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Abstract 

Background: Ovarian cancer (OV) is a prevalent malignancy among gynecological tumors. Numerous 
metabolic pathways play a significant role in various human diseases, including malignant tumors. Our 
study aimed to develop a prognostic signature for OV based on a comprehensive set of 
metabolism-related genes (MRGs). 
Method: To achieve this, a bioinformatics analysis was performed on the expression profiles of 51 
MRGs. The OV individuals were subsequently categorized into two molecular clusters based on the 
expression levels of MRGs. Following this, differentially expressed genes (DEGs) were identified among 
these clusters. The DEGs aided in the classification of two gene clusters, with a total of 390 DEGs being 
identified between them. A prognostic signature, constructed using the DEGs, enabled the calculation of 
risk scores for OV patients. 
Results: This study revealed that patients classified as low-risk demonstrated a more favorable 
prognosis, increased immune cell infiltration, and superior response to chemotherapy in comparison to 
high-risk patients. Four signature genes, GDF6, KIF26A, P2RY14, and ALDH1A2, were identified as 
significant contributors to the prognostic signature. The expression levels of these signature genes were 
different between OV and normal ovary tissues through in vitro experiments. Additionally, P2RY14 
protein was found to potentially influence the growth of OV cell lines. 
Conclusion: We have constructed a prognostic signature associated with MRGs that demonstrates 
exceptional efficacy in prognosis survival outcomes and therapeutic responses in patients diagnosed with 
OV. Downregulation of P2RY14 may contribute to an unfavorable prognosis in OV. 

Keywords: Ovarian cancer, Cancer metabolism, P2RY14, Prognosis, Immune landscape 

Introduction 
The incidence of ovarian cancer (OV) is among 

the highest of all gynecological tumors, and it is one of 
the most deadly[1]. The major risk factor for OV is the 
mutation of the BRCA1 gene, but other factors also 
includes increasing age, endometriosis, and so on[2, 
3].  

Numerous trials have consistently encountered 
challenges in identifying appropriate biomarkers for 
early detection of OV among women in the general 

population[4], resulting in a significant number of 
patients being diagnosed at an advanced stage[5]. 
Currently, the primary treatments for advanced OV 
patients include involve surgical intervention and 
neoadjuvant chemotherapy, and immunotherapy also 
has protential, but the efficacy is not ideal[6, 7]. 
Hence, it is necessary to build a more accurate 
prognostic signature model for OV. 
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In recent times, there has been a significant 
amount of research conducted to construct a 
prognostic signature for predicting the survival 
outcomes of individuals with tumors, such as 
malignant melanoma and colorectal cancer[8, 9]. 
During the process of constructing these signatures, 
the signature genes are also identified. Additionally, 
numerous studies have shown that changes in the 
metabolic pathways of cancer cells can impact the 
occurrence and progression of tumors[10]. 
Meanwhile, the impact of genetic mutations on tumor 
progression through the modulation of metabolic 
pathways, specifically HIF-1 and PDK1, already 
known as MRGs, has been extensively investigated 
[10, 11]. The main metabolic pathways include 
glucose, lipid, and amino acid metabolic processes[12, 
13]. 

Utilizing public databases of tumor samples to 
identify prognostic genes based on gene sets, which 
contain a group of genes with common characteristics, 
is a common and effective method[9, 14, 15]. These 
investigations have further incorporated data 
pertaining to tumor mutation burden (TMB) and 
tumor microenvironment (TME) to assess prognostic 
models[16, 17]. Nevertheless, as of now, no studies 
have successfully established a prognostic signature 
model for OV based on a substantial number of 
MRGs.  

In this study, 51 prognostic-related MRGs 
(Supplementary Table 2) were selected from 2752 
pan-MRGs (Supplementary Table 1) collected from 
the GO (Gene Ontology) database, and a prognostic 
model for predicting the prognosis of OV was 
established based on these genes and verified by some 
immune-related analysis. Meanwhile, we identified 
four signature genes: GDF6, KIF26A, P2RY14, and 
ALDH1A2. Interestingly, we also discovered that 
downregulating P2RY14 expression may suppress the 
migration and proliferation of OV cells, which 
indicates that low P2RY14 expression may correlate 
with poor prognosis in OV. 

Methods and materials 
Data collection 

Transcription and clinical information of OV 
patients were retrieved from TCGA (https:// 
portal.gdc.cancer.gov, TCGA-OV project) and GEO 
(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE13876 
and GSE23554) databases (Supplementary Table 2). 
Additionally, expression data of normal controls were 
downloaded from GTEx database. Expression 
matrices of 4 OV single cell datasets, including 
EMTAB8107, GSE130000, GSE151214, and GSE154600 
were obtained from TISCH2 website 

(http://tisch.comp-genomics.org/). Fragments per 
kilobase million (FPKM) data from TCGA-OV dataset 
was transformed into transcription per million (TPM) 
format using R studio software, and expression data 
was further log2 transformed using “sva” R package. 

Genetic and transcriptional alterations of 
MRGs in OV 

2752 MRGs were obtained from Gene Ontology 
(GO) database (http://geneontology.org/), identified 
DEGs in normal tissues and OV using the 
TCGA-GTEx dataset, and screened out 51 
prognosis-related mrg in the TCGA-OV dataset with a 
p < 0.01 threshold using univariate Cox regression 
analysis. Somatic mutation data of 51 MRGs were 
analyzed using “maftools” R package and the results 
were presented in the waterfall plot. The frequency 
and genomic locations of copy number variations 
(CNVs) in 51 MRGs across chromosomes were 
scrutinized and delineated. Differential expression 
patterns between healthy controls and OV tissues 
were assessed utilizing the Wilcoxon test integrated 
within the limma package. Additionally, the 
prognostic significance and correlation of MRGs were 
appraised through a univariate Cox regression and 
Pearson analyses. 
Identification of two MRGs molecular clusters 

Consensus clustering was conducted to delineate 
molecular clusters based on the expression profiles of 
51 MRGs via the “ConsensusClusterPlu” R package. 
By incrementing the clustering parameter k, the 
categorization with maximal intragroup cohesion and 
minimal intergroup divergence was determined. 
Subsequently, Principal Component Analysis (PCA) 
was employed to discriminate between the identified 
molecular clusters. GO and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were done to 
conduct an in-depth study of MRG-related biological 
functions and pathways utilizing xiantao online tool 
(https://www.xiantaozi.com). The Kaplan-Meier 
method was applied to assess disparities in survival 
duration across MRG clusters, with comparison 
facilitated through the log-rank test and R packages 
dedicated to survival analysis, such as “survival” and 
“survminer”. Clinical variables within MRG clusters 
were juxtaposed, and Differentially Expressed Genes 
(DEGs) were identified between clusters based on 
criteria including |log fold-change| > 0.585 and p < 
0.05. Immunological cell infiltration and pathways 
associated with immune responses within MRG 
clusters were elucidated using Gene Set Variation 
Analysis (GSVA) and Single-Sample Gene Set 
Enrichment Analysis (ssGSEA) via the “gsva” R 
package. The expression levels of three prominent 
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immune checkpoint genes across MRG clusters were 
assessed using the Wilcoxon signed-rank test and 
visualized using violin plots. 

Classifying patients into gene clusters 
according to DEGs between MRG clusters 

To further identify genes for constructing the 
prognostic signature, expression of DEGs between 
MRG clusters was utilized to classify OV patients into 
geneclusters using the “ConsensusClusterPlus” R 
package. Clinical characteristics and MRGs 
expression across the gene clusters were evaluated 
using heatmaps and boxplots via the Wilcoxon 
signed-rank test. Survival times among the gene 
clusters were assessed using the Kaplan-Meier 
method, with comparisons made via the log-rank test. 
Additionally, the expression levels of PD-1, PD-L1, 
and CTLA-4 within the three gene clusters were 
analyzed. 

Construction and verification of the 
MRGs-related prognostic signature 

Differentially expressed genes (DEGs) were 
identified across the three gene clusters. Utilizing 
these DEGs, least absolute shrinkage and selection 
operator (LASSO) regression and multivariate Cox 
regression analyses were conducted to identify genes 
for constructing a predictive signature, employing the 
survival, survminer, and glmnet R packages. The risk 
score was calculated using signature genes expression 
and relative regression coefficient values. Based on 
the calculated risk scores, individuals diagnosed with 
OV were stratified into high-risk and low-risk groups. 
The study analyzed the associations between risk 
score, survival time, and survival status. Additionally, 
univariate and multivariate Cox regression analyses 
were conducted to identify significant predictive 
variables in OV patients. These analyses used the risk 
score alongside other pertinent clinical features. 
Furthermore, a nomogram model was constructed 
based on the results of Cox regression, and the 
efficacy of the model was evaluated using calibration 
plots. The efficacy of the prognostic signature in 
predicting OV patient survival was validated in the 
training cohort and 2 independent cohorts (GSE13876 
and GSE23554) using Kaplan-Meier survival analysis 
and receiver operating characteristic (ROC) curve 
methods. 

Exploring the immune landscape of OV 
patients in low- and high-risk groups 

The CIBERSORT algorithm was applied to 
quantify the infiltration of immunological cells in 
TCGA-OV patients. The correlation between risk 
scores and immunological cell abundance was then 

assessed using the Spearman correlation technique 
Furthermore, the relationship between immuno-
logical cell profiles and 4 signature genes was 
investigated. Tumor Microenvironment (TME) scores, 
including stromal, immune, and ESTIMATE scores 
among high- and low-risk cohorts were evaluated 
utilizing the Wilcoxon signed-rank test, with 
graphical representation facilitated by violin plots. 
Additionally, the Cancer Stem Cell (CSC) index 
within both risk groups were examined using the 
Wilcoxon signed-rank test in conjunction with the 
Spearman correlation analysis. 

IC50 of therapeutic drugs in low- and high-risk 
groups 

The IC50 (half-maximal inhibitory concentra-
tion) is a parameter that quantifies the concentration 
of a therapeutic agent required to inhibit 50% of 
cancer cell viability. To assess the differential 
sensitivity of high-risk versus low-risk groups to 
various therapeutic drugs, the IC50 values were 
analyzed using the “pRRophetic” R package and the 
Wilcoxon signed-rank test. 

Expression of 4 signature genes in different cell 
types using single cell sequencing 

Single-cell expression matrices from the 
EMTAB8107, GSE130000, GSE151214, and GSE154600 
datasets were obtained from the TISCH2 website 
(http://tisch.comp-genomics.org/). Cell type 
annotations were assigned based on the expression 
profiles of specific marker genes, employing the 
Monaco Immune Database within the Celldex 
package. Following this, the expression patterns of 4 
signature genes were visualized across different cell 
types for further analysis. Furthermore, expression 
levels, prognostic values, and correlation with 
immune checkpoints of 4 signature genes in OV were 
analyzed using the xiantao online tool. 

The comparison of expression levels of the 
four signature genes in OV and control group 

A comparison was conducted between the 
expressed levels of the four signature genes in OV 
samples and normal controls. 

Cell culture  
The OV cell line (A2780 and OVCA433) and the 

normal ovarian cell line (IOSE) were acquired from 
the American Typical Culture Collection (ATCC). 
Additionally, IOSE, OVCA433 and A2780 cell lines 
were incubated in DMEM (HyClone) supplemented 
with 10% fetal calf serum (Lonsera) and 1% double 
antibody (streptomycin and penicillin) at a 
temperature of 37°C and 5% CO2. 
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qPCR  
The mRNA expression of the four signature 

genes was compared between the OV cell line (A2780) 
and the normal ovarian cell line (IOSE) using qPCR. 
The primer sequence can be found in supplementary 
table S4, and the relative mRNA expression levels of 
the genes were calculated using the 2−ΔΔCt method. 

OV Tissue Microarray and IHC  
OV and normal ovarian tissue microarray 

(ZL-OVA961) were bought from ShangHai Zhuoli 
Biotech Company (China). Then, IHC staining was 
utilized to measure the protein expression of GDF6 
and P2RY14 using anti-GDF6 (BIOSS, China) and 
anti-P2RY14 antibodies (BIOSS, China). 
Exploration of the function of P2RY14 in OV 

The correlation between the expression levels of 
all eight immune checkpoint genes and those of 
P2RY14 were explored. Meanwhile, we also explored 
the impact of P2RY14 expression on ovarian 
carcinoma cell proliferation and migration capacity. 

Cell transfection  
The transfection of small interfering RNA 

(siRNA) was conducted utilizing Lipofectamine 3000 
(Invitrogen, Shanghai, China) in accordance with the 
manufacturer's instructions. After a 48-hour 
incubation period, the cells were rinsed and utilized 
for subsequent experiments. The sequences were as 
follows: 5’-CAGAUCAUUCCUGUGCUGUACU 
GUA-3’ for P2RY14-specific siRNA1, 
5’-CCGUGCUCUUCUACGUCAACAUGUA-3’ for 
P2RY14-specific siRNA2. 
WB  

Protein extraction from IOSE, OVCA433 and 
A2780 cells was performed by utilizing RIPA buffer 
(Beyotime, China) containing protease inhibitor and 
phosphatase inhibitor. The Western blot technique 
was carried out according to a preexisting procedure. 
In this research, the main antibodies used were 
anti-Tubulin from Proteintech in China and 
anti-P2RY14 from BIOSS in China. 
CCK8 methods  

A2780 and OVCA433 cells were incubated into 
6-well plates with a density of 200,000 cells per well 
and subsequently transfected with either NC-siRNA 
or siRNAs targeting P2RY14 (specifically siRNA1 or 
siRNA2). After 48 hours of transfection, 1,500 cells 
were seeded into 96-well plates. Subsequently, the 
cells were cultured with either NC-siRNA or siRNAs 

targeting P2RY14 (specifically siRNA1 or siRNA2) for 
0, 24, 48, or 72 hours. Subsequently, the above cells 
were subjected to treatment with the CCK8 solution 
(Beyotime, Shanghai, China) for 1.5 hours. Cell 
viability was assessed by measuring the optical 
density (OD) value at 450 nm. 
Colony formation assay 

To determine the impact of P2RY14 expression 
on the proliferation of human OV cells, the 
aforementioned transfected A2780 and OVCA433 
cells (2000/well) were introduced into 6-well plates. 
Following a ten-day incubation period, the colonies 
were counted. 
Transwell experiment  

The migration experiment utilized Transwell 
chambers (Corning, NY, USA). The above mentioned 
A2780 and OVCA433 cells, which were transfected at 
a concentration of 3 × 104, were seeded in 200 μl of 
serum-free DMEM and subsequently introduced into 
the upper chamber. The lower chambers were added 
with a DMEM containing 10% fetal bovine serum. 
Following an incubation period of 36 hours, the inner 
chambers were cleaned and the cells on the opposite 
side of the membrane were fixed using a 4% 
formaldehyde solution. Subsequently, staining with 
crystal violet was performed, and the samples were 
examined under a microscope. 

Results 
The genetic and transcriptional changes of 
MRGs in OV 

A flow diagram of this research is displayed in 
Figure 1. To explore the genetic alteration of MRGs in 
OV patients, we analyzed the mutation data of MRGs 
and found 93 (20.13%) somatic mutations in 462 OV 
patients (Figure 2A). we also found many genes 
showed CNV increase such as AADAC, CP, THEM5, 
TPMT and PGM2L1, while CYB5R2, UST, SLC22A3, 
SULT2B1 and D2HGDH showed CNV loss (Figure 
2B). Furthermore, the location of the CNV changes on 
chromosomes was illustrated in Figure 2C. In 
addition, a comparison was made between the 
expression levels of MRGs in OV individuals and 
normal healthy controls. A significant number of 
MRGs exhibited differential expression between the 
OV samples and controls (Figure 2D). A network 
demonstrated the prognostic significance of MRGs 
interactions (Figure 2E). These results suggested that 
there are many genetic alterations of MRGs in OV 
patients. 
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Figure 1. Work flow of this research. 

 
Figure 2. Presents the results of a genetic analysis conducted on MRGs in OV. (A) The somatic mutation rate among the 51 MRGs in OV individuals. (B) The CNV alterations 
among 51 MRGs. (C) Locations of CNV changes in MRGs on 23 chromosomes. (D) The difference of expressed levels of MRGs in tumor patients and healthy controls. (E) The 
present study examines the interactions between MRGs in OV, with blue and red lines indicating positive and negative correlations, respectively. *p < 0.05; **p < 0.01; ***p < 
0.001.  

 

Identification of two MRG molecular clusters 
in OV 

Using MRGs expression levels as a basis, we 
employed a consensus clustering method to classify 

OV patients into two distinct molecular clusters, 
designated as clusters A and B (Figure 3A). 
Additionally, PCA analysis confirmed the distinct 
separation between these two molecular clusters 
(Figure 3B). The analysis of functional enrichment for 
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these MRGs revealed that the aforementioned MRGs 
are primarily enriched in biological process (BP) 
related to the organization of extracellular structures, 
cellular component (CC) involving collagen- 
containing extracellular matrix, molecular function 
(MF) associated with extracellular matrix structural 
constituent, and protein digestion and absorption 
pathways (Figure 3C). The K-M curve indicated the 
molecular cluster A had a better survival than cluster 
B (Figure 3D). Furthermore, a heatmap showed the 

MRGs expression levels and clinical characteristics of 
the two clusters (Figure 3E). Meanwhile, it was also 
found there were significant differences in many 
immune cell infiltrations in the two clusters by using 
ssGSEA methods (Figure 3F). The differentially 
enriched pathways between the two MRG clusters are 
illustrated in Figure 3G. Additionally, we observed 
distinct clinical features and survival outcomes 
between the two clusters of OV patients. 

 

 
Figure 3. The comparison between the two molecular clusters. (A) Identifying two MRG molecular clusters utilizing consensus clustering analysis. (B) Principal Component 
Analysis effectively illustrated the differentiation between the two molecular clusters. (C) GO and KEGG analysis of the MRGs. (D) The Kaplan-Meier curve proved a statistically 
significant disparity in survival time between the two clusters. (E) Heatmaps demonstrated the clinical features and MRGs expression of the two molecular clusters in OV patients. 
(F) The differences in immune cell infiltration between two molecular clusters were investigated using ssGSEA. (I) GSVA revealed the enriched pathways between the two 
molecular clusters. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 4. The comparison between the two gene clusters. (A) Consensus clustering analysis was utilized to identify two gene molecular clusters based on the DEGs between 
the two MRG clusters. (B) Heatmaps showed the clinical features and MRGs expression of the two gene clusters in OV individuals. (C) Expression of 51 prognostic related MRGs 
between the two gene clusters (D) GO and KEGG analysis of the DEGs. (E-G) Different expressed PD-1, PD-L1, and CTLA-4 among the two gene clusters. 

 

Identification of two gene clusters in OV 
DEGs were identified between the two 

molecular clusters, followed by the identification of 
two gene clusters of OV samples based on the DEGs 
(Figure 4A). Furthermore, a total of 390 DEGs were 
identified between the two clusters. Similarly, 
significant differences were observed in the 
expression levels of MRGs and clinical characteristics 
between the two gene clusters (Figure 4B). There were 
significant differences in the 51 prognostic related 
MRGs between the two gene clusters (Figure 4C). By 
conducting functional enrichment analysis on the 
DEGs, it was observed that these genes primarily 
exhibited enrichment in biological processes related to 
extracellular structure organization, cellular 
components associated with collagen-containing 
extracellular matrix, molecular functions involving 
extracellular matrix structural constituents, and 
pathways related to protein digestion and absorption 
(Figure 4D). Notably, the expressed levels of three 
prominent immune checkpoint genes, namely PD1, 
PDL1, and CTLA-4, exhibited variations between the 
two gene clusters (Figure 4E-G). 

Construction and validation of the 
MRGs-related prognostic signature 

The LASSO and COX regression analysis 
methods were performed on DEGs to identify four 

signature genes, ALDH1A2, P2RY14, KIF26A and 
GDF6 (Figure 5A-B). Meanwhile, the coefficient 
values of these genes were shown in figure 5C. The 
risk score was calculated by assessing the expression 
levels of four signature genes and their corresponding 
coefficient values, as indicated by the following 
formula: risk score = [expressed level of ALDH1A2 × 
(0.169)] + [expressed level of P2RY14 × (-0.525)] + 
[expressed level of KIF26A × (0.281)] + [expressed 
level of GDF6 × (0.262)].The Sankey diagram 
illustrates that OV samples can be categorized into 
two distinct MRGs molecular clusters, two gene 
clusters, and two risk groups based on their respective 
risk scores (Figure 5D). The risk scores differed 
between the two molecular clusters and two gene 
clusters (Figure 5E-F). There were significant 
differences in the 51 prognostic-related MRGs 
between the high- and low-risk groups (Figure 5G). A 
heatmap demonstrated the risk coefficient values of 
the four signature genes (Figure 5H). Subsequently, 
we found there was a higher mortality rate among 
high-risk OV patients (Figure 5I). Risk factors were 
analyzed in the dataset by univariate and multivariate 
Cox analyses (Figure 5J-K). Additionally, KM and 
ROC analyses on one experimental cohort were 
performed to further explore the efficiency of the risk 
score in predicting patient survival(Figure 6A, TCGA 
dataset, p < 0.001, 1-year AUC = 0.684, 3-year AUC = 
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0.668, 5-year AUC = 0.665) and two validation cohorts 
(Figure 6B&C, GSE13876, p = 0.019, 1-year AUC = 
0.586, 3-year AUC = 0.538, 5-year AUC = 0.544 and 
GSE26193, p = 0.356, 1-year AUC = 0.362, 3-year AUC 
= 0.542, 5-year AUC = 0.503). Then we conducted a 
nomogram based on four risk factors, grade, stage, 
age and risk scores, from the results of single and 
multiple factor cox analysis (Figure 6D). The 
calibration plot demonstrated a close agreement 
between the nomogram-predicted survival rates and 
the actual survival rates (Figure 6E). 

The immune cell infiltration and TME in high- 
and low-risk groups 

In order to validate the precision of our risk score 
in making predictions, an examination was conducted 
on the immune condition of both the high- and 
low-risk groups. The analysis revealed a correlation 

between the risk scores and four distinct types of 
immune cells, namely CD8 cells, plasma cells, 
activated NK cells, and memory B cells (Figure 7A). 
Additionally, a significant association was observed 
between the four signature genes and numerous 
infiltrations of immune cells, including follicular 
helper T cells (Figure 7B). Figure 7C demonstrated 
that the low-risk group exhibited a significantly lower 
stromal score (p < 0.05) and a significantly higher 
immune score (p < 0.001) compared to the high-risk 
group. Additionally, our findings revealed a strong 
correlation between high RNA stemness scores 
(RNAss) and lower risk scores (Figure 7D). These 
results provide evidence that the signature genes we 
identified are intricately linked to the immune profile 
of the cells. 

 
 

 
Figure 5. Development of the prognostic signature. (A, B) Partial likelihood deviance and the LASSO regression analysis on the prognostic signature genes. (C) The coefficient 
values of the multivariate Cox regression. (D) Sankey diagram exhibited the two molecular clusters, two gene clusters and two risk groups. (E, F) Differences in risk score among 
the two molecular clusters and two gene clusters. (G) Differences in expression levels of MRGs in the two risk groups. (H)The heatmap showed the expression levels of the four 
signature genes among the two risk groups. (I) Risk score and survival status of OV individuals. (J-K) The risk parameters of single and multiple factors Cox regression analyses 
in OV individuals. 
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Figure 6. The efficiency of the risk score in predicting patient survival. (A-C) K-M and ROC curves revealed the prognostic values among training and validation cohorts. (D) 
Constructing a nomogram using the risk score and some risk clinical characteristics. (E) Calibration plot showed the differences among actual survival rates and 
nomogram-predicted survival rates. 

 

Relationship between risk score and IC50 
values of therapeutic drugs 

A comparison of chemotherapy drug sensitivity 
between high-risk and low-risk OV patients revealed 
that the IC50 values for roscovitine, cyclopamine, and 
other drugs were higher in the high-risk group. This 
suggests a correlation between risk scores and drug 
sensitivity (Figure 8A-L). 

Analysis of Single cell RNA-sequencing for four 
signature genes 

Through analyzing four single-cell datasets, 
EMTAB8107, GSE130000, GSE151214, GSE154600, we 
found GDF6 was intensely expressed in fibroblast 
cells, KIF26A was intensely expressed in endothelial 
cells and smooth muscle cells, P2RY14 was intensely 
expressed in monocytes, and ALDH1A2 was 
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intensely expressed in smooth muscle cells (Figure 
9A-D). 

The expression levels of the four signature 
genes in OV and normal healthy controls 

To investigate the expressional condition of the 
four signature genes, we firstly compared the 
expression levels of these genes in the OV patients 
and healthy controls according to mRNA expression 
profile of TCGA database. The results showed GDF6 
had higher expression in OV patients, while KIF26A, 
P2RY14 and ALDH1A2 were higher expression in 
normal controls (Figure 10A). Then we discovered 
GDF6 was also highly expressed in OV cell lines 

(A2780), and KIF26A and P2RY14 were highly 
expressed in normal ovarian cell lines by qRT-PCR 
(Figure 10B). Combined with the survival curve, we 
found that low expression of P2RY14 and high 
expression of GDF6 was associated with poor 
prognosis of OV (Figure 10C). Moreover, the 
investigation of protein expression levels of GDF6 and 
P2RY14 in OV and non-tumor tissues was conducted 
through the utilization of immune histochemistry 
(IHC) on the tissue microarray. The findings revealed 
that both GDF6 and P2RY14 exhibited low expression 
in OV, as depicted in Figure 10D. 

 

 
Figure 7. Evaluation of TME in different risk scores. (A) Correlation among different immune cell types and risk score. (B) Relation among four signature genes and the 
abundance of immune cells. (C) Connection among TME-related scores and risk score. (D) Correlation between risk scores and RNAss. *p < 0.05; ***p < 0.001. 
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Figure 8. Analysis of drug susceptibility. (A-L) The significant differences in IC50 of therapeutic drugs in low- and high-risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001. 

 
Figure 9. Analysis of Single-cell RNA sequencing. Using four single-cell datasets EMTAB8107(A), GSE130000 (B), GSE151214 (C) and GSE154600 (D) to verify the four signature 
genes expression location in various cell types. UMAP is used to visualize the dimension reduction clustering of the dataset, while the violin map is employed to display 
characteristic genes and cell annotation. 
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Figure 10. The comparison of levels of signature genes expression in tumor and normal controls. (A) Differences of expression levels of the four signature genes among the 
normal ovarian tissues and Ovarian cancer tissues (TCGA and GTEx database). (B) The relative mRNA levels of the four signature genes between normal ovarian cell lines and 
OV cell lines. (C) The prognostic value of a 4 sigurenaure gene for patients in TCGA has been confirmed through Kaplan–Meier analysis. (D) The immunohistochemical staining 
of tissue microarray shows 4 signature genes expressions on protein level between OV and normal control tissues. 

 

Exploring the function of P2RY14 with 
combining in vitro experiments 

Based on the above findings, it is speculated that 
the low expression of P2RY14 may be closely 

connected to the poor prognosis of OV. To further 
comprehend the significance of P2RY14 in OV, the 
relationship between P2RY14 expression and immune 
checkpoint and biological function were investigated. 
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As shown in Figure 11A, the expression levels of eight 
immune checkpoint genes including LAG3, 
SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4 
and PDCD1LG2 were all positively linked with 
P2RY14 in OV (Figure 11A). The results of WB 
demonstrated the P2RY14 was expressed at lower 
levels in A2780 and OVCA433 (Figure 11B-C). To 
further explore the function of P2RY14 in A2780 and 

OVCA433, P2RY14 protein expression were knocked 
down by siRNA (Figure 11D-E). CCK8 (Figure 10F-G) 
and colony formation (Figure 10H-I) assays 
demonstrated that silencing P2RY14 expression 
promoted cell proliferation, and Transwell (Figure 11 
J-K) assays demonstrated that silencing P2RY14 
expression inhibited cell migration in A2780 and 
OVCA433 cell lines. 

 

 
Figure 11. The function of P2RY14. (A) The relationship among the expression levels of P2RY14 and eight immune checkpoint gene in OV. (B-C) Comparison of expression 
levels of P2RY14 between OV cell lines and normal ovarian cell lines. (D-E) Knocking out the P2RY14 in OV cell lines by two siRNA. Assessing the effects of P2RY14 by CCK8 
(F-G) and colony formation (H-I). (J-K) Evaluation of migration by transwell assay. 
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Discussion 
Over the past few decades, the treatment of OV 

has been rapidly updated and developed, including 
neoadjuvant chemotherapy, immunotherapy, PARP 
inhibitors, among other approaches. However the 
5-year survival rate is still very low, and the prognosis 
is not optimistic[18-20]. Therefore, it is very important 
to effectively predict the prognosis of OV and explore 
more sensitive drugs. At present, there have been 
studies using bioinformatics analysis based on 
immune-related gene sets to identify some signature 
genes of OV and construct prognostic signature 
models to assess patient risk[21, 22]. However, current 
research is still unable to predict and assess the risk of 
OV patients with great accuracy. This study 
constructed a prognostic signature model of OV using 
prognosis-related MRGs that have been empirically 
indicated to be significantly associated with tumor 
development. This model is anticipated to offer 
additional insights for the assessment of disease risk 
and the tailoring of personalized treatment 
approaches. 

Relative to normal cells, tumor cells typically 
reprogram metabolism pathways to meet the growth 
demands of malignant cells[23]. A common pattern of 
metabolism pathways dysregulation in cancer is 
mutations in MRGs involved in glycolysis, fatty acid 
synthesis, serine metabolism, and so on[24]. Our 
study revealed that many prognostic-related MRGs 
are mutated in patients with OV, suggesting a 
possible association between MRGs and the 
development and progression of OV. Subsequently, 
the OV individuals were classified into two molecular 
clusters according to the expression levels of the 
aforementioned MRGs. Our investigation unveiled 
significant disparities in terms of survival outcomes, 
expression of immune checkpoint genes and 
infiltration of immune cells, between the two 
molecular clusters, thus validating the credibility of 
the clustering methodology employed utilizing the 
MRGs. Consequently, we identified four prognostic 
signature genes, namely GDF6, KIF26A, P2RY14, and 
ALDH1A2, from the DEGs observed within the two 
molecular clusters, thereby contributing to the 
understanding of OV. Low expression of P2RY14 and 
ALDH1A2 has been demonstrated to be related to 
poor prognosis of OV [25, 26]. Furthermore, previous 
studies have proved the inhibitory effects of 
ALDH1A2 on the migratory and proliferative 
capabilities of ovarian cancer cells[26]. Once the 
signature genes and their corresponding risk 
coefficients have been identified, it becomes possible 
to calculate a risk score for each sample, thereby 
facilitating the categorization of ovarian cancer 

patients into high- and low-risk groups based on their 
individual risk scores. Additionally, to enhance the 
accuracy of prognostic predictions, a nomogram 
incorporating clinical features such as tumor grade, 
age, and stage has been developed. 

Recently, immunotherapy has been proved to 
improve survival in a variety of cancers such as renal 
cell carcinoma, lung cancer, and metastatic 
melanoma[7]. Given that this is an evolving field, and 
because PARP inhibitors can work against immune 
checkpoints PD-L1 and CTLA-4, immunotherapy is a 
potential novel frontier for the treatment of recurrent 
OV[27, 28]. After focusing on the characteristics of the 
tumor for a long time, the scientists found that the 
behavior of the non-tumor cells became as meaningful 
as the tumor itself[29]. The presence of TME and 
immune cell infiltrations in tumors has been 
demonstrated to be significant markers for assessing 
the efficacy of immunotherapy[30]. TME 
encompasses cancer cells surrounded by a diverse 
array of non-malignant cell types and vascularized 
extracellular matrix[31]. The ESTIMATE algorithm 
was employed to compute the relative abundance of 
immune-stromal components within TME, which 
were further categorized into immune score, stromal 
score, and ESTIMATE score. Our analysis showed 
that the low-risk group exhibited elevated immune 
score and ESTIMATE score, potentially indicating 
heightened infiltration of immune cells. Notably, OV 
individuals with lower risk scores displayed 
improved prognosis and a more favorable TME. In 
order to corroborate our findings, we conducted an 
analysis of drug susceptibility within the two 
identified risk groups. Our investigation revealed that 
the low-risk group showed significantly lower IC50 
values in relation to 15 distinct therapeutic drugs. This 
observation implies that individuals classified as 
low-risk may possess heightened sensitivity towards 
chemotherapy. 

Among the various techniques for evaluating 
gene expression, scRNA-seq is a relatively new 
technique that measures the level of gene expression 
in each respective transcript within each cell in a 
sample and can represent the distribution of this 
expression across each cell subpopulation[32, 33]. The 
intensive expression of KIF26A and ALDH1A2 on 
smooth muscle cells suggests their potential 
involvement in tumor progression. Furthermore, 
significant differences in the expression levels of these 
four characteristic genes were observed between 
ovarian cancer patients and healthy controls. 

To provide additional evidence for the predictive 
effectiveness of the signature genes, several in vitro 
experiments were performed to compare the 
expression levels of these genes. The results obtained 
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from qRT-PCR analysis demonstrated distinct 
expression levels of the four genes in OV cells in 
comparison to normal ovarian cells, which were 
basically consistent with the statistical results derived 
from clinical samples obtained from a publicly 
accessible database. Furthermore, we validated 
through IHC experiments that the expression of 
P2RY14 and GDF6 was decreased in tumor tissues. As 
a member of the original family of extracellular 
nucleotide-sensitive receptors[34], UDP-glucose- 
specific G(i) protein-coupled P2Y receptor (P2RY14) 
has been extensively demonstrated to play a role in 
the development and progression of various 
malignancies, including glioma cells[35], lung 
adenocarcinoma[36], acute lymphoblastic leukemia 
[37]. Therefore, we explore the function of P2RY14 by 
combining in with vitro experiments, our 
investigation demonstrated that the knockout of 
P2RY14 resulted in enhanced proliferation capacity 
and migration of OV cells. Moreover, the efficacy of 
suitable immune checkpoint modulation in 
immunotherapy has been widely acknowledged[38]. 
Intriguingly, our results indicate a significant 
correlation between P2RY14 and eight distinct 
immune checkpoints, thereby reinforcing the 
potential of P2RY14 targeting to enhance the 
therapeutic outcomes of immunotherapy. And for the 
first time, the function of P2RY14 in OV was explored 
in this study. The findings of our study indicate a 
potential correlation between low expression of 
P2RY14 and unfavorable prognostic outcomes in 
ovarian cancer. P2RY14 may act as a tumor 
suppressor gene in ovarian cancer, and further 
experiments are needed to ascertain its definitive role. 

However, our research still exhibits certain 
limitations. Despite the utilization of the TCGA public 
database, which currently boasts the largest sample 
size among ovarian cancer patients for the 
identification of signature genes, further enhancement 
of statistical effectiveness necessitates a larger sample 
size. Secondly, we found that knocking down P2RY14 
can promote the growth and migration of OV cells. 
Nevertheless, the underlying mechanism by which 
P2RY14 regulates tumor growth remains unclear. 

Conclusions 
In conclusion, our study has successfully 

constructed a prognostic signature model that 
demonstrates significant efficacy in predicting the 
prognosis of ovarian cancer patients. Furthermore, we 
have successfully identified and validated four 
signature genes. Additionally, our findings suggest 
that downregulation expression of P2RY14 facilitates 
the proliferation and migration of ovarian cancer cells, 
potentially contributing to the unfavorable prognosis 

associated with this disease. 
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