upregulated genes 
(FDR < 0.05 and logFC>2) by clusterProfiler 
package[24]. 

Construction of a macrophage-related 
prognostic model 

Macrophage differential related genes (MDRGs) 
were obtained from previous analysis by monocle 
package. A total of 105 genes were obtained by 
intersection of MDRG and DEG. Then, METABRIC 
and TCGA cohorts were used as training cohort and 
external test cohort, respectively. Least absolute 
shrinkage and selection operator (LASSO)–Cox 
regression analysis was performed to screen valuable 
genes for prognostic model construction. In detail, 
nlambda was set as 100, alpha was set as 1. By 
selecting the optimal penalty parameter λ associated 
with minimum 10-fold cross-validation, the 
prognostic model was constructed by six genes. Then, 
the coefficient of each gene was calculated by 
multivariate COX regression for the prognostic model 
construction. The risk score of each sample was 
defined as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛

1 . In detail, n 
represents number of genes, and coefi and genei 
represent the corresponding coefficient and 
expression of each gene. The receiver operating 
characteristic (ROC) curves were conducted to 
estimate the predictive accuracy of 3-, 5-, 7- years 
overall survival (OS) for TNBC patients by 
survivalROC package. The Kaplan-Meier curves were 
utilized to estimate the OS of low- and high- risk 
groups. The rms package was utilized to construct the 
nomogram based on risk score, and calibration curves 

were performed to assess the predictive effectiveness 
of the model. Subsequently, decision curve analysis 
was performed by dcurves package to estimate the 
clinical benefit of the prognostic model. 

Clinical characteristics analyses 
The correlations between risk score and clinical 

characteristics including recurrence-free survival, 
claudin subtype, Nottingham prognostic index, tumor 
laterality, and age were further analyzed in 
METABRIC dataset. For multiple categorical variables 
(intrinsic molecular subtype, Nottingham prognostic 
index), the Kruskal-Wallis test was performed to 
examine the differences of risk scores in these clinical 
characteristics. For binary categorical variables (tumor 
laterality, age), the Wilcoxon test was applied to 
examine the differences of risk scores in these clinical 
characteristics. A value with p< 0.05 was considered a 
statistical difference. 

To explore the relationship between risk scores 
and more immune cells, the CIBERSOFTx was used to 
infer the immune cell enrichment score in METABRIC 
dataset. The spearman correlation analysis was 
conducted to evaluate the correlations. Values with P 
< 0.05 were considered statically significant. 

Connectivity map analysis 
To screen potential drug for high-risk score 

group in TNBC, differential expression analysis was 
performed by limma package[25]. Gene ontology 
(GO) and KEGG pathways enrichment analysis were 
applied to upregulated genes in high-risk group. 
Then, a total of 300genes including the top 150 
up-regulated and the top 150 down-regulated genes 
of high-risk group were uploaded on Connectivity 
Map database. L1000 platform[26] was chosen to 
analyzed the potential drugs and mechanisms. 

TNBC specimen 
The TNBC (N=20) and paired adjacent normal 

tissues were collected at Tianjin Medical University 
Cancer Institute and Hospital, and were histologically 
confirmed as TNBC. This study was approved by the 
Ethical Committee of Tianjin Medical University 
Cancer Institute and Hospital and was consistent with 
the ethical guidelines of the Helsinki Declaration. 
Written informed consent was acquired from all 
involved patients. 

RT-qPCR 
The total RNA from tissue was isolated using 

TRIzol Reagent (Invitrogen, USA) according to the 
manufacturer’s protocols. The concentration and 
quality of RNA were detected by NanoDrop 2000 
spectrophotometer (Thermo Scientific, USA). 
RT-qPCR (Real-time polymerase chain reaction 
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reactions) assay was conducted using SYBR Green 
PCR Master Mix (TransGen Biotech, Beijing, China) 
on the 7500 Real-Time PCR System (Applied 
Biosystems, Waltham, MA, USA). The details of 
primers were established in supplementary Table S1. 

Statistical analyses 
The results of RT-qPCR were analyzed using 

Prism 8 (Graph pad Software, CA) and showed as 
mean ± SD (standard deviation). Each experiment was 
included at least three individuals. The statistical 
significance was set as p < 0.05, which was 
determined with the unpaired, two-tailed Student 
t-test. The rest statistical analyses in the current study 
were performed by R Studio (version 4.2.3). All details 
about statistical analyses for each assay had been fully 
described in the corresponding section. 

Results 
Cell identification and clustering in TNBC 
scRNA-seq dataset 

The expression profilers of scRNA-seq dataset 

were initially preprocessed to obtain the high-quality 
cells as the method mentioned. A total of 7993 single 
cells derived from 3 TNBC samples were included in 
the further analyses. Subsequently, we removed the 
batch effect by harmony package. Then, the 
components of cells were calculated by PCA and 
visualized by t-SNE and UMAP. As shown in Figure 
1A, 20 cell clusters were identified when the 
resolution was set as 0.9. And nine main cell types 
were further defined by the specific cell marker genes: 
dendritic cell (ITGAX, CD1C, CD83, CD86), 
endothelial cell (CDH5, VWF), myofibroblast (LUM, 
DCN), vascular fibroblast (RGS5, MYH11), luminal 
cell (KRT8, KRT19, KRT18), macrophage (CD14, CD68, 
ITGAM, CCL18), myoepithelial cell (KRT5, KRT14, 
TP63), plasma (IGHG1, MZB1, SDC1) and T cell 
(CD3D, CD3E, Figure 1B-C). Furthermore, the marker 
genes used for cell identification clearly distinguish 
different cell types. The proportion of each cell in this 
dataset is shown in the figure 1D, and luminal cells 
had the highest proportion. Taken together, nine main 
cell types were identified for further analyses.  

 
 

 
Figure 1. Distinct cell types in TNBC were identified through single-cell sequencing. A-B The cell clusters (A) and cell types (B) in TNBC tissue demonstrated using the Uniform 
Manifold Approximation and Projection (UMAP) and t-Distributed Stochastic Neighbor Embedding (TSNE) plots according to their featured gene expression profiles. C Dot plot 
displaying the expression level of marker genes for annotating the cell types. D The cell type portions in scRNA-seq dataset. 
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Figure 2. The role of macrophage in TNBC microenvironment. A-B The heatmap (A) and boxplot (B) showing the enrichment scores of each type of immune cells in normal 
and TNBC samples. C The interaction network diagrams showing the number and strength of the interactions among cell types. D The ligand-receptor pairs in macrophage and 
other cell types. *P< 0.05, **P < 0.01, ***P <0.001, ****P< 0.0001. 

 

Macrophage characteristics in TNBC 
To investigate the immune cell alteration in 

TNBC microenvironment, we used the single cell 
RNA matrix to infer the cell proportions in bulk RNA 
data (TCGA-BRCA normal and TNBC samples). As 
shown in Figure 2A-B, the enrichment score of 
macrophage, luminal cell and plasma in TNBC 
samples were strongly higher than normal samples, 
while myoepithelial cell, endothelial cell and 
fibroblast were opposite. Luminal cell has been 
confirmed as an important source of breast cancer 
tumor cells[27]. These results implied the macrophage 
and luminal cell may play an essential role in TNBC 
progression. 

Subsequently, we calculated the cell-cell 
interactions among nine cell types. As shown in 
Figure 2C, the number and strength of cell 
communication between macrophages and vascular 
fibroblasts, endothelial cells and dendritic cells were 
significantly higher than other cells. In detail, 
macrophages might interact with endothelial cells 
through VEGF-, and CXCL- related ligand-receptor 
pairs (Figure 2D). Also, we observed that 
macrophages interacted with vascular fibroblast via 

SPP1-, and CD44- related ligand-receptor pairs. 
Endothelial cells and fibroblasts play an important 
role in tumor metastasis and angiogenesis[28, 29]. 
These finding suggested macrophages may promote 
tumor progression and metastasis via interacting with 
endothelial cells and vascular fibroblasts. Of note, 
extensive HLA-CD4 receptor-ligand interactions 
between macrophages was observed, suggesting that 
macrophages are not only interacting with other 
immune cells but are also actively engaging in 
autocrine and paracrine signaling to modulate the 
immune microenvironment. 

Re-clustering macrophages and inferring the 
pseudotime trajectory of TNBC macrophages 

To deeply understand the role of macrophages in 
TNBC tumor microenvironment, we re-clustered the 
macrophages, and five cell subgroups were identified 
(Figure 3A). Monocle package was applied to infer the 
potential cell trajectory of macrophages during the 
tumor progression. As shown in Figure 3B, five 
subgroups of macrophages were clearly separated on 
the cell trajectory. And the macrophage subgroups 
could be defined as seven different states (Figure 3C). 
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Importantly, pseudotime trajectory of macrophages 
was mapped (Figure 3D). We observed that 
subgroups 0 and 2 were at the end of the trajectory, 
while subgroups 1 and 3 were at the beginning of the 
trajectory. These findings indicated the subgroups 1 
and 3 may develop into subgroups 0 and 2 with the 

progression of TNBC. Six most important genes 
associated with pseudotime trajectory were identified 
(Figure 3E-F). For instance, CCL3L3, CCL4L2 were 
highly expressed in subgroups 1 and 3. SPP1, FABP4, 
FABP5 were highly expressed in subgroup 0 and 
PTGDS were highly expressed in subgroup 2. 

 

 
Figure 3. The heterogeneity of macrophage in TNBC microenvironment. A The UMAP dimensionality reduction graph of the distinct cell clusters. B-D The cell trajectory of 
cluster (B), state (C), pseudotime (D) for macrophages. E The relative gene expression of six macrophage-related genes in five distinct clusters. F The feature plot showing the 
gene expression of six macrophage-related genes. G The expression of tumor-associated macrophage markers in five clusters. H The gene set enrichment analysis showing the 
biologic function of each macrophage clusters. I The K-M curves showing the survival rate of high- and low- subgroup 2 groups. J The K-M curves showing the survival rate of high- 
and low- subgroup 0 groups. *P< 0.05, **P < 0.01, ***P <0.001, ****P< 0.0001. 
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Then, we used the reported markers of 
tumor-associated macrophage (TAM) to further 
annotate the five subgroups. As shown in Figure 3G, 
subgroup 0 showed a high expression of SPP1+ TAM, 
suggesting subgroup 0 might be SPP1+ macrophages. 
Consistently, six biomarkers of M2 macrophage were 
used estimate the function of five cell subgroups 
(Figure S1). M2-related markers were expressed in all 
subgroups except subgroup 3, suggesting that these 
subgroups (0, 1, 2, 4) may tend to express the 
characteristics of M2-like cells. Enrichment analysis 
showed subgroups 0 and 2 were negative with 
leukocyte chemotaxis, cell chemotaxis, leukocyte 
migration, indicating the immunosuppressive role of 
these subgroups (Figure 3H). Interestingly, subgroup 
0 showed high enrichment scores in lipid-related 
processes including lipid transport, lipid metabolic 
process and lipid localization. Subgroup 1 showed 
high enrichment scores in leukocyte chemotaxis and 
migration, suggesting it may be correlated with 
inflammatory activation. Furthermore, we performed 
the survival analyses to evaluate the prognostic effect 
of subgroups 0 and 2. As shown in Figure 3I, high 
infiltration of subgroup 2 showed no significant 
difference in prognosis (P =0.21). And high infiltration 
of subgroup 0 was associated with poor prognosis (P= 
0.036, Figure 3J). Taken together, subgroup 0 was 
related to immunosuppression and could be a 
potential prognostic predictor for TNBC patients. 

Construction of macrophage-related 
prognostic model 

The prognostic value of macrophage has been 
demonstrated in a large number of studies. To 
construct a macrophage-related prognostic model for 
TNBC prognostic stratification, we firstly performed 
the differential expression analysis between normal 
samples and TNBC samples (Supplementary Table 
S2). A total of 1382 DEGs were obtained and 
visualized in Figure 4A. Subsequently, 846 
up-regulated genes were utilized to performed 
enrichment analyses. As shown in Figure 4B, the 
up-regulated genes were enriched in breast 
carcinoma, indicating the reliability of the differential 
analysis we completed. Next, we the KEGG pathway 
analysis showed the up-regulated genes were closely 
associated with cell cycle, cytokine-cytokine receptor 
interaction and cellular senescence (Figure 4C). 
Macrophage differential-related genes (MDRG) was 
shown in supplementary Table S3. After interaction of 
MDRG and DEGs, 105 common genes were collected 
(Figure 4D). Then, we performed LASSO regression to 
further screen candidate prognostic genes (Figure 
E-F). The multivariate Cox regression was performed 

and six prognostic genes (HSPA6, LPL, IDO1, ALDH2, 
TK1, QPCT) were identified for prognostic model 
construction (Figure 4G). Finally, the risk score of 
each sample was defined as: risk score= 
0.214092*TK1exp - 0.204042*HSPA6 exp – 0.128893*LPL 

exp – 0.162297*IDO1 exp – 0.143447* ALDH2 exp – 
0.13061*QPCT exp (Supplementary Table S4). As 
shown in Figure 4H, the expression of six genes were 
significantly different in normal and TNBC samples in 
TCGA cohort. The 3-, 5-, 7- years of AUCs in training 
dataset (N=319, METABRIC cohort) were 0.633, 0.654, 
and 0.669, respectively (Figure 4I). And 3-, 5-, 7- years 
of AUCs in external test dataset (N=107, TGCA 
cohort) were 0.633, 0.654, and 0.669, respectively 
(Figure 4J). These results indicated the prognostic 
model constructed by six genes was a good predictor 
for the overall survival of TNBC patients. In addition, 
we divided the training set and the external test set 
into high-risk and low-risk groups based on the best 
cutoff values of the risk scores. The high-risk group 
was closely associated with a poor prognosis in both 
training set (Figure 4K) and external test set (Figure 
4L). And the RT-qPCR confirmed that six genes were 
differentially expressed in TNBC and normal tissues 
(Figure 4M). In a word, the prognostic model showed 
a good predictive effect on prognosis of TNBC 
patients and it could be a potential tool for prognosis 
stratification for TNBC. 

Evaluation of the prognostic model 
Nomogram was established by rms package to 

visualize predictive possibility of risk score for 3-, 5- 
years OS (Figure 5A). The risk score of patients can be 
calculated by formula we constructed and 
corresponding to the total points, so as to evaluate the 
3-5-year survival rate of patients. The risk score could 
be Calibrate curves were used to evaluate the 
predictive effect of model. The result showed that the 
prognostic model in training set (Figure 5B) and 
external test set (Figure 5C) had a good fit at 3-years 
OS. Also, the prognostic model also had a good fit in 
predicting 5-years overall survival of TNBC patients 
in both training set (Figure 5D) and external test set 
(Figure 5E). 

We next perform decision curve analysis to 
investigate the clinical benefit of the nomogram. As 
shown in Figure 5F-G, the nomogram demonstrated a 
better clinical benefit for predicting 3-year OS in both 
training (Figure 5F) and external test set (Figure 5G). 
Consistently, the positive clinical benefits were also 
observed in 5-year OS in same datasets (Figure 5H-I). 
Together, the nomogram exhibited a great stability 
and accuracy in 3-, 5- years OS. 
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Figure 4. Construction of macrophage-related prognostic model. A Heatmap of differential expression genes in TNBC and normal samples. B-C Disease ontology and KEGG 
pathway analyses of up-regulated genes. D The venn diagram showing the intersection of MDRG and DEGs. E Lasso Cox regression analysis. F Partial likelihood deviance for the 
Lasso regression. G Multivariate Cox analysis of six candidate genes. H Expression of six genes in normal and tumor tissues. I-J The ROC curves of 3-, 5-, 7- years OS in both 
training (I) and external datasets (J). K-J The K-M curves showing the overall survival rate of high- and low- risk groups. M The RT-qPCR results showing the relative expression 
of six genes in normal and tumor groups. 
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Figure 5. Evaluation of the prognostic model. A The nomogram based on risk score. B-C The calibrate curves to evaluate the consistency of predicted and actual 3 years OS 
in training (B) and external cohorts (C). D-E The calibrate curves to evaluate the consistency of predicted and actual 5 years OS in training (D) and external cohorts (E). F-G 
3-year survival benefit in training (F) and external cohorts (G). H-I 5-year survival benefit in training (H) and external (I) cohorts. 

 

Clinical application of the prognostic model 
We next performed the survival analysis to 

evaluate the recurrence-free survival (RFS) for high-, 
low- risk groups in METABRIC dataset. As shown in 
Figure 6A, patients in high-risk group were associated 
with short RFS (P <0.0001). The definition of TNBC 
intrinsic molecular subtypes including Normal-like, 
Basal-like, Luminal A, Luminal B, HER2-enriched, 
and Claudin-low provides a theoretical basis for 
TNBC treatment[30]. Thus, we explored the 
differences in risk score across subtypes. The risk 
score of intrinsic molecular subtype of TNBC was 
significantly different, indicating the risk score may 
be an effective tool to assist the diagnosis of intrinsic 
typing of TNBC (P< 2.2e-16, Figure 6B). Nottingham 
prognostic index (NPI) is a practical tool to predict the 
prognosis of BRCA patients, and its parameters 
include tumor size, number of lymph nodes involved, 
and tumor grade[31]. As shown in Figure 6C, risk 

score was significantly different in distinct NPI 
groups (P=0.044). However, the risk score showed no 
significant differences in both tumor laterality (Figure 
6D) and age (Figure 6E). These findings suggested the 
prognostic model had a good discrimination ability to 
distinguish between different subtypes and prognosis 
of TNBC. 

Then, we performed spearman correlation 
analysis to estimate the correlation between immune 
infiltration, immune checkpoint (ICP) molecules and 
risk score. The risk score showed a strongly 
association with the expressions of CTLA4 and 
LGALS9, however, it showed no significant 
correlation with immune cells infiltration (Figure 6F). 
Therefore, high-risk group may benefit from ICP 
treatment of CTLA4 and LGALS9. Also, we further 
calculated the correlation between six genes of 
prognostic model. The expression of ALDH2, HSPA6 
was positively correlated the expression of most ICP 
(Figure 6G). Conversely, the expression of TK1 and 
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LPL was negatively correlated with the expression of 
most ICP. Interestingly, IDO1 was a member of the 
immune checkpoint molecule and an important 
variable in our prognostic model. Since the genes in 
our prognostic model were derived from 
macrophage-related genes, we further explored the 
correlation between these genes and macrophage 

infiltration. As shown in Figure 6H, the expression of 
these genes was significantly associated with different 
macrophage infiltrations, indicating an important role 
in the polarization of macrophages. In summary, the 
prognostic model and the expression levels of its 6 
genes may be an effective predictor of TNBC 
prognosis, immune infiltration and treatment. 

 

 
Figure 6. Clinical application of the prognostic model. A The K-M curve of recurrence-free survival in METABRIC dataset. B-E The boxplots showing the risk scores in intrinsic 
molecular subtype (B), NPI (C), tumor laterality (D), and age (E). F The diagram exhibiting the correlations between risk score and the expression of immune checkpoints, 
enrichment score of immune cells. G The correlations between the expression of six genes and immune checkpoints. H The correlations between the expression of six genes 
and enrichment score of immune cells. 
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Identification of the potential drugs 
We further performed the differential expression 

analysis to identify DEG between high-, and low- risk 
groups using limma package. The result of differential 
analysis was presented in supplementary Table S5. 
The up-regulated genes were used to perform GO and 
KEGG enrichment analyses. As shown in Figure 
7A-C, the up-regulated genes in high-risk group were 
involved in wounding healing, focal adhesion, cell 
junction, cell-substrate junction, RNA-binding, 
suggesting high-risk group may be associated with 
tumor metastasis. In addition, the pathways including 
pathways in cancer, PI3K-AKT signaling pathway 
were highly enriched in high-risk group (Figure 7D). 
The findings implied the patients with high-risk 
group probably promote tumor progression via 
PI3K-AKT pathways. Targeting PI3K-AKT pathways 
can be a potential way for TNBC treatment. The 
high-risk TNBC patients showed a poor prognosis, 
therefore, more potential drugs need to be developed 
for improving their prognosis. Connectivity Map 
(Cmap) analysis was applied to filter candidate drugs 
by calculating up- and down- regulated genes in high- 
risk TNBC patients. All drugs are analyzed by Cmap 
and get a value between -100 and 100. A smaller value 
indicates a stronger potential inhibitory effect. As 
shown in Figure 6E, the candidate drugs (values < -70) 
with their mechanism of action were selected for 
high-risk TNBC patients. For example, acyclovir, as a 
DNA polymerase inhibitor, was identified as one of 
the candidate drugs. Taken together, the drugs we 
screened may serve as potential treatments for 
patients at high-risk of TNBC. 

Discussion  
The absence of Her-2 amplification and lack of 

expression of hormone-related proteins have made 
chemotherapy the only systemic standard treatment 
for TNBC patients[6, 32]. Additionally, TNBC is a 
heterogeneous disease on clinical, pathologic, and 
molecular levels[33]. Exploring the heterogeneity of 
TNBC and developing patient risk stratification and 
individualized intervention therapy may be potential 
strategies to improve the survival rate of TNBC 
patients in the future. The emergence of single-cell 
sequencing makes it possible to understand tumor 
heterogeneity at the cellular level and develop new 
therapeutic strategies through this technology. 

In this study, we comprehensively analyzed the 
role of tumor-associated macrophages in TNBC by 
integrating single cell and bulk RNA datasets. We 
annotated the cell types in single cell RNA dataset to 
inferred the cell proportions in normal and TNBC 

bulk RNA dataset. We observed the macrophages 
were significantly higher enriched in TNBC than 
normal samples. This finding indicated the status and 
number of macrophages in TNBC changed compared 
to normal tissues and played a role in the tumor 
microenvironment. By further analyses of cell-cell 
interactions, we observed the strong interactions 
between macrophages and endothelial cells through 
VEGF and CXCL/ACKR1 signaling pathways. VEFG 
signaling pathway plays an important role in tumor 
angiogenesis, and tumor growth[34]. Atypical 
chemokine receptor 1 (ACKR1), is known as a core 
regulator which binds chemokines involved in 
inflammatory responses and tumor proliferation, 
angiogenesis, and metastasis[35]. Macrophages may 
promote tumor progression and formation of 
suppressive microenvironment by interacting with 
endothelial cells. Meanwhile, SPP1 signaling pathway 
which involved in tumor growth and metastasis was 
activated in vascular fibroblast by macrophage, 
indicating macrophage may help mediate tumor 
proliferation[36]. This discovery provides a novel 
insight into immunotherapy for TNBC. 

After further clustering of macrophages, five 
distinct types of macrophages were identified. It is 
worth noting that we identified SPP1+ TAMs as one 
of the end-state macrophages during the TNBC 
progression. Lipid metabolism related markers 
including FABP4, FABP5 were also highly expressed 
in SPP1+ TAMs. A previous study has reported that a 
special subgroup of macrophages which exhibited a 
canonical signature of M2-like TAMs distributed in 
tumor-adipose junctional regions in BRCA 
patients[37]. Consistent with our findings, the 
macrophages reported also showed the same 
characteristics including high expression of 
metabolism-related marker genes and poor 
prognostic effect with macrophages we identified. 
Our results highlighted that SPP1+ cells also exhibited 
a signature of inhibiting immune cell infiltration, 
suggesting an immunosuppressive and tumor escape 
role in the TNBC tumor microenvironment. In 
addition, a large number of studies also identified the 
SPP1+ TAMs in other tumors. For example, Wei et 
al.[38] found SPP1+ TAMs potentially enhance 
epithelial-mesenchymal transition by interaction with 
cancer cells through paracrine pattern in multiple 
cancers. Qi et al.[39] demonstrated the interactions 
between SPP1+ TAMs and FAP+ fibroblasts stimulate 
the formation of immune-excluded desmoplasic 
structure and limit the T cell infiltration. Taken 
together, our findings preliminarily describe the 
function of TAMs in TNBC and increase under-
standing of the TNBC tumor microenvironment. 
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Figure 7. Exploration of candidate drugs. A-C The biologic process (A), molecular function (B), and cell component (C) of up-regulated genes in high-risk group. D The KEGG 
pathways of up-regulated genes in high-risk group. E The heatmap showing the potential drugs and their mechanisms of action for high-risk group. 

 
Up-regulated genes in TNBC and MRDG were 

obtained to constructing a prognostic model. 
Up-regulated genes were mainly involved in breast 
carcinoma and cell cycle, indicating the accuracy of 
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the analyses. Meanwhile, it indicated that cell cycle 
pathway was essential for TNBC progression. The 
prognostic model was constructed after a series of 
selections. We observed that the model had good 
differentiation and accuracy in predicting 3-, 5-, 7- 
years overall survival in TNBC patients. Furthermore, 
high- and low- risk group showed extremely different 
prognosis (OS and RFS) in both training and external 
test group. Nottingham prognostic index is a common 
evaluation for BRCA patients[31]. Our results showed 
risk scores was increased with NPI except the group 
with NPI < 2.0. This may be caused by the limited 
sample size. Consistent with clinical significance of 
NPI, high-risk scores associated with poor prognosis. 
Together, the prognostic model we constructed is a 
potential tool for prognostic stratification of TNBC. 
Meanwhile, high expression of CTLA4 and LGALS9 
was associated with risk scores, suggesting high-risk 
group may benefit from the immunotherapy derived 
from these two immune checkpoints. These findings 
provide an idea for personalized immunotherapy for 
TNBC patients. To further find therapeutic targets for 
high-risk patients, we analyzed differences in the 
transcriptomes of high- and low- risk patients. 

PI3K-AKT signaling pathway was high enriched 
in high-risk group. As a star pathway, it is reported to 
be a critical role in tumor growth and survival in 
cancers[40]. Finally, we used Connectivity Map 
database by uploading the DEGs based high- and 
low- risk group. And the inhibitors and their 
mechanisms were identified for high-risk group 
patients. Although the effects of these drugs still need 
to be confirmed in further experiments and clinical 
trials, their efficacy in TNBC treatment has been 
consolidated in previous reports. For example, 
celastrol with several mechanisms of act, has been 
confirmed to suppress TNBC progression[41-43]. 
Alitretinoin (9-cis-retinoic acid), was already being 
test in breast cancer clinical trials[44]. These 
discoveries provide new insights into the 
individualized treatment of TNBC. 

Bao et al.[14] reported the macrophages in TNBC 
by integrating single cell and bulk RNA sequencing. 
They established a TAM-related gene signature for 
predicting prognosis and response to 
immunotherapy. In contrast to this study, we 
collected more single cell expression profiles and 
highlighted the heterogeneity of macrophages and 
their interactions with other cells, which makes the 
understanding of macrophages in the tumor 
microenvironment more comprehensive and general. 
More importantly, we provide potential therapeutic 
drug options for patients at high-risk based on our 
prognostic model, which extend the value for the 
clinical transformation of TNBC individualized drug 

therapy in the future. However, this study also had 
some limitations. First, the sample sizes including 
single cell RNA data and external test datasets should 
be further expanded to establish the robustness of the 
prognostic model. In addition, no experiments were 
conducted to validate the potential role of SPP1+ 
macrophage. We will collect more clinical samples 
with complete information to validate our model. 
And in vivo and in vitro experiments will be conducted 
to explore the therapeutic effect of drugs. 

Conclusion 
In this study, we identified the five distinct types 

of tumor-associated macrophages during the TNBC 
progression. And we established a macrophage- 
related prognostic model for prognostic risk 
stratification. Ultimately, several drugs were 
identified as potential choices for high-risk TNBC 
patients. Our findings potentially provide value in not 
only the understanding of tumor-associated 
macrophages in TNBC but also the translational 
application of TNBC risk stratification. 
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