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Abstract 

Background: The importance of fibroblasts in cancer progression is becoming more acknowledged, 
particularly the significance of their immune-related genes. However, the precise roles these genes play in 
fibroblasts throughout tumor development remains unclear. Exploring how these genes function in advancing 
kidney renal clear cell carcinoma (KIRC) could provide answers to these uncertainties. 
Material and method: The Cancer Genome Atlas (TCGA) database served as the source of data for KIRC 
patients. We distinguished fibroblast immune-related genes (FIGs), which are used to construct risk score. 
Further analysis conducted including enrichment analysis, assessment of tumor mutation burden (TMB), 
evaluation of tumor microenvironment (TME), analysis of immune cell infiltration, and drug sensitivity 
prediction.  
Result: The risk score using 6 FIGs effectively predicts the outcomes for KIRC patients. Nomogram which is 
based on the risk score and clinical data, demonstrated superior predictive performance compared to the 
version without the risk score. Enrichment analysis identified that coagulation pathway predominates in 
high-risk group, the protein secretion pathway is prevalent in low-risk patients’ cohort. The adverse prognosis 
in high-risk patient cohort could be linked to an elevated TMB. TME analysis showed that high-risk group’s 
tumor tissues contain more immune and stromal cells. Furthermore, the amount of regulatory T cells increases 
with the risk score. Low-risk group response better to immunotherapy. Finally, RT-qPCR confirmed the 
differential expression of FIGs in KIRC patients. 
Conclusion: This risk score and nomogram are valuable tools assessing KIRC patients’ prognosis. Poorer 
prognosis in high-risk categories may have relationship with activation of coagulation pathway and a higher 
TMB. 

Keywords: Fibroblast; Immune-related genes; Kidney renal clear cell carcinoma; Prognosis model; Single cell analysis. 

Introduction 
Renal cell cancer (RCC) is among the most 

prevalent genitourinary tract malignancies, exhibiting 
a mortality rate of 30% to 40% [1]. KIRC is its most 
common subtype, though its prognosis often proves 
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challenging to determine [2]. While the American 
Joint Committee on Cancer put forward a tumor, 
node, metastasis (TNM) classification system for 
KIRC prognosis assessment, categorizing patients into 
stages I through IV [3]. Currently, prognostic markers 
for KIRC typically depend on imaging techniques, 
which lack high specificity [4]. This underscores the 
critical need for developing new, more effective 
prognostic models for patients with KIRC. 

Fibroblasts, the predominant cells in connective 
tissue, are traditionally recognized for their significant 
contributions to wound healing and tissue repair [5]. 
However, nowadays’ research has revealed that 
fibroblasts also play vital apart in the progression of 
several cancers, such as lung, breast, and kidney 
cancers [6-8]. Within TME, fibroblasts have been 
recognized to provoke tumor cell growth, 
proliferation, and metastasis [9]. Muhammad Khan et 
al. (2022) and Song-Chao Li et al. (2022) established 
distinct KIRC prognosis models employing 
pyroptosis relates genes and telomere-related genes 
respectively [10, 11]. Furthermore, Yixin Liu et al. 
(2023) created a model that uses cuproptosis-related 
genes to predict the prognosis for KIRC patients [12]. 
Single-cell analysis serves as a crucial tool for 
examining cellular heterogeneity within complex 
biological systems. This technique enables the 
identification of the full gene expression profile of 
individual cells, thereby aiding in the discovery of 
genes previously unidentifiable [13]. In recent studies, 
Jiayu Zhang et al. (2023) sought to propose a 
pan-cancer prognostic model by analyzing the single 
cell data of endothelial cells [14]. Similarly, Jing Zhang 
et al. (2023) explored the use of ferroptosis-associated 
genes for determining the prognosis of KIRC patients 
using single-cell data [15]. However, the prognostic 
significance of FIGs in KIRC still remains to be fully 
elucidated. 

Consequently, we developed a risk score for 
KIRC centered on FIGs, designed to evaluate KIRC 
patients’ prognosis. We further examined clinical 
applicability of this risk score by develop a 
nomogram. Through enrichment analysis, differential 
analysis of the TME, and TMB analysis, we want to 
find out the pathway involved. Drug sensitivity 
prediction can give clues for clinical personalized 
medicine. 

Material and method 
Data sources 

We obtained transcriptome data from TCGA 
database (https://portal.gdc.cancer.gov/, as of 
January 25, 2024) for 614 samples, representing 533 
KIRC patients, which included 533 tumor and 77 

normal tissue samples. Additionally, we downloaded 
clinical pathologic data for 537 KIRC patients from the 
same database. We collected 2484 genes linked to 
immunity from the ImmPort online database 
(https://www.immport.org/, as of February 26, 2024) 
and 3714 genes which is related to immune response 
from the InnateDB website database (https://www. 
innatedb.ca/, as of February 26, 2024). After 
eliminating duplicates, we compiled 2533 unique 
immune related genes. Genomic mutation data for the 
tumor cells were also sourced from the TCGA. 
Furthermore, Tumor Immune Single-cell Hub 2 
(TISCH2) database provided us with single cell data 
(http://tisch.comp-genomics.org/, as of February 26, 
2024; sample ID: T010042; dataset name: 
KIRC-GSE111360). 

Finding the genes that are differently 
expressed in fibroblasts 

We acquired data of every single cell 
differentially expressed genes from the TISCH2 
database. To isolate those genes which were 
significantly differentially expressed between other 
cell types and fibroblasts, we specifically analyzed the 
fibroblasts cell gene expression profile. Genes with a 
fold change more than 1.5 and an adjusted p-value 
less than 0.05 were our selections [14].  

Construction of risk score 
To pinpoint FIGs, we conducted an intersection 

analysis between known immune-related genes and 
the differentially expressed genes in fibroblasts, 
thereby identifying FIGs. We utilized the 
“VennDiagram” R package to graphically represent 
this intersection through a Venn diagram. Further, to 
explore the interactions among these identified genes, 
we uploaded the genes data set to STRING website 
database (https://cn.string-db.org/, as of February 
26, 2024), where we set the minimum interaction score 
to 0.4. We were able to create a protein-protein 
interaction (PPI) network as a result. From this 
network relationship file downloaded from STRING, 
we identified genes that interact with more than 20 
neighboring nodes, considering these as “most core” 
genes within the network. The gene with the highest 
number of adjacent interacting neighbors was 
designated as the core gene, potentially playing a 
momentous role in the contribution of fibroblasts for 
KIRC. 

Initially, to create the risk score, every KIRC 
patient was divided into testing and training groups 
at random. We then operated univariate Cox 
regression analysis (p<0.05) by using the “survival” 
and “survminer” R packages to find genes linked to 
patient prognosis. Significant genes from this analysis 
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were further refined through Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
by the usage of “glmnet” R package, aiming to 
eliminate the risk of overfitting. Finally, genes that 
were most closely associated with prognosis were 
selected via multivariate Cox regression for 
constructing risk score [12]. Risk score was 
established as follows: Risk score = ∑ (coefficient of 
gene n) × (expression of gene n). Based on the median 
of the risk score, patients, including those in the train 
and test group, were then separated into high-risk 
and low-risk categories. 

Risk score accuracy validation 
To validate the accuracy of our risk score, the 

“survival” and “survminer” R packages were utilized 
to perform Kaplan-Meier (K-M) survival analysis. 
This enabled the examination of differences in overall 
survival (OS) between different groups. 
Progression-free survival (PFS) curves were also 
generated. Furthermore, we made use of the R 
package “pheatmap” to create heatmaps of the risk 
scores for all patients, and those in the training and 
testing groups. These heatmaps made it easier to 
explore the connection between patient survival 
status and risk genes expression, enhancing our 
understanding of the model’s construction principles. 
To delve deeper into the influence of specific genes on 
patient survival, we plotted survival curves for each 
gene and analyzed the association between these risk 
genes’ expression and the risk scores. 

Principal Component Analysis (PCA) was 
conducted using all FIGs and risk genes respectively 
to appraise the effectiveness of the grouping. 
Additionally, both multivariate and univariate Cox 
independent prognostic analysis help deciding the 
prognostic contribution of the risk score, with results 
presented in a forest plot. We also utilized the 
“timeROC” R package to draw 1, 3, and 5-year’s 
Receiver Operating Characteristic (ROC) curves, 
calculating the area under the curve (AUC) to 
measure the predictive efficacy of risk score. 
Furthermore, validation of risk score within clinical 
subgroups, and clinical relevance analysis were 
carried out to deepen our understanding of the 
connection between risk score and various clinical 
phenotype. 

Nomogram plotting to predict KIRC patients’ 
prognosis 

By using the “RMS” R package, we developed a 
nomogram that predict the 1, 3, and 5-year survival 
rates based on five key factors: gender, tumor grade, 
age, risk score, and tumor stage. This tool aims to 
provide precise predictions of patient outcomes. To 
assess the accuracy and utility of the nomogram, we 

generated calibration curves for the 1, 3, and 5-year. In 
addition, we employed the “ggDCA” package to 
produce decision curves, evaluating the clinical 
usefulness of the nomogram in making clinical 
decisions. The predictive accuracy of the nomogram 
was further analyzed by drawing ROC curves and 
calculating their AUC. To underscore the prediction 
efficacy of our nomogram has exceed traditional 
clinical data, we also plotted C-index curves. 

Enrichment analysis to find relevant pathways 
We acquired five representative gene sets which 

come from the Gene Set Enrichment Analysis (GSEA) 
database (https://www.gsea-msigdb.org/, as of 
February 26, 2024), and carried out enrichment 
analysis. To dig deeper into the biological pathways 
and functions related to the differentially expressed 
genes, we use the “ClusterProfiler” R package, and 
carried out enrichment analysis for Gene Ontology 
(GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG). The results of GO enrichment 
analysis were annotated utilizing Bioconductor 
annotation package “org.Hs.eg.db” [10]. 

Tumor microenvironment and 
immune-related analysis 

We employed the “estimate” R package for 
analyzing the TME of samples from high-risk and 
low-risk groups, creating violin plots to compare the 
infiltration of non-tumor cells between these groups. 
For a more detailed examination of immune cell 
composition variations, we used the “CIBERSORT” R 
package to distinguish the variances in 22 immune 
cell lineages between 2 risk categories. To assist with 
immune phenotyping, we used the “RColorBrewer” R 
package. Additionally, single-sample gene set 
enrichment analysis (ssGSEA) was executed via 
“GSVA” R package. It was applied to evaluate 
variations in immune functions across the different 
risk groups. These analyses aim to highlight 
disparities in immune functionality between 2 risk 
categories, laying the groundwork for potential 
immunotherapy approaches. Lastly, we accessed the 
TIDE database website (http://tide.dfci.harvard. 
edu/, as of February 26, 2024) to retrieve TIDE score 
files, comparing these scores across different risk 
groups. This comparison aids in assessing the likely 
responsiveness of patients in different risk groups to 
immunotherapy. 

Tumor mutation burden calculation 
We processed tumor mutation data from TCGA 

database utilizing the “TCGAbiolinks” R package and 
used “maftools” R package for generating waterfall 
plots. These plots illustrate the variances in tumor 
mutation genes and their mutation rates between 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5945 

different risk groups. Additionally, we created violin 
plots to display the variations in TMB between 2 
different risk groups. To further explore the impact of 
mutations on survival, we operated survival analysis 
for groups categorized by mutation level and risk.  

Drug sensitivity prediction 
We utilized the “parallel” and “oncoPredict” R 

packages to predict and analyze drug sensitivity in 
patients within the different risk groups. Utilizing the 
“ggplot2” R package, we then created comparative 
box plots to display the sensitivity of these two 
groups to 198 different drugs. This analysis helped us 
identify drugs which have significant variances in 
sensitivity between 2 different risk groups, using a 
relative stringent significance threshold (p-value < 
0.001).  

RT‒qPCR validation 
The Typical Culture Preservation Commission 

Cell Bank of the Chinese Academy of Medical 
Sciences in Shanghai, China, provided the normal 
kidney epithelial cell lines (HK-2) and the KIRC cell 
lines (Caki-1 and Caki-2). HK-2 cells were cultured in 
Keratinocyte SFM (K-SFM) medium, whereas we 
grew Caki-1 and Caki-2 cells in a complete culture 
medium composed of 90% McCoy’s 5a medium 
adding 10% fetal bovine serum. Trizol was employed 
to get total RNA extraction (Takara Bio, Inc., Otsu, 
Japan). Accurate Biology (Hunan, China) provided a 
reverse transcription kit for cDNA synthesis, which 
was followed by RT-qPCR using the SYBR Green 
premixed qPCR kit (Accurate Biology, Hunan, China) 
using a Roche LightCycler 480 II (Roche, Basel, 
China). We determined gene expression level through 
2^−ΔΔCt method, we have shown the primer 
sequences in Table S1. 

The Human Protein Atlas database (https:// 
www.proteinatlas.org/) was utilized to assess the 
FIGs’ expression at the protein level in both normal 
kidney tissues and KIRC tissues. 

Statistical analysis for result data 
Result analysis for statistics was undertook by R 

software (version 4.3.0), combining with Perl 
(Strawberry Perl 5.30.0.1). To compare variables 
across groups, we used the Wilcoxon t-test; 
statistically significant p-value was one that was less 
than 0.05. 

 Results 
Single-cell data analysis identifies genes with 
differential expression in fibroblasts 

The design of this study is depicted in a 
flowchart as shown in Figure 1. Single cell gene 

expression information for KIRC patients were 
retrieved from the TISCH2 database. Then using the 
filter condition mentioned in method part, we 
pinpointed 464 genes that exhibited significant 
differential expression in fibroblasts (Table S2). 

 

Table 1. Clinical information of the patients in the test and train 
groups. 

Characteristics Train cohort 
(n=267) 

Test cohort 
(n=266) 

Entire cohort 
(n=533) 

n % n % n % 
Age       
 ≤65 166 62.17  183 68.8  349 65.48  
 >65 101 37.83 83 31.2  184 34.52  
Status       
 Alive 177 66.29  181 68.05 358 67.17 
 Dead 90 33.71  85 31.95 175 32.83  
Gender       
 Female 94 35.21  94 35.34  188 35.27  
 Male 173 64.79  172 64.66 345 64.73  
Stage       
 Stage I 137 51.31  130 48.87 269 50.09 
 Stage II  25 9.36  32 12.03  57 10.69  
 Stage III 63 23.60  60 22.56  123 23.08 
 Stage IV 41 15.36 42 15.79  83 15.57 
Unknow 1 0.37 2 0.75 3 0.56  
T stage       
 T1 140 52.44  133 50.00  273 51.22  
 T2 34 12.73  35 13.16  69 12.95 
 T3 88 32.96  92 34.57  180 33.77  
 T4 5 1.87  6 2.26  11 2.06  
M stage       
 M0 212 79.40  210 78.95  422 79.17 
 M1 38 14.23  41 15.41 79 14.82  
 Unknow 17 6.37  15 5.64  32 6.01  
N stage       
 N0 120 44.94  120 45.11  240 45.03  
 N1 8 3.00  8 3.01  16 3.00 
 Unknow 139 52.06  138 51.88 277 51.97  
Race       
 White 232 86.89  230 85.19  462 86.68  
Black or African American 29 10.86  27 10.00  56 10.51  
 Asian 2 0.74  6 2.22  8 1.50  
 Unknow 4 1.50  3 2.59  7 1.31  

Abbreviation: M stage: metastasis stage; N stage: Node stage; T stage: Tumor stage. 
 

Construction of the risk score 
We performed an intersection analysis between 

the 464 differentially expressed fibroblast genes and 
2533 genes which is related to immune response, 106 
FIGs were identified as a consequence (Figure 2A). 
These 106 genes were then uploaded to the STRING 
database to examine their interactions, which 
facilitated the construction of a PPI network (Figure 
2C). Further, we counted the number of adjacent 
nodes for each gene and found 22 genes with more 
than 20 neighboring nodes, for which we drew bar 
graphs of the number of adjacent nodes (Figure 2F). 
We suspect that the tumor necrosis factor (TNF) gene, 
with 73 neighboring nodes, was the core gene among 
the FIGs. 

Randomly, we split the 533 KIRC patients into 
two groups: a training group for risk score foundation 
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and a testing group to verify it (Table 1). Initially, 
through the use of univariate Cox regression analysis, 
13 FIGs linked to prognosis were found, applying 
p-value less than 0.05 (Figure 2B) (Table S3). 
Subsequently, we performed LASSO regression 
analysis, selecting 9 prognosis associated FIGs from 
this process (Figures 2D, E). In the final step, 
multivariate Cox regression analysis helped us 

pinpoint 6 FIGs that were highly predictive of 
prognosis (Table S4). We then used these six genes to 
create our KIRC risk score. The risk score calculation 
formula for every sample is: (CLDN4’s expression × 
-0.667) + (LTF’s expression × -0.318) + (SAA1’s 
expression × 0.261) + (MDK’s expression × 0.741) + 
(HLA-DRA’s expression × -1.302) + (ISG15’s 
expression × 0.793). 

 
 

 
Figure 1. Flowchart.  
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Risk score accuracy verification 
We divided the sample into high and low-risk 

groups based on the median value (0.938) of the risk 
score. After classifying the patient cohort into 
high-risk and low-risk categories (Table 2), we 
conducted analysis on OS and PFS. Based on the 
findings, the low-risk cohort’s survival status was 
much better than those of the high-risk (all 
p-values<0.001) (Figure 3A-F). Additionally, a risk 
heatmap indicated that the low-risk cohort had higher 
levels of CLDN4, LTF, and HLA-DRA expression, 
identifying them as low-risk genes. The high-risk 
category exhibited elevated expression levels of 
SAA1, MDK, and ISG15, classifying them as high-risk 
genes (Figure S1A-C). This observation was further 
substantiated by the relationship curves for 6 FIGs 
and risk scores (Figure S2). According to scatter plots, 
patients in the high-risk category often had short 
survival times than low-risk patients (Figure S1D-I). 
Additionally, to predict the influence of each FIGs on 
the prognosis of KIRC patients, survival curves were 
plotted for each FIGs (Figure S3), showing that 
survival rates differed significantly even when 
considering the expression level of one FIGs 
(p-value<0.001). Subsequently to Cox independent 
prognostic multivariate and univariate analysis 
(Figure S4A, B), the results highlighted several key 
independent risk factors. In the univariate analysis, 
age (with p-value<0.001, HR=1.031, CI=1.018-1.045), 
tumor grade (with p-value<0.001, HR=2.275, 
CI=1.859-2.785), tumor stage (with p-value<0.001, 

HR=1.859, CI=1.631-2.119), and risk score (with 
p-value<0.001, HR=1.408, CI=1.310-1.514) were all 
identified as independent risk factors. The 
multivariate analysis further confirmed aforemen- 
tioned 4 factors continued to be significant 
independent predictors of prognosis: age (with 
p-value<0.001, HR=1.033, CI=1.018-1.048), tumor 
grade (with p-value=0.009, HR=1.355, 
CI=1.077-1.705), tumor stage (with p-value<0.001, 
HR=1.601, CI=1.375-1.865), and risk score (with 
p-value<0.001, HR=1.285, CI=1.177-1.404). PCA was 
applied to confirm that our risk score effectively 
differentiates patients into distinct risk categories 
(Figure S5H, I). Using this risk score, we forecast 
patient survival rates at 1, 3, and 5-year and generated 
the corresponding ROC curves (Figures 3G-I). The 
AUC values for 1, 3, and 5-year are 0.788, 0.773, and 
0.744 respectively, demonstrate the risk score’s high 
efficacy in prognostic prediction. Further clinical 
relevance analysis revealed that our risk score 
accurately predicts various clinical features of 
patients. Significant variations in tumor grade, stage, 
and T and M stages were found between the 2 risk 
categories (Figure S4C, D) (all p-values<0.001), with 
box plots corroborating these findings (Figure S5A-J). 
Survival curves segmented by clinical subgroups 
further underscored the validity of our risk score, 
demonstrating significantly lower survival times in 
high-risk cohort in contrast to low-risk (Figure S6, 
Figure S7) (all p-values<0.01). 

 

 
Figure 2. Intersection of immune-related genes and differentially expressed genes in fibroblasts resulted in 108 fibroblast immune-related genes (A), differential genes obtained 
through univariate Cox regression analysis (B), the protein interaction network of FIGs (C) and the screening of its core genes (F), Lasso regression analysis (D-E). 
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Nomogram construction 
We created a nomogram (Figure 4A), offering a 

device for predicting patients’ clinical prognosis using 
our risk score together with patient clinical data (age, 
gender, grade, and stage). The calibration curves 
provided proof of the precision of the nomogram 
(Figure 4D, E). To demonstrate the value of our 
nomogram in predicting patients’ prognosis, we also 
plotted C-index curves, revealing the risk score’s 
C-index (0.774) surpassed other clinical features’, 
confirming our risk score has advantages in 
predicting patients’ prognosis compared to other 

clinical traits (Figure 4B). At the same time, we made 
1, 3, 5-year ROC for all clinical traits (Figure 4C), we 
found that the AUC of the nomogram (0.862 for 
1-year, 0.825 for 3-year, 0.781 for 5-year) was higher 
than all clinical traits, indicating that using our 
nomogram to predict patient’s prognosis is more 
accurate than any other single clinical trait. Decision 
curve analysis showed similar results (Figure 4F), 
indicating significant practical value of our 
nomogram in clinical decision-making of patient’s 
prognosis. 

 

 
Figure 3. Overall survival (OS) curves for the entire group, test group, and train group (A-C), Progression-free survival (PFS) curves (D-F), and ROC curves (G-I). 
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Table 2. Clinical information for 533 patients in different risk 
categories. 

Characteristics High-risk group (n=264) Low-risk group (n=269) 
n % n % 

Age     
 ≤65 170 64.39 179 66.54  
 >65 94 35.61  90 33.46  
Status     
 Alive 136 51.52 222 82.53 
 Dead 128 48.48 47 17.47 
Gender     
 Female 87 32.95  101 37.55 
 Male 177 67.05 168 62.45  
Stage     
 Stage I 94 35.61  173 64.31 
 Stage II  24 9.09  33 12.27  
 Stage III 78 29.55 45 23.08  
 Stage IV 67 25.38 16 5.95  
 Unknow 1 0.38  2 0.74  
T stage     
 T1 99 37.50 174 64.68 
 T2 33 12.50  36 13.38  
 T3 121 45.83 59 21.93  
 T4 11 4.17 0 0  
M stage     
 M0 181 68.56  241 89.59  
 M1 63 23.86  16 5.95 
 Unknow 20 7.58 12 4.46 
N stage     
 N0 114 43.18 126 46.84 
 N1 12 4.55  4 1.49 
 Unknow 138 52.27 139 51.67  
Race     
 White 230 87.12  232 84.98 
 Black or African American 29 10.98 27 9.89 
 Asian 2 0.76 6 2.20 
 Unknow 3 1.14 4 2.93 

Abbreviation: M stage: metastasis stage; N stage: Node stage; T stage: Tumor stage. 
 

Enrichment analysis to identify pathways 
involved 

We conducted GSEA using five representative 
gene list files and identified the top 5 pathways 
concentrated in both high-risk and low-risk groups, as 
outlined in Table S5 and visualized in Figure S8. 
According to the GSEA results, in the high-risk 
category, genes differentially expressed were mostly 
concentrated in routes connected to coagulation, 
allograft rejection, complement, epithelial- 
mesenchymal transition, and xenobiotic metabolism. 
Conversely, the majority of the genes which 
differentially expressed in the low-risk cohort were 
concentrated in pathways connected to protein 
secretion, fatty acid metabolism, heme metabolism, 
oxidative phosphorylation, and androgen response. 
These insights imply that the poor prognosis in KIRC 
may be linked to the activation of genes involved in 
the coagulation pathway, whereas the upregulation of 
genes associated with the protein secretion pathway 
could potentially improve the prognosis of KIRC 
patients. Furthermore, according to the GO 
enrichment analysis, genes that showed variations in 
expression between 2 risk categories were primarily 

enriched in pathways for example antigen binding, 
the immunoglobulin complex, and leukocyte- 
mediated immune response (Figure 5A, B). KEGG 
enrichment analysis emphasized the notable 
concentration of genes with distinct expression 
patterns among 2 different risk cohorts in leukocyte- 
mediated immune response and immunoglobulin- 
mediated immune response pathways (Figure 5C, D). 
These results from the enrichment analysis suggest 
that the different prognosis between 2 different risk 
cohorts maybe due to dis-regulation of leukocyte and 
their immunogobulin secretion activity. 

Tumor mutation burden analysis 
We performed a statistical analysis of the TMB 

and used waterfall charts (Figure 6A, B) to display the 
mutation patterns of the 2 risk categories’ samples. 
Comparing the 2 risk cohorts, TMB is substantially 
higher for high-risk category (p-value=0.0064) (Figure 
6C). In high-risk samples, the genes VHL (44%), 
PBRM1 (40%), TTN (19%), SETD2 (16%), and BAP1 
(13%) exhibited the highest mutation rates. While the 
most altered genes in the low-risk group were VHL 
(39%), PBRM1 (35%), and TTN (15%). Additionally, 
survival analysis comparing low TMB group and high 
TMB group (Figure 6D, E) demonstrated that in 
contrast to the group with low TMB, the OS was 
considerably worse in high TMB group (p<0.001). 
These results point to a noteworthy connection 
between genes mutation numbers and the prognosis 
of KIRC patients, indicating that a higher TMB 
correlates with poorer prognosis. 

Tumor microenvironment and 
immune-related analysis 

In our investigation of the TME, we utilized 
violin plots (Figure S9A) to demonstrate how the 2 
risk categories’ cell infiltration differs from one 
another. The research’s findings demonstrated that 
comparing to low-risk cohort, high-risk cohort has 
higher stromal cell, and immune cell scores (all 
p-values<0.01). This suggests a notably greater 
presence of immune and stromal cells within the 
samples from the high-risk group. Further, immune 
phenotyping analysis highlighted significant 
differences in the immune characteristics between the 
two risk categories (Figure S9B) (p-value=0.001), 
emphasizing the distinct immune landscapes that 
correlate with patient risk categorization. Immune 
function analysis revealed that functions such as 
cell-mediated immunity, pro-inflammatory response, 
macrophage phagocytosis, co-stimulation of immune 
cells, and enhanced activity of helper T cells were 
noticeably greater in the group at high risk (all 
p-values<0.01), as shown in Figure S9C. In contrast, 
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increased mast cell activity and a secondary tumor 
necrosis factor response, both significantly correlated 
with improved prognosis, were more prevalent in 
low-risk cohort (all p-value<0.01). Additionally, the 
analysis of immune cell infiltration in tumor tissues 
(Figure S9D) indicated that when compared to 
low-risk samples, the prevalence of regulatory T cells, 
plasma cells, follicular helper T cells, and M0 
macrophages was considerably higher in high-risk 
samples (all p-value<0.01). On the other hand, the 
presence of monocytes, M1 macrophages, resting 
dendritic cells, resting NK cells, and mast cells was 
notably higher in low-risk samples (all p-value<0.01). 
These results were further corroborated by the risk 
score and immune cell infiltration association 

analysis, as detailed in Figure S10, underscoring the 
significant variances in immune profiles between the 
two risk groups. The analysis specifically highlighted 
that the infiltration of regulatory T cells increases 
markedly with higher risk scores, suggesting their 
potential role in contributing to the adverse prognosis 
of KIRC. It is noteworthy, although CD4+ T cells 
appear to act as a protective factor, as their numbers 
increase with decreasing risk scores, there was no 
discernible variation in CD4+ T cell infiltration 
between 2 risk categories. Additionally, in 
comparison to low-risk cohort, the high-risk cohort 
had higher TIDE scores (Figure 6F), suggesting that 
immunotherapy may work better for people in the 
low-risk category. 

 

 
Figure 4. Nomogram constructed using age, gender, risk, and stage (A) and its C-index curve (B), ROC curve (C), calibration curve for the risk model (D), and calibration 
curve for the no risk model (E), decision curve (F). 
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Drug sensitivity prediction 
Following an assessment of 198 anti-cancer 

medications’ sensitivity in high- and low-risk 
categories, we employed box plots to illustrate 
significant differences in response to 80 of these drugs 
between the two groups (Tables S6-S8). Specifically, 
the high-risk group generally showed heightened 
sensitivity to drugs that target the PI3K/AKT 
signaling pathway (Figure S11K), including Taselisib, 
Buparlisib, Afuresertib, AZD8055, Taselisib, Pictilisib, 
GNE-317, Alpelisib, AZD8186, MK-2206, AZD2014, 
and PF-4708671, Figure S11A-J exhibit some of the 
drugs. Samples in low-risk groups are more sensitive 
to drugs that block EGFR signaling pathway (Figure 
S11K), including AZD3759, Osimertinib, Gefitinib, 
Erlotinib and Afatinib. 

Experimental validation in vitro 
The Human Protein Atlas (HPA) database’s 

immunohistochemical staining pictures were utilized 
to compare the protein expression levels of each FIGs 
in KIRC tissues to those in normal kidney tissues, as 
shown in Figure S10A. RT-qPCR analysis (Figure 
S12B-C) further quantified expression differences, 
revealing that the expression of HLA-DRA and 
CLDN4 was much higher in normal tissues than in 
cancerous tissues. In contrast, compared to normal 
tissues, tumor tissues showed noticeably elevated 
expression levels of SAA1, MDK, and ISG15. LTF 
showed increased expression in Caki-1 cells 
compared to normal tissues, despite this, there was no 
discernible variation in its expression between Caki-2 
cells and normal tissues. 

 

 
Figure 5. Bar graphs of GO enrichment analysis, bubble chart (A) and circle chart (B). Bar graphs of KEGG enrichment analysis, bubble chart (C), and circle chart (D). 
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Figure 6. Tumor mutation burden (TMB) in high (A) and low-risk groups (B), differential analysis of TMB between high and low-risk groups (C), and survival curves (D-E). 
TIDE analysis of immune evasion and immunotherapy (F). *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Discussion 
RCC, especially its subtype KIRC, is marked by a 

high mortality rate of 30%-40% and an elusive 
pathogenesis [1]. Traditional TNM staging has shown 
limited effectiveness in prognosis prediction [2], 
highlighting the need for innovative prognostic 
models. Recent research has underscored the 
significant role of fibroblasts within the tumor 
microenvironment in driving cancer progression [16]. 
Leveraging single-cell data, we developed a risk score 
that aims to improve prognostic predictions for 
patients with KIRC. The risk score that utilized 6 FIGs 
is an independent predictive factor. It was discovered 
that patients placed in the high-risk category had a 
less favorable outcome. A nomogram, generated 
using clinical data and a risk score, demonstrated 
robust predictive accuracy. Additionally, enrichment 
analysis exhibited that genes linked to the protein 
secretion pathway might contribute to a more 
favorable prognosis. Through drug sensitivity 
analysis, this research also provides a crucial tool for 
tailoring anti-cancer treatment strategies in KIRC 
patients. 

TNF expression in fibroblasts may play a 
significant role in KIRC. TNF, mainly produced by 
activated monocytes/macrophages [17], can kill and 

inhibit tumor cells [18] and promote the phagocytosis 
[19]. Our PPI demonstrated the core role of TNF in 
FIGs. Therefore, we suspect that TNF in fibroblasts 
can be a research direction for understanding KIRC. 
The risk heatmap revealed that CLDN4, LTF, and 
HLA-DRA are low-risk genes, whereas SAA1, MDK, 
and ISG15 were classified as high-risk genes. CLDN4, 
Claudin-4 mainly responsible for tight connections 
between cells [20]. The overexpression of CLDN4 may 
inhibit epithelial-mesenchymal transition [21]. LTF, 
lactoferrin can enhance the body’s immune response 
by maintaining the balance of iron ions [22]. 
HLA-DRA encodes α chain in Class II HLA molecules 
which plays a significant apart in human immune 
response (especially allograft rejection) by being 
presented on antigen-presenting cells, particularly 
dendritic cells [23] and macrophages [24]. SAA1, 
Serum Amyloid A1 is an acute phase protein secreted 
by liver cells under the regulation of 
pro-inflammatory cytokines [26]. It has been 
recognized overexpression in multiple cancers, 
including lung and breast cancer [27]. MDK, midkine, 
serves as a vital pluripotent cytokine in the growth 
and development of the nervous system [28]. MDK 
promotes the occurrence and development of various 
tumors by activating signaling pathways like 
PI3K/AKT [29]. ISG15, Interferon-stimulated gene 15, 
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is a gene encodes a specific protein which can 
interacts with cell cycle proteins, promote the 
progression of the cell cycle [30]. GSEA result can also 
offer clues of the mechanism for FIGs to KIRC. Active 
coagulation pathways may promote cancer growth 
and metastasis. Thrombin, as a core member of 
coagulation, can stimulate platelet release of TGFβ1 
which can accelerate cancer cell proliferation and 
metastasis [31]. Thrombin also can trigger a series of 
intracellular signal transduction, including the 
PI3K/AKT pathway, enhancing the cell’s prolifera-
tion, migration, and invasions [32]. Complements can 
promote tumor cell migration (loss of adhesion 
molecules) by combing with integrins which is on 
tumor cells surface [33]. Epithelial-mesenchymal 
transition may be mediated by overexpression of 
CLDN4, is considered a risk factor for KIRC, for its 
aiding cancer metastasis [34]. Heme metabolism is 
considered a protective factor, it may be due to heme 
can reduce the angiogenesis of tumor environment 
which reduce the metastasis [35]. Oxidative 
phosphorylation can inhibit the aerobic glycolysis [36] 
which can inhibit cancer development. Protein 
secretion can enhance the immunity which help the 
body to fight tumors [37]. We have down TME 
analysis which helps us finding out the unknown of 
KIRC patients’ TME. Stromal cells are higher in 
high-risk group, it may be caused by the elevated 
tumor-stromal cell interaction which can promote 
tumor growth and angiogenesis. Regulatory T cells 
are responsible for calming hyper-activated immune 
response down, avoiding excessive immune response 
damage to the body. Their large infiltration in 
high-risk samples might indicate poor prognosis, 
which make them become a potential target for 
immunotherapy, CD4+ T cells can play apart in better 
prognosis for its number raise with the decrease of 
risk score. This information provides clues for future 
immunotherapy targets. 

Drug sensitivity analysis has identified two key 
pathways: the PI3K/AKT and EGFR signaling 
pathways, both of which are essential in controlling 
cellular functions including growth, survival, and 
differentiation [38]. These pathways represent 
potential focal points for developing personalized 
treatments for KIRC. It is hypothesized that stromal 
cells, particularly fibroblasts, may secrete TGFβ. This 
protein could interact with receptor tyrosine kinases 
on tumor cells, thereby activating the PI3K/AKT 
pathway, which is believed to be upregulated in 
patients from high-risk group, suggesting a target for 
therapeutic intervention. 

Our study offers several advantages. Notably, 
we developed a nomogram based on FIGs that has not 
been previously reported and successfully used it to 

predict survival time in KIRC patients, setting it apart 
from other studies. For comparison, the prognostic 
model for KIRC developed by Wang, C., et al. (2023) 
[2] also utilized transcriptomic data and single-cell 
multi-omics information and showed predictive 
utility for KIRC. However, their study did not 
incorporate TMB, nor did it explore the selection of 
anti-cancer drugs, we also summarized the 
classification of anti-cancer drugs that we identified 
vital for high- and low-risk groups. Comparing to the 
KIRC model creating by Muhammad Khan et al. 
(2022) [10] using pyroptosis related genes, we used 
RT-qPCR to validate the expression of the core genes 
used to construct risk score, while they did not. In 
contrast to the cuproptosis-related gene model by Liu, 
Y., et al. (2023) [4], our risk score was validated more 
extensively across all clinical subgroups, leading to 
more robust findings. Moreover, our risk score 
demonstrated a higher accuracy with an AUC of 0.744 
compared to the telomere-related gene risk prognostic 
model by Li, S. C., et al. (2022) [39], which had an AUC 
of 0.721. Despite these strengths, it is critical to 
recognize the constraints on our research. The data 
utilized were sourced solely from a single database 
and have not been validated with external datasets. 
Consequently, additional clinical experiments are 
required to further substantiation. 

Conclusions 
The risk score and accompanying nomogram 

effectively predict outcomes for KIRC patients. Raised 
TMB and an active coagulation pathway may be 
linked to a worse outcome in high-risk group. 
According to drug sensitivity research, medications 
that target the PI3K/AKT signaling pathway are 
effective for patients in high-risk category, whereas 
those in the low-risk category show greater sensitivity 
to inhibitors of the EGFR pathway. Nonetheless, these 
findings need to be confirmed through additional 
experimental and clinical studies. 
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