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Abstract 

Cellular senescence is closely associated with cancer development and progression. There is ample 
evidence that tumor stromal cells, especially cancer-associated fibroblasts (CAFs) undergo senescence in 
response to various stimuli. However, the possible biological roles and prognostic significance of 
senescent CAFs in esophageal squamous cell carcinoma (ESCC) remain unexplored. In this study, we 
found that CAFs exhibited a significantly higher level of cellular senescence than other cell clusters at the 
single-cell level. Then, we constructed a CAFs senescence-associated risk model with 7 genes (GEM, 
SLC2A6, CXCL14, STX11, EFHD2, PTX3, and HCK) through Cox regression and LASSO analysis. 
Kaplan-Meier survival analysis revealed that the risk model was significantly correlated with worse 
prognosis in training and validation cohorts. Subsequent analysis indicated that the risk model was an 
independent prognostic factor. In addition, the signature showed a distinct negative correlation with 
immune cell infiltration and immunotherapy responses. In vitro experiments showed remarkably higher 
mRNA and protein levels of prognosis-related genes (STX11 and EFHD2) in senescent CAFs than control 
group, consistent with the bioinformatics analysis results. Moreover, senescent CAFs significantly 
promoted ESCC cell proliferation and migration as shown by CCK-8 and scratch assays. In conclusion, 
our study identified a novel CAFs senescence-based classifier that may help predict prognosis of ESCC, 
and a thorough characterization of the signature could also be helpful in evaluating the response of ESCC 
to anti-tumor therapies and provide meaningful clinical options for cancer treatment. 

Keywords: Cancer-associated fibroblasts, Cellular senescence, Esophageal squamous cell carcinoma, Risk signature, Single-cell 
RNA sequencing 

Introduction 
Esophageal carcinoma (EC) is one of the most 

common digestive system cancers, ranking eighth in 
incidence and sixth in mortality among all cancer 
types worldwide [1]. EC is mainly categorized into 
two subtypes: esophageal squamous cell carcinoma 
(ESCC) and esophageal adenocarcinoma [2]. ESCC is 
the major subtype in Eastern Asia, particularly in 
China, comprising about 90% of EC cases [3, 4]. Given 

the lack of clinical signs in the initial phase, ESCC 
patients are usually diagnosed at an advanced stage, 
leading to poor life quality and adverse survival 
outcomes [5]. Even with advances in treatments like 
surgery, radiotherapy, chemotherapy, and 
immunotherapy, less than 20% of ESCC patients 
survive longer than five years [6]. Consequently, 
searching and developing new molecular indicators 
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are crucial for precisely forecasting the clinical 
behavior and prognosis for ESCC. 

Cellular senescence refers to a stable cell-cycle 
arrest, which can be induced by a range of insults, 
containing telomere shortening, oncogenic activation, 
oxidative stress, and DNA damage [7, 8]. Senescent 
cells experience numerous phenotype shifts, such as 
metabolic reprogramming, morphological alterations, 
and chromatin reorganization, and acquire a 
proinflammatory phenotype termed the 
senescence-associated secretory phenotype (SASP), 
characterized by the secretion of growth factors, 
matrix metalloproteinases, cytokines, and chemokines 
[9, 10]. Recent studies demonstrate that senescent cells 
exacerbate tumor growth fueled by the senescent 
microenvironment [11-13]. However, the distribution 
of cellular senescence within tumors and adjacent 
stromal areas remains unclear. With the continuous 
progress of sequencing technology, we now could 
characterize cellular senescence among different cell 
populations from the single-cell level. 

The tumor microenvironment (TME), where 
tumor cells grow and evolve, has an inseparable 
relationship with tumorigenesis [14, 15]. TME is 
composed of multiple cells, including but not limited 
to immune cells, endothelial cells, cancer-associated 
fibroblasts (CAFs), pericytes, and various 
extracellular matrix components [16, 17]. It has been 
reported that cellular senescence in stromal cells, 
especially in CAFs, has a profound effect on initiation 
and progression of tumor. For example, senescent 
CAFs release SASP factors to facilitate pancreatic 
cancer cell proliferation [18]. Cellular senescence in 
CAFs promotes breast cancer progression through 
establishing an immunosuppressive environment 
[19]. However, the characteristics of senescent CAFs 
and their effect on treatment response and prognosis 
of ESCC are still unexplored. 

In the present study, we acquired single-cell 
RNA sequencing (scRNA-seq) data from the GEO 
dataset to evaluate the senescence status of each cell 
subcluster. We found that CAFs exhibited the highest 
cellular senescence level and established a CAFs 
senescence-related signature for ESCC. We further 
analyzed the clinical significance and immune 
landscape underlying the signature. Finally, the 
bioinformatics analysis results were validated by in 
vitro experiments. Our findings shed insights into the 
senescence-related biomarker discoveries and 
provided a new perspective for predicting prognosis 
in ESCC. 

Materials and methods 
Data collection 

All sequencing data used in the study was 
downloaded from public databases. scRNA-seq data 
was downloaded from GEO datasets (GSE160269). 
RNA sequencing (RNA-seq) data used for training of 
risk signature was downloaded from GEO datasets 
(GSE53624) and the validation dataset were 
downloaded from TCGA. The scRNA-seq dataset 
contains 60 tumor samples and 4 normal samples. 
GSE53624 has 119 tumor samples and 119 normal 
samples, among which we chose tumor samples as 
research objects. There are a total of 94 samples in the 
TCGA cohort, all of which are involved for validation. 

scRNA-seq data analysis 
The UMI matrix and cell information were 

downloaded separately and integrated into an 
AnnData object using Scanpy (v1.9.1) package. The 
re-analysis pipeline of scRNA-seq was built based on 
the Scanpy package to save the resource consumption 
[20]. In brief, single cells with less than 300 genes or 
more than 6000 genes were discarded. The percentage 
of rRNA and mitochondrial genes were calculated, 
and single cells with more than 10% mitochondrial 
genes were filtered. Finally, about 200,000 cells were 
obtained for further exploration. We applied 3000 
highly variable genes to define cell clusters by PCA 
and leiden functions provided by Scanpy. Sc.tl.umap 
function was adopted for dimension reduction and 
visualization. The immune and non-immune cell 
clusters were separated by marker gene PTPRC 
(CD45), and cell types were annotated based on the 
canonical markers. 

Senescent CAF-related genes identification 
CAFs were isolated and re-clustered. To avoid 

the bias caused by different samples, the batch effect 
was removed using harmony method [21]. In detail, 
we extracted the expression matrix of all CAFs from 
the raw matrix, removed the batch effect using 
harmony and did the standard scanpy pipeline 
afterwards. Then, CAFs were re-clustered by 
sc.tl.leiden function and labeled with 6 markers, 
including ACTA2, NOTCH3, S100A4, FAP, TGF-β1, 
and PDGFRB [22-24]. The senescent status of cells was 
assessed using sc.tl.score_genes function and the 
established senescent signature FRIDMAN 
.SENESCENCE.SIGNATURE obtained from MsigDB 
was used as reference [25, 26]. Cells with a score 
higher than the median were considered as senescent 
cells. The rank_genes_groups of Scanpy was adopted 
to determine genes that were differently expressed 
between senescent and normal cells. 
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Function annotation and enrichment analysis 
The function annotation and enrichment analysis 

of interested genes were completed using 
ClusterProfiler (v4.10.1) [27]. The gene function 
annotation analyses were based on Gene Ontology 
(GO), while the pathway enrichment analyses were 
using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) as the background database. Terms with 
qvalue < 0.1 were recognized as significantly enriched 
ones. Specific pathways were analyzed using the 
Gene Set Enrichment Analysis (GSEA) software 
(v4.3.3) for calculating enrichment scores [28, 29], and 
the pathway-related information was obtained from 
MSigDB. 

Cell-cell communication analysis 
The CellChat (v1.5.0) package was applied to 

quantitatively detect the cell-cell crosstalk in the 
tumor microenvironment [30], which provides 
well-formed interaction network using the feature of 
ligands, receptors and relevant cofactors. The 
officially recommended parameters were adopted to 
calculate the number and strength of interactions 
between all cell types, while the visualization 
functions of CellChat were optimized to show the 
detailed ligand-receptors according to signaling 
pathways. 

Construction and validation of CAFs 
senescence-related signature 

We conducted a univariate Cox regression 
analysis on the hub genes in GSE53624 cohort using R 
package “survival” (v3.5.8). A total of 17 genes with 
p-value < 0.2 were identified as having a notable 
correlation with the overall survival (OS) of ESCC 
patients. Then, these genes were involved in the least 
absolute shrinkage and selection operator (LASSO) 
analysis, after which 7 genes were recognized as key 
prognostic genes. Subsequently, the multivariate Cox 
regression model, focusing on major prognostic 
genes, was developed utilizing the R package 
“glmnet” (v4.1.8) [31]. The relationship between genes 
and OS was visualized by R package “forestplot” 
(v3.1.3). Finally, a risk model was developed by 
simultaneously considering the gene expression 
conditions and relevant regression coefficients of each 
sample. The risk score model can be described as:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖) ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

Patients were split into two groups based on the 
median risk score of all samples, and those with 
higher score were classified as high-risk group. Using 
R package “survminer” (v0.4.9), a Kaplan-Meier curve 
was developed to demonstrate the variance in 

survival rates between two risk groups. Receiver 
operating characteristic (ROC) and the corresponding 
area under the ROC curve (AUC) were summarized 
to depict the sensitivity and specificity of the risk 
model. 

Construction of a prognostic nomogram based 
on the risk model 

Using both univariate and multivariate Cox 
regression, a novel nomogram was constructed. The 
performance of the nomogram and clinical variables 
were evaluated using the calibration curve and 
decision curve analysis (DCA). The calibration and 
ROC curves were generated using R packages “rms” 
(v6.8.0) and “timeROC” (v0.4.0), respectively [32]. 

Stromal and immune cell infiltration analysis 
The immune cell infiltration profiling was 

conducted using CIBERSORT [33]. The R package 
“estimate” (v4.0.0) was adopted to calculate indexes 
including two immune infiltration scores (stromal 
score and immune score) and tumor purity. 

Evaluation of correlation between signature 
and the efficacy of immunotherapy 

The application of the signature in 
immunotherapy was measured in two cohorts 
underwent immune checkpoint inhibitor therapy. 
IMvigor210 is a cohort of patients with advanced 
urothelial carcinoma underwent anti-PD-L1 
immunotherapy. GSE78220 cohort contains patients 
with melanoma received anti-PD-1 immunotherapy. 

Drug sensitivity prediction 
To extend the clinical application of the novel 

signature, oncoPredict (v0.2.0) program was 
performed using CTRPv2 as reference to evaluate the 
drug sensitivity of patients from two subgroups. The 
drugs showing a significantly low half maximal 
inhibitory concentration (IC50) in patients with 
high-risk scores were regarded as sensitive, whereas 
those with high IC50 were regarded as resistant. 

Cell culture 
The fetal lung fibroblasts (MRC-5) were acquired 

from Procell Life Science & Technology Co, Ltd 
(Wuhan, China). ESCC cell lines (KYSE-150 and 
ECA-109) were acquired from Shanghai Cell Bank 
(Chinese Academy of Sciences, Shanghai, China). All 
cells were cultured in RPMI-1640 (Gibco, 
Gaithersburg, MD, USA), supplemented with 10% 
fetal bovine serum (Gibco, Gaithersburg, MD, USA) 
and 1% penicillin/streptomycin (Beyotime, Shanghai, 
China). Cells were routinely grown in a humidified 
atmosphere with 5% CO2 at 37 °C. 
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Induction of senescence and preparation of 
conditioned media (CM) 

MRC-5 cells were treated with 500 μM H2O2 for 2 
h. Then, the cells were washed and incubated with 
complete culture media for additional 7 days. To 
collect CM, MRC-5 cells were cultured with 
serum-free media for 48 h. Then, CM was collected, 
centrifuged, and stored at −80 °C. 

Senescence associated β-galactosidase 
(SA-β-gal) staining 

The senescence condition of cells was assessed 
using the SA-β-gal Staining Kit (Beyotime, Shanghai, 
China). The post-treated cells were washed, fixed with 
4% paraformaldehyde, and stained with the staining 
working solution at 37 °C overnight in the absence of 
CO2. The cells were checked with a microscope 
(Olympus IX71, Tokyo, Japan). Total and positive cells 
were calculated from five random fields using the 
ImageJ software. 

RNA extraction and quantitative real-time 
polymerase chain reaction (qRT-PCR) 

RNA was isolated using TRIzol reagent 
(Invitrogen, CA, USA). Complementary DNA was 
transcribed using a PrimeScript RT Master Kit 
(Takara, Ohtsu, Japan). SYBR Green (Takara, Ohtsu, 
Japan) was used to conduct qRT-PCR on a Bio-Rad 
CFX PCR machine. mRNA levels were normalized to 
the relative quantity of GAPDH and were calculated 
according to the 2−ΔΔCt method. The primers used for 
qRT-PCR were listed as following:  

STX11: 
5′-GTAAGTGGGACGTGTTTTCCG-3′(forward), 

5′-CTCGATGACGTTCAGGGTGT-3′ (reverse); 
EFHD2: 

5′-CCCCTACACCGAGTTCAAGG-3′(forward),  
5′-TGGACTGCAGCTCCTTGAAG-3′ (reverse); 
GAPDH: 

5′-GGAGCGAGATCCCTCCAAAAT-3′(forward),  
5′-GGCTGTTGTCATACTTCTCATGG-3′ 

(reverse). 

Western blot 
Cells were lysed with RIPA (Beyotime, 

Shanghai, China) containing 1 mM PMSF (Beyotime, 
Shanghai, China) on ice. Then, the cell lysates were 
sonicated and centrifuged at 4 ℃, 12000 rpm, 15 min 
to collect supernatants. After denaturation at 100 ℃ 
for 10 min, protein was subjected to 10% SDS-PAGE 
and transferred to PVDF membrane (Millipore, MA, 
USA). The membranes were blocked in milk at room 
temperature for 2 h, and incubated with the following 
primary antibodies at 4 °C overnight: anti-GAPDH 
(#60004-1-Ig, Proteintech, Wuhan, China), anti-STX11 

(#13301-1-AP, Proteintech, Wuhan, China), and 
anti-EFHD2 (#83264-5-RR, Proteintech, Wuhan, 
China). After incubation, the membranes were 
washed with TBST and then incubated with the 
following secondary antibodies at room temperature 
for 1 h: HRP-conjugated anti-Mouse IgG (#SA00001-1, 
Proteintech, Wuhan, China) and HRP-conjugated 
anti-Rabbit IgG (#SA00001-2, Proteintech, Wuhan, 
China). Subsequently, the membranes were washed 
with TBST and visualized using ECL luminescent 
solution (Epizyme, Shanghai, China) on an imaging 
system (Bio-rad, CA, USA). 

Cell counting kit-8 (CCK-8) 
ESCC cells were implanted into a 96-well plate, 

and the culture medium was replaced by different 
CM after overnight culture. At each time point, the 
medium was replaced with CCK-8 reagent (Biosharp, 
Hefei, China). After incubation at 37 °C for 1 h, the 
absorbance was detected using a microplate reader 
(Thermo, Waltham, USA) at 450 nm. 

Wound healing assay 
ESCC cells were plated in a 6-well plate and 

cultured overnight to reach about 80% confluence. 
Using a sterile 200 μL pipette tip, a linear wound was 
created, and the cell debris was gently washed. After 
that, the cells were subjected to different treatments, 
and a microscope (Olympus IX71, Tokyo, Japan) was 
used to take images at 0 and 24 hours after scratching. 
The width of scratches was quantified using the 
ImageJ software. 

Statistical analysis 
All statistical analyses were performed using R 

software (v4.3.0). The Wilcoxon test was employed for 
comparing two groups. The correlation between two 
factors was depicted using Pearson correlation 
algorithm. We assessed survival variations through 
Kaplan-Meier curves and utilized the Log-rank test to 
determine statistical significance, using p-value < 0.05 
as the cutoff. 

Results 
The single-cell profiling of ESCC 

The workflow was illustrated in Figure 1. After 
initial screening, we obtained 195,571 cells from the 
scRNA-seq data. We then utilized the UMAP 
technique for dimensionality reduction and 
visualization purposes, thereby obtaining 19 
distinctive clusters within the ESCC context (Figure 
2A). Since this study encompassed 64 samples, we 
used harmony method to remove batch effect among 
these samples (Figure 2B). Subsequently, the cells 
were classified based on the expression levels of the 
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established marker genes for known cell types (Figure 
2C-D), and 8 clusters were identified, including B 
cells, T cells, epithelial cells, endothelial cells, CAFs, 
pericytes, myeloid and fibroblastic reticular cells 
(FRC) (Figure 2E). 

Characterization of CAFs heterogeneity in 
terms of cellular senescence 

To evaluate the senescence status of cell 
populations in ESCC, we adopted a senescence- 
related gene set (FRIDMAN.SENESCENCE.UP) and 
calculated the senescence score of each cell. Cellular 
senescence was distributed in a variety of cell clusters, 
where CAFs and pericytes showed significantly 
higher senescence levels than others (Figure 3A), and 
CAFs were extracted for further analysis. Then, only 

samples capturing more than 100 CAFs were kept to 
avoid the bias caused by sample heterogeneity, which 
reduced the sample size to 47. Further clustering 
analysis identified 4 CAFs subpopulations (Figure 
3B), which had distinct marker gene expression 
patterns as shown in Figure 3C. The top 5 
differentially expressed genes (DEGs) in each 
subpopulation were respectively displayed in dot 
diagram and heatmap (Figure 3D-E). Moreover, we 
found that each subtype had the individual collagen 
repertoire. For example, cluster 0 expressed the 
highest levels of COL5A1, COL5A2, COL6A1, COL6A3, 
and COL18A1, cluster 2 expressed the highest level of 
COL15A1 and cluster 3 exhibited the highest level of 
COL4A2 (Figure 3F). 

 

 
Figure 1. The workflow of this study. 
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Figure 2. Identification of cell types by scRNA-seq analysis. (A) UMAP plot showing the cell clusters in GSE160269 dataset. (B) Excluding batch effects between patients. (C) Dot 
plot showing the expression levels of marker genes in each cluster. (D) UMAP plot showing marker gene expression levels among different cell clusters. (E) Cell annotations for 
these clusters. 

 
Next, we explored the degree of cellular 

senescence among the 4 CAFs subclusters. As shown 
in Figure 3G, cluster 0 displayed the highest 
senescence level, while cluster 2 exhibited the lowest 

average senescence score. These findings suggested 
the existence of heterogeneity in CAFs, which may be 
ascribed to the numerous origins. To explore the 
relationship between cellular senescence status and 
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gene expression, we divided CAFs into senescent and 
normal CAFs. Subsequently, the results showed that 
there were totally 217 DEGs between the two groups, 
among which 134 were up-regulated, while other 83 
were down-regulated. The KEGG pathway analysis 

revealed a predominant enrichment of DEGs in areas 
such as cytokine-cytokine receptor interaction, 
complement and coagulation cascades, and toll-like 
receptor signaling pathway (Figure 4A).  

 

 
Figure 3. Assessing the senescence levels of individual cell types and characterization of CAFs subsets. (A) The expression level of FRIDMAN.SENESCENCE.UP gene set in each 
cluster. (B) UMAP plot showing distributions of four CAFs subsets. (C) UMAP plots showing marker gene expression levels among CAFs subsets. (D-E) Dot plot and heatmap 
showing the average expression levels of the top 5 genes in the four CAFs clusters. (F) Violin plots showing collagen gene expression level in the four CAFs clusters. (G) The 
expression level of FRIDMAN.SENESCENCE.UP gene set in each cluster. 
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GO functional analysis was composed of three 
components: molecular functions (MF), biological 
processes (BP), and cellular components (CC). The 
top-involved MF included cytokine activity, cytokine 
receptor binding, and chemokine receptor binding 
(Figure 4B). The highly enriched GO terms for BP 
were cellular response to lipopolysaccharide, cellular 
response to molecule of bacterial origin, and cell 
chemotaxis (Figure 4C). Regarding CC aggresome, 
endocytic vesicle lumen, and focal adhesion were 
significantly enriched (Figure 4D). Subsequently, we 
analyzed GSEA scores of ten oncogenic signaling 
pathways between normal and senescent CAFs [34]. 
The results revealed that senescent CAFs got higher 
scores in HIPPO, MYC, NRF1, PI3K, RAS, TGF-β, and 
TP53 pathways compared with normal CAFs, 
implying that senescent CAFs were closely related to 
tumor development (Figure 4E). 

Cell-cell interaction networks of senescent 
CAFs 

Given the crucial role of senescent CAFs in 
tumor progression, we conducted cellular 
communication analysis. As shown in Figure 5A, 
senescent CAFs displayed extensive communication 
with other cell types, especially T cells, myeloid, B 
cells, and epithelial cells. Next, we analyzed 
ligand-receptor pairs between senescent CAFs and the 
TME and visualized them by dot plots (Figure 5B-C). 
The results depicted that MIF-CD74/CXCR4/CD44 
was highly active in the interaction between senescent 
CAFs and immune cells. In addition, senescent CAFs 
established contacts with epithelial cells via 
MDK-NCL and NAMPT-(ITGA5 + ITGB1). Similarly, 
MDK and its corresponding receptors (ACKR3, SDC4, 
SDC2, SDC2, NCL, LRP1, ITGA6 + ITGB1, and ITGA4 
+ ITGB1) activated remarkably in the signal flow from 
epithelial cells to senescent CAFs. Moreover, we 
found that senescent CAFs were the main target of 
TGF-β signaling pathway (Figure 5D), an essential 
node for CAFs differentiation [35]. 

Construction and validation of a risk model 
based on CAFs senescence 

In order to narrow down the range of candidate 
genes, we performed the univariate Cox regression to 
test the 217 senescence-associated genes by evaluating 
the effect of each gene on the prognosis of ESCC 
(Figure S1A). To avoid omitting information that 
masked by complex co-expression, genes with p < 0.2 
were subjected to further analysis. Then, we adopted 
LASSO and multivariate Cox analysis to screen out 
the 7 prominent genes (GEM, SLC2A6, CXCL14, 
STX11, EFHD2, PTX3, and HCK), and calculated the 
coefficient of each gene (Figure S1B-C). The equation 

for the risk model (named as CAF.SENESCENCE.SIG) 
was as follows: risk score = + 0.13857990 * SLC2A6 - 
0.24928075 * GEM - 0.07930229 * CXCL14 - 0.34867227 
* STX11 + 0.54549264 * EFHD2 + 0.01091528 * PTX3 - 
0.26066936 * HCK. Subsequently, ESCC patients in 
GSE53624 and TCGA datasets were divided into two 
groups (Figure 6A-B). In contrast to patients with 
lower risk metrics, patients with higher risk scores 
showed higher mortality (Figure 6C-D). The 
expression of 7 senescence-associated genes in two 
groups was displayed in the heatmap (Figure 6E-F). 
Moreover, Kaplan-Meier survival analysis was 
conducted to evaluate the predictive significance of 
the model. The findings indicated that in comparison 
to patients in the high-risk group, patients in the 
low-risk group had a better outcome (Figure 6G-H). 
Meanwhile, we performed ROC analysis to test the 
prognostic model. Both cohorts (GSE53624 and 
TCGA) displayed good AUC values, indicating that 
the signature had excellent prognostic prediction 
accuracy (Figure 6I-J). 

Clinical value evaluation of 
CAF.SENESCENCE.SIG 

To improve the performance of the signature, we 
incorporated the risk score and clinicopathological 
features through Cox regression analyses. We found 
that N stage, AJCC stage, and risk score could forecast 
OS independently (Figure 7A). The independent 
association between the risk score and OS was also 
observed in the multivariate Cox regression (p-value < 
0.001), suggesting that the risk model has good 
reproducibility (Figure 7B). Then, we constructed a 
comprehensive nomogram that incorporated N stage, 
T stage, and the risk score (Figure 7C). The nomogram 
model predicted a range of 0.2 to 0.8 survival 
probability of patients, and the risk signature made 
the greatest contribution to prognosis. The calibration 
curve revealed that the nomogram was capable for 
predicting the actual survival outcomes (Figure 7D). 
In addition, DCA demonstrated that our nomogram 
had better predictive ability compared with N stage or 
T stage (Figure 7E). We next calculated the AUC of 
the nomogram, risk score, and clinicopathological 
features, among which the nomogram and risk score 
had the highest AUC value (Figure 7F). 

To further analyze the applicability of the 
signature, we regrouped the ESCC patients based on 
different clinicopathological parameters, including 
age (≤65 and >65 years), T stage (T1–T2 and T3–T4), N 
stage (N0–N1 and N2–N3), and AJCC stage (I–II and 
III–IV). Survival analysis revealed that ESCC patients 
in the high-risk group had worse outcome than those 
in the low-risk group in the most cohorts, except for 
age (>65), T1–T2 stage, and N2–N3 stage cohorts 
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(Figure 7G-J). 

Tumor immune landscape based on 
CAF.SENESCENCE.SIG 

To further explore causes of survival differences, 
we analyzed the immune characteristics between the 
two subgroups. Initially, we utilized CIBERSORT to 
examine the enrichment scores of 22 types of immune 
cells. We found that low-scored patients had a higher 
infiltration of neutrophils and CD8+ T cells, while 
macrophages (M2) and resting memory CD4+ T cells 
showed increased accumulation in the group with a 
high-risk score (Figure 8A). Immune-related 
pathways analysis demonstrated that in comparison 

to the group with a higher score, the low-score group 
displayed a more active immune response (Figure 
8B). Additionally, we adopted ESTIMATE pipeline to 
measure immune infiltration levels, and the results 
showed that the risk score was negatively associated 
with the immune score, stromal score, and estimate 
score (Figure 8C-E). Contrarily, Figure 8F showed a 
noteworthy positive association between the tumor 
purity and the risk score. Moreover, patients of 
high-risk group exhibited a significantly lower 
expression of many immune checkpoint genes (Figure 
8G). 

 

 
Figure 4. Functional enrichment analysis of DEGs between normal and senescent CAFs. (A) KEGG analysis. (B-D) GO-MF, GO-BP and GO-CC enrichment analysis. (E) GSEA 
analysis of the association between oncogenic signaling pathways and CAFs. *, p<0.05; **, p<0.01; ***, p<0.001; ns, no significance. 
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Figure 5. CellChat analysis among cell clusters. (A) The number and weights/strength of interactions between senescent CAFs and other cell types. (B-C) Dot plot showing 
ligand-receptor pairs between senescent CAFs and other cell types. (D) Heatmap showing communication probability of TGF-β pathway. 

 

Analysis of immunotherapy response based on 
CAF.SENESCENCE.SIG 

We next assessed the efficacy of the prognostic 
prediction in CAFs senescence-related genes for 
immunotherapy. In the IMvigor210 cohort, patients 
responded differently to anti-PD-L1 treatment, 
including complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease 
(PD). Patients in the CR/PR response group obtained 
lower risk scores than those in the PD/SD group 
(Figure 9A). Meanwhile, the fraction of responders in 
the high-risk population fell behind that of the 
low-risk group (Figure 9B). As shown by the Kaplan–
Meier curve, patients from the high-risk group had 
worse OS than those in the low-risk group (Figure 
9C). Additionally, it was worth noting that stage I+II 
and III+IV patients showed similar survival difference 
between high- and low-risk groups (Figure 9D-E). 
Then, we compared the risk score between the 

responsive group (CR/PR) and the non-responsive 
group (PD) in the GSE78220 cohort, and got similar 
results as IMvigor210 (Figure 9F). Patients of low-risk 
group showed a positive response to anti-immune 
checkpoint treatments as indicated by lower incidence 
of disease progression (Figure 9G). Furthermore, the 
survival rate of patients with high-risk scores was 
considerably lower than that of patients in the 
low-risk group (Figure 9H). 

Drug sensitivity prediction 
Aiming to expand the application of our 

signature in the field of clinical medicine, we 
evaluated the association between the risk scores and 
drug sensitivity, indicated by IC50 values. We 
identified 59 drugs that showed higher IC50 values in 
the low-risk group, and 42 drugs showing higher IC50 
values in the high-risk group. The top 10 drugs 
ranked by p-values were depicted in Figure 10. It 
revealed that patients belonging to the high-risk 
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group were more sensitive to BRD-K13185470, 
NPC-26, BRD-K37390332, SID 26681509, stauro-
sporine, BMS-536924, SR1001, foretinib, NVP-BSK805, 
and tamatinib. Additionally, compounds such as 
fluorouracil, selumetinib, vorinostat, ML312, 
AZD8055, BRD-K48334597, neratinib, ML258, 

LBH-589, lapatinib, and BRD-K30748066, may be 
appropriate treatment for patients from the low-risk 
group. Together, these findings revealed that 
CAF.SENESCENCE.SIG could provide tailored 
therapeutic strategies for ESCC patients. 

 

 
Figure 6. Validation of the prognostic value of CAF.SENESCENCE.SIG. (A-B) Risk score distribution in GSE53624 and TCGA cohorts. (C-D) Survival distribution in GSE53624 
and TCGA cohorts. (E-F) Heatmap showing signature gene expression levels in high- and low-risk groups in GSE53624 and TCGA cohorts. (G-H) Kaplan–Meier analysis of 
patients in GSE53624 and TCGA cohorts. (I-J) ROC curves of 1-, 3-, and 5-year survival for the risk signature in GSE53624 and TCGA cohorts. 
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Figure 7. Establishment of a nomogram and survival analysis based on clinicopathological characteristics. (A-B) Univariate and multivariate Cox analysis of clinicopathological 
factors and risk score. (C) Establishment of the nomogram integrating N stage, T stage, and risk score. (D) Calibration curves for 1-, 3-, and 5-year survival of nomogram. (E) 
DCA for nomogram. (F) TimeROC analysis comparing the predictive capacity of the nomogram and clinicopathological factors. (G-J) Kaplan–Meier curves of survival differences 
sorted by age, T stage, N stage, and AJCC stage between risk subgroups. 
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Figure 8. The immune cell infiltration analysis based on CAF.SENESCENCE.SIG. (A) Boxplot comparing the abundances of immune cells according to the risk scores. (B) 
Boxplot comparing the activities of immune-related pathways according to the risk scores. (C-F) Analysis of the correlation between risk scores and immune score, stromal 
score, ESTIMATE score, and tumor purity. (G) Boxplot comparing the expression levels of immune checkpoints according to the risk scores. *, p<0.05; **, p<0.01; ***, p<0.001; 
****, p<0.0001; ns, no significance. 
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Figure 9. The relationship between CAF.SENESCENCE.SIG and immunotherapy response. (A) Differences in immunotherapy responses based on risk scores in the IMvigor210 
cohort. (B) Differences in the distribution of immunotherapy responses in the IMvigor210 cohort. (C) Kaplan–Meier curves of risk subgroups in the IMvigor210 cohort. (D) 
Kaplan–Meier curves of risk subgroups in stage I-II of the IMvigor210 cohort. (E) Kaplan–Meier curves of risk subgroups in stage III-IV of the IMvigor210 cohort. (F) Differences 
in immunotherapy responses based on risk scores in the GSE78220 cohort. (G) Differences in the distribution of immunotherapy responses in the GSE78220 cohort. (H) 
Kaplan–Meier curves of risk subgroups in the GSE78220 cohort. *, p < 0.05; **, p < 0.01. 

 

In vitro experimental validation 
High-level oxidative stress is one of the 

characteristics in the TME and correlates tightly with 
tumor occurrence and development [36]. Moreover, 
oxidative stress has been clarified to induce 
senescence in CAFs [37]. Thus, we conducted GSEA to 
assess the connection between 7 signature genes and 
oxidative stress-induced senescence. Our analysis 
revealed a significantly positive association between 
STX11, EFHD2, GEM, and PTX3 and oxidative 
stress-induced senescence (Figure 11A-D). We then 
treated MRC-5 cells with H2O2 to construct a cellular 
senescence model. As shown in Figure 11E, H2O2 

treatment induced more expression of 

senescence-associated β-galactosidase. Additionally, 
the mRNA and protein levels of STX11 and EFHD2 
were significantly increased after H2O2 treatment 
(Figure 11F and Figure S2). Furthermore, we 
collected the CM of control and senescent MRC-5 cells 
(named CM-Con and CM-S) to culture cancer cells. 
CCK-8 assay revealed that CM-S remarkably 
promoted ESCC cell proliferation (Figure 11G-H). 
The wound-healing assay demonstrated that the 
migration capacity of ESCC cells was enhanced by 
CM from senescent MRC-5 cells (Figure 11I-J). These 
results aligned with our bioinformatic findings, 
suggesting that senescent CAFs were key players in 
mediating tumor progression. 
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Figure 10. Chemotherapy drug sensitivity prediction based on CAF.SENESCENCE.SIG. 
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Figure 11. Induction of senescence in MRC-5 cells and the effect of senescent MRC-5 cells on the malignant behavior of ESCC cells in vitro. (A-D) GSEA analysis of the 
association between the oxidative stress-induced senescence and signature genes. (E) SA-β-gal staining of control and H2O2-treated MRC-5 cells. Original magnification, 200 ×. 
Scale bar = 50 μm. (F) Western blot analysis of STX11, EFHD2, and GAPDH in control and H2O2-treated MRC-5 cells. (G-H) CCK-8 analysis of the cell viability in ESCC cells 
treated with CM-Con or CM-S. (I-J) Wound-healing ability of ESCC cells treated with CM-Con or CM-S. Original magnification, 100 ×. Scale bar = 200 μm. *, p<0.05; **, p<0.01; 
***, p<0.001. 
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Discussion 
Cellular senescence, a hallmark of cancer, is 

widely recognized as an indispensable mediator in 
tumorigenesis and progression [38]. In particular, 
senescent stromal cells in the TME have been 
confirmed to exhibit a secretory phenotype, thereby 
reinforcing the malignant phenotype of neighboring 
tumor cells [39]. Nonetheless, the potential of clinical 
application and practical significance of stromal 
cellular senescence in ESCC are still not well 
understood. 

In this study, we utilized the scRNA-seq data of 
ESCC acquired from GEO to evaluate the cellular 
senescence level in individual cell populations. Our 
results revealed that pericytes and CAFs exhibited the 
highest senescence level. It should be emphasized that 
pericytes share some cell markers with CAFs, making 
it difficult to clearly distinguish them at the single-cell 
level [40, 41]. Additionally, considering the limited 
number of pericytes, we mainly focused on CAFs. A 
lot of literature has revealed that CAFs display 
substantial heterogeneity based on their phenotype 
and function [42-44]. Here, we identified four CAFs 
subclusters expressing different markers. Moreover, 
the degree of their cellular senescence was also 
distinctly different from each other, among which 
cluster 0 had the highest degree of senescence. To 
further explore the differences in the transcriptome of 
senescent CAFs, we divided all CAFs into two 
subgroups: normal CAFs and senescent CAFs. 
Subsequently, 217 DEGs were identified by 
comparing gene expression between the two 
subgroups. The results revealed that 
senescence-related DEGs were largely enriched in 
tumor-associated pathways, indicating that these 
genes could accelerate the development of ESCC. 
Similarly, numerous studies have also reported the 
tumor-promoting effect of senescent CAFs [37, 45, 46]. 
Hence, developing senescent CAF-associated 
predictive biomarkers in ESCC is of great clinical and 
practical significance. 

Through LASSO-Cox regression analyses, a 
novel CAFs senescence-related risk model with 7 
genes was finally established, comprising three risk 
associated genes (SLC2A6, EFHD2, and PTX3) and 
four protective genes (GEM, CXCL14, STX11, and 
HCK). Although some of these signature genes have 
been studied for their important functions in tumors, 
including ESCC, others remain to be uncovered. For 
example, EFHD2 promotes lung cancer cell resistance 
to chemotherapy through the NOX4-ROS-ABCC1 
signaling, and high level of EFHD2 is correlated with 
a worse survival in lung cancer patients received 
chemotherapy [47]. PTX3 was reported to have the 
potential for predicting prognosis as well as 

immunotherapy response in lung cancer [48]. 
Furthermore, PTX3 can facilitate ESCC cell 
proliferation and migration [49]. Grounded on the 
prognostically relevant signature, we calculated a 
senescence-based risk score respectively for each 
patient. After that, patients were classified into two 
subgroups, to explore the characteristics in terms of 
prognosis, immune landscape, immunotherapy 
response, and chemotherapy sensitivity. These results 
might provide new guidance for predicting prognosis 
risk and selecting treatment strategies for ESCC 
patients. 

Immunotherapy, especially immune checkpoint 
inhibitors, has greatly changed the treatment pattern 
of ESCC [50]. However, the clinical benefit of 
immunotherapy is still very limited [51]. The clinical 
efficacy of immunotherapy is largely affected by both 
the tumor and the TME, and shows high 
heterogeneity among individuals [52]. The TME is 
composed of various immune cells, such as regulatory 
T cells, cytotoxic T cells, and macrophages [16]. CAFs, 
as a predominant cell type in the TME, interact 
extensively with these immune cells and play 
multifaceted roles in immune responses [53, 54]. On 
the one hand, studies have reported that CAFs 
promote an immunosuppressive tumor environment 
mainly through the following mechanisms: (i) 
impairing T cells proliferation and activation, and 
modulating immune checkpoints expression on T 
cells; (ii) recruiting monocytes into the tumor and 
inducing their differentiation into M2-like polarized 
macrophages; and (iii) secreting ECM components, 
thus forming a tough barrier against anti-tumor 
immune cells infiltration [54-56]. On the other hand, 
accumulating evidence indicates the presence of 
immunostimulatory CAFs, which enhance anti-tumor 
immune responses through preventing T cell 
exhaustion and promoting plasma cell dissemination 
[57, 58]. However, the role of senescent CAFs in 
immune microenvironment remodeling remains 
largely unknown. In our study, we characterized the 
immune landscape in different groups, and found 
that the patients with high-risk scores were in 
relevance with low immune infiltration, low 
expression of immune checkpoints, and high tumor 
purity, corresponding to an immune-desert 
phenotype [59]. Moreover, CD8+ T cells, which 
mediate anti-tumor responses in the immune system, 
displayed decreased infiltration levels in patients with 
high-risk scores, accompanied by elevated levels of 
M2 macrophages infiltration. Combining above 
results, we inferred that immunotherapy was more 
likely to benefit patients of the low-risk group, and 
this inference was fully verified in the 
immunotherapy cohorts. 
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Although we primarily focused on cellular 
senescence of CAFs, other cells including endothelial 
cells, macrophages, and T cells also undergo 
senescence-related alterations, thereby affecting 
tumor progression [60]. Senescence in endothelial 
cells is identified in many types of solid tumors, and is 
significantly correlated with tumor proliferation and 
dissemination [61, 62]. Furthermore, previous studies 
have revealed that senescent macrophages promote 
lung cancer progression at early stages through 
secreting SASP factors and suppressing cytotoxic T 
cell responses [63]. Researchers also demonstrate that 
removing senescent macrophages remarkably 
improves survival outlooks in mouse models of lung 
cancer [64]. In addition, senescent T cells fail to 
effectively recognize and eliminate tumor cells, 
leading to a suppressive microenvironment [65]. 
Consequently, cellular senescence could be applied as 
prognostic markers and promising therapeutic 
targets. 

Importantly, there are several limitations in this 
study. Firstly, due to the lack of open data on ESCC 
patients receiving immunotherapy, we could only 
analyze the immunotherapy response in other cancer 
cohorts. Secondly, because of the difficulty of isolation 
and culture of primary CAFs, we referred to a 
previous study using MRC-5 cells to perform in vitro 
studies [66]. Thirdly, despite of the large scale of data, 
it's necessary to remind that our study mainly relied 
on transcriptome level information, which may limit 
the practical application of our signature for peptides 
test field. Therefore, the prognostic significance of the 
signature genes still needs to be verified at 
histological level, and subsequent studies are needed 
to illustrate their biological functions and relevant 
mechanisms. 
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