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Abstract 

The evidence from clinical studies suggests that lung carcinoma (LC) patients exhibit dysregulation in lipid 
metabolism. However, the causal relationship between plasma lipidome and LC, and whether 
inflammatory proteins mediate, remains to be determined. Genetic data for 179 plasma lipids and 91 
inflammatory proteins were obtained from the latest published genome-wide association studies. Genetic 
data on LC and subtypes were from the largest available meta-analysis. The causal relationship between 
plasma lipidome and LC was determined by the two-sample Mendelian randomization (MR) method. 
Mediation MR analysis was employed to ascertain whether inflammatory proteins mediate the impact of 
plasma lipidome on LC. We identified 39 causal relationships between genetically predicted plasma 
lipidome and LC and subtypes. These relationships involve the influence of phosphatidylcholines, 
phosphatidylethanolamines, diacylglycerols, triacylglycerols, sphingomyelins, and Sterol esters. 
Additionally, the mediating role of 5 inflammatory proteins in the causal relationship between plasma 
lipidome and LC and subtypes was determined. Our results highlight the complex network of plasma 
lipidome and inflammatory proteins regulating LC. Integrating plasma lipidome and inflammatory proteins 
into clinical practice may open new avenues for the prevention and treatment of LC. 
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Introduction 
Lung carcinoma (LC) is a highly lethal systemic 

invasive disease often associated with systemic 
metabolic dysregulation. Currently, LC remains a 
leading cause of cancer-related deaths globally, 
ranking second in incidence among all cancers [1]. 

Lipids are a highly diverse class of molecules, 
including phosphatidylcholines (PC), phosphatidyl-
ethanolamines (PE), diacylglycerols (DAG), 
triacylglycerols (TAG), sphingomyelins (SM), 
phosphatidylinositols (PI), cholesterol esters (CE), and 
sterol esters (SE). Lipids regulate and perform various 
biological functions, such as energy storage, 
maintenance of normal cell structure, involvement in 
cell signaling pathways, and regulation of 
inflammatory responses [2]. Many studies have 

confirmed the presence of lipid metabolism 
dysregulation in LC patients. Circulating levels of PC 
in early-stage non-small cell lung carcinoma (NSCLC) 
patients show significant differences compared to 
healthy control groups [3]. Heterogeneity in 
circulating lipidomic profiles has also been observed 
among patients with different subtypes of LC, such as 
lung adenocarcinoma (LADC), squamous cell 
carcinoma (SqCLC), or small cell lung carcinoma 
(SCLC) [4]. Moreover, a significant correlation exists 
between the lipidomic profiles and the genome of 
lipid-associated proteins [4]. 

One of the key roles of lipids in maintaining 
metabolic homeostasis is regulating inflammatory 
responses. Different lipids may either promote or 
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attenuate the inflammatory process (such as 
prostaglandins, leukotrienes, and endocannabinoid 
signaling). Observational evidence suggests that 
chronic inflammation is associated with the 
development of LC [5, 6]. Prospective cohort studies 
indicate that specific circulating inflammatory 
proteins, such as Interleukin (IL)-6, IL-8, and 
C-reactive protein (CRP), are associated with an 
increased LC risk [5, 7, 8]. Elevated serum 
concentrations of monokine induced by gamma 
interferon (MIG) and serum amyloid A (SAA) prior to 
diagnosis are also positively correlated with the risk 
of LC [9]. 

The evidence of the above observational studies 
suggests that lipids and inflammatory proteins may 
be associated with the LC risk. Inflammatory protein 
may be the mediating factor of lipids affecting LC. 
However, traditional observational designs are 
susceptible to residual confounding and reverse 
causality. Even with appropriate statistical methods, 
the impact of these biases remains unavoidable. 
Therefore, translating the results of observational 
studies into practical cancer control strategies still 
presents significant challenges. 

Mendelian Randomization (MR) utilizes 
germline genetic variants as genetic instruments to 
proxy lifelong exposure to risk factors (such as lipids 
and inflammatory proteins) [10, 11]. One of the 
advantages of MR is its ability to overcome the 
limitations of traditional epidemiology, thereby 
strengthening the evidence for potential causal effects 
of risk factors on cancer risk. Another advantage of 
MR is its consideration of the long-term effects of risk 
factors on cancer risk, as there may be a considerable 
exposure period from exposure to specific risk factors 
to the occurrence of cancer. 

This study used an MR design to explore the 
causal relationship between plasma lipidome and LC 
and subtypes, including LADC, SqCLC, and SCLC. 
Mediated MR was used to evaluate whether 
inflammatory proteins serve as mediators of lipids 
affecting LC. Our study will expand insights into the 
impact of lipids and inflammatory proteins on the 
etiology of LC and support the development of LC 
prevention strategies. 

Materials and methods 
Study design 

Our study meets the STROBE-MR criteria [12] 
(Supplementary Table S1) and consists of three main 
parts. Firstly, we determined whether 179 plasma 
lipids are associated with the risk of LC and subtypes. 
Secondly, we analyzed whether LC has a reverse 
causal effect on plasma lipidome. Finally, mediation 
MR analysis was conducted to ascertain whether 

inflammatory proteins mediate the causal relationship 
between plasma lipidome and LC. The overall design 
of this study is illustrated in Figure 1. 

Plasma lipidome 
The genetic data for 179 plasma lipids were 

obtained from the latest genome-wide association 
studies (GWAS) based on the GeneRISK cohort. This 
cohort recruited 7,266 participants from southern 
Finland between 2015 and 2017, including 2,624 males 
and 4,642 females aged 45 to 66 years old. Blood 
samples were collected from fasting participants for 
serum, plasma, and DNA extraction. The lipidomic 
analysis based on mass spectrometry was conducted 
by Linotype GmbH (Dresden, Germany) to analyze 
the lipids of the participants. Ultimately, this study 
identified 495 genome-wide associations of plasma 
lipids at 56 genetic loci [13]. 

Inflammatory proteins 
The genetic data for 91 inflammatory proteins 

were obtained from the latest GWAS conducted by 
Zhao et al. This study recruited 11 cohorts comprising 
a total of 14,824 participants of European ancestry. 
Protein profiling data for each cohort were generated 
by the Olink laboratory in Uppsala. The researchers 
used the Olink Target platform to measure 91 plasma 
proteins and performed genome-wide protein 
quantitative trait locus (pQTL) mapping and 
meta-analysis. A total of 180 pQTLs were identified 
(59 cis, 121 trans). This GWAS identified genetic 
determinants of inflammation-related proteins, which 
can aid in further understanding the etiology of 
immune-mediated LC [14]. 

LC and subtypes 
The GWAS related to LC was derived from a 

meta-analysis based on the International Lung 
Carcinoma Consortium (ILCCO) and the 
Transdisciplinary Research in Cancer of the Lung 
(TRICL) consortium. It included a total of 85,716 
participants of European ancestry, comprising 29,266 
patients and 56,450 controls. Additionally, the 
histological types were further categorized into 
LADC, SqCLC, and SCLC. Supplementary Table S2 
displayed all genetic data. 

Screening genetic instruments 
Genetic instruments for MR analysis need to 

meet three criteria: (1) they should be strongly 
associated with the exposure; (2) they should be 
unrelated to potential confounding variables; (3) they 
should only affect the outcome through the exposure. 
To obtain enough single nucleotide polymorphisms 
(SNPs) for MR analysis, for plasma lipidome and 
inflammatory proteins, we selected SNPs with 
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p<1E-5. This threshold is also used in many MR 
studies [15, 16]. Then, genetic instruments in linkage 
disequilibrium (LD) were further excluded. 
Subsequent SNPs used for MR should meet the 
criteria of r2<0.001 and distance >10,000kb. 
Additionally, the F statistic corresponding to each 
SNP was calculated to exclude weak genetic 
instrument bias. SNPs with F statistics less than 10 
were further excluded. Finally, we excluded 
palindromic SNPs to ensure consistent effects of 
genetic instruments on exposure and outcomes. The 
plasma lipidome, inflammatory proteins, and 
LC-associated SNPs were presented in 
Supplementary Tables S3, S4, and S5, respectively. 

Forward MR analysis 
In the primary analysis, the inverse 

variance-weighted (IVW) method was employed to 
assess the causal effects of 179 plasma lipids on LC 

and subtypes. Using the Wald ratio method, the 
individual impact of each genetic instrument on the 
outcome was calculated. The IVW method conducts a 
meta-analysis of the Wald ratios corresponding to 
each genetic instrument, and the results are presented 
as odds ratios (OR) and 95% confidence intervals (CI). 
The robustness of the IVW method was assessed 
using the MR-Egger, Weighted Median, Simple Mode, 
and Weighted Mode methods. These MR methods 
have been described in our previous study [17]. Due 
to the high correlation among the characteristics of 
plasma lipidome and inflammatory proteins involved 
in this study, which is based on a shared large number 
of SNPs, to correct for the "measurement pleiotropy" 
effect, we introduced the MR Bayesian model 
averaging (MR-BMA) method. The MR-BMA method 
is more suitable for detecting the effects of related 
biomarkers acting through the same causal pathway 
[18]. Statistical significance is considered only when 

 
Figure 1. Mendelian randomization analysis flow chart. β, the total effect of lipids on LC, obtained using the IVW method, is denoted as β; β1, the effect of lipids on inflammatory 
proteins is denoted as β1; β2, the effect of inflammatory proteins on LC is denoted as β2. Abbreviations: SNPs, single nucleotide polymorphisms; GWAS, genome-wide 
association studies; MR, mendelian randomization; MR-PRESSP, the MR Pleiotropy RESidual Sum and Outlier. 
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the IVW method is consistent with other MR methods 
and when both the IVW and MR-BMA methods yield 
p-values less than 0.05. 

Reverse MR analysis 
Because mediation MR analysis requires 

excluding the influence of reverse causality, we tested 
the impact of LC and subtypes on changes in plasma 
lipidome. For LC and subtypes, we selected SNPs 
with p < 5E-8 for MR analysis. As mentioned earlier, 
we removed SNPs in LD and calculated the F-statistic. 
The methods used for MR analysis were consistent 
with those used in forward MR analysis. 

Sensitivity analysis 
Cochran's Q test was used to assess the 

heterogeneity among the genetic instruments 
corresponding to each exposure [19]. MR-Egger 
regression and MR-PRESSO were employed to detect 
whether MR analysis was influenced by potential 
horizontal pleiotropy [20, 21]. Results with 
heterogeneity or horizontal pleiotropy were further 
excluded. 

Mediation MR analysis 
The lipid for mediation analysis needs to meet 

the following conditions: (1) The lipid has a causal 
effect on LC or subtypes; (2) LC or subtypes do not 
have a reverse causal effect on the lipid. For lipids that 
meet these conditions, we first detect the causal effect 
of specific lipids on 91 inflammatory proteins. Next, 
we will determine the causal relationship between 
inflammatory proteins significantly influenced by 
specific lipids and LC or subtypes. Once the 
inflammatory proteins acting as mediators are 
identified, we will further calculate the direct effect of 
lipids on LC or subtypes, the indirect effect 
(mediation effect) mediated by inflammatory 
proteins, and the proportion of the effect of lipids on 
LC or subtypes explained by inflammatory proteins. 
We use the Coefficient product method for mediation 
analysis [22, 23]. The total effect of lipids on LC, 
obtained using the IVW method, is denoted as β. The 
effect of lipids on inflammatory proteins is denoted as 
β1, and the effect of inflammatory proteins on LC is 
denoted as β2. Here, the mediation effect exerted by 
inflammatory proteins is calculated as β1×β2. The 
direct effect is the effect of exposure on the outcome 
after excluding the influence of the mediator, 
calculated as β - β1×β2. The proportion of the 
mediation effect to the total effect is calculated as 
(β1×β2)/β. All analyses in this study were conducted 
in R (version 4.3.2). The R packages used include the 
"TwoSampleMR" package [24] and the "MR-PRESSO" 
package [21]. 

Results 
Causal effects of plasma lipidome on LC and 
subtypes 

LC 
In the initial analysis, a total of 19 lipids were 

identified to have a causal relationship with LC 
(Supplementary Table S6). After using the MR-BMA 
method to remove lipids with non-significant results 
(p ≥ 0.05) (Supplementary Table S7), there were still 
12 lipids associated with LC (Figure 2A). Specifically, 
an increase in genetically predicted SM (d36:2) levels 
(OR 1.085, 95% CI 1.013-1.163) and DAG (16:1_18:1) 
levels (OR 1.107, 95% CI 1.034-1.186) was associated 
with an increased risk of LC. However, an increase in 
SE (27:1/20:2) levels (OR 0.922, 95% CI 0.876-0.971) 
was associated with a decreased risk of LC. 
Additionally, PC (O-16:1_18:0), PC (18:0_20:2), PC 
(18:1_18:2), and PC (O-18:1_20:3) levels were found to 
be associated with a decreased LC risk (ORs = 0.912, 
0.935, 0.948, and 0.923, respectively). In contrast, PC 
(16:0_20:5), PC (O-18:2_20:4), PC (16:0_20:4) levels, PC 
(O-16:1_20:4), and PC (17:0_20:4) levels increased the 
risk of LC (ORs = 1.070, 1.071, 1.045, 1.063, and 1.037, 
respectively). Additional MR methods (MR-Egger, 
Weighted Median, Simple Mode, and Weighted 
Mode) yielded consistent results with the IVW 
method, further confirming the robustness of our 
findings. 

LADC 
In the preliminary analysis, 14 lipids were found 

to be associated with LADC (Supplementary Table 
S6). After excluding lipids that did not pass the 
MR-BMA test (Supplementary Table S7), we finally 
identified 10 lipids (Figure 2B). The IVW method 
revealed that high standard deviation (SD) of TAG 
(48:0) (OR 1.093, 95% CI 1.000-1.194), TAG (58:7) (OR 
1.124, 95% CI 1.023-1.234), DAG (16:0_18:2) (OR 1.089, 
95% CI 1.004-1.181), and DAG (16:1_18:1) levels (OR 
1.103, 95% CI 1.002-1.214) were associated with higher 
LADC risk. A high SD of SE (27:1/20:2) levels (OR 
0.937, 95% CI 0.880-0.999) was associated with lower 
LADC risk. We also observed that higher PC 
(16:0_20:5) and PC (O-16:1_20:3) levels were 
associated with increased LADC risk (ORs = 1.079 and 
1.096, respectively); however, higher PC (18:0_20:2) 
and PC (16:0_20:2) levels were associated with 
decreased LADC risk (ORs = 0.920 and 0.924, 
respectively). Additionally, a high SD of PE 
(O-18:2_18:1) levels (OR 0.921, 95% CI 0.851-0.996) 
was also associated with lower LADC risk. 
Furthermore, four additional MR analyses showed 
consistent directions with the main method. 
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Figure 2. Forest plots of causal effect of plasma lipidome on lung carcinoma (A) and lung adenocarcinoma (B). 

 
SqCLC 

After excluding 1 lipid using MR-BMA 
(Supplementary Table S7), we identified 14 lipids 
with a causal relationship with SqCLC 
(Supplementary Table S6 and Figure 3A). High 
genetically predicted SM (d34:0) levels (OR 1.138, 95% 
CI 1.030-1.256) were associated with an increased 
SqCLC risk. Conversely, a high PE (O-18:1_20:4) (OR 
0.822, 95% CI 0.707-0.956) and PE (18:0_18:2) (OR 

0.914, 95% CI 0.860-0.971) levels were associated with 
a low SqCLC risk. Additionally, PC (O-16:1_20:4), PC 
(16:0_20:4), and PC (O-18:2_20:4) levels were 
associated with an increased SqCLC risk (ORs = 1.089, 
1.070, and 1.106, respectively). A high SD of PC 
(18:0_20:2), PC (O-16:1_18:0), PC (18:1_18:1), and PC 
(17:0_18:1) levels were associated with a decreased 
SqCLC risk (ORs = 0.881, 0.852, 0.890, and 0.879, 
respectively). It is noteworthy that although the IVW 
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method suggested associations of SM (d38:2), SM 
(d36:1), PC (O-16:0_18:1), and PC (18:0_20:4) levels 
with SqCLC risk, additional MR analyses showed 
directions opposite to the primary method 
(Supplementary Table S6). 

SCLC 
After excluding 4 lipids using the MR-BMA 

method (Supplementary Table S7), we found only 4 
lipids associated with SCLC risk (Supplementary 
Table S6 and Figure 3B). Specifically, a high SD of SM 
(d36:2) (OR 1.211, 95% CI 1.031-1.421), PC 
(O-16:0_20:3) (OR 1.180, 95% CI 1.021-1.364), and PC 
(O-18:0_14:0) levels (OR 1.190, 95% CI 1.018-1.392) 
were associated with an increased SCLC risk. PI 
(18:1_20:4) levels (OR 0.822, 95% CI 0.707-0.956) were 
associated with lower SCLC risk. The results of 
additional MR analyses were consistent with those of 
the IVW method in terms of direction 
(Supplementary Table S6). 

Reverse causal effects of LC and subtypes on 
plasma lipidome 

To assess potential reverse causality effects, we 

used LC and its subtypes as exposures and plasma 
lipidome as outcomes. Based on the IVW method 
analysis, we only found potential causal effects of an 
increased risk of LADC (OR 0.934, 95% CI 0.873-1.000) 
with decreased PC (16:0_20:2) levels. No other 
evidence was found for the causal effects of LC and 
subtypes on plasma lipidome (Supplementary Table 
S8). 

MR sensitivity analysis 
Cochran's Q test revealed heterogeneity among 

the genetic instruments for PC (O-16:1_20:4), PC 
(O-18:1_20:3), TAG (58:7), DAG (16:0_18:2), and SM 
(d36:1) levels (Supplementary Table S9). MR-Egger 
regression indicated that the causal effect of PC 
(O-16:1_20:3) on LADC was influenced by horizontal 
pleiotropy (Supplementary Table S9). Additionally, 
MR-PRESSO detected outliers among the genetic 
instruments for PC (O-16:1_20:4) and SM (d36:1) 
levels (Supplementary Table S9). 

 

 
Figure 3. Forest plots of causal effect of plasma lipidome on squamous cell lung carcinoma (A) and small cell lung carcinoma (B). 
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Figure 4. Forest plots of causal effects of plasma lipidome on inflammatory proteins (A) and causal effects of inflammatory proteins on lung carcinoma or subtypes (B). 

 
Mediation effect of inflammation proteins  

The initial mediation MR analysis identified 8 
inflammation proteins that are simultaneously 
associated with both plasma lipidome and LC or 
subtypes. However, causal analyses for the effects of 
plasma lipidome on inflammation proteins 
(Supplementary Table S10) or inflammation proteins 
on LC or subtypes (Supplementary Table 11) showed 
that the additional MR analysis results for protein 
S100-A12, C-X-C motif chemokine 10, monocyte 
chemoattractant protein-3, and C-C motif chemokine 
4 levels were inconsistent with the main analysis 
direction. Sensitivity analysis also revealed 
heterogeneity in the effect of C-X-C motif chemokine 
10 levels on LC, and the causal relationship between 
C-C motif chemokine 4 levels and SqCLC was 
influenced by horizontal pleiotropy (Supplementary 
Table S9). 

After excluding the above-mentioned 
inflammatory proteins, we finally identified 5 
inflammatory proteins that exerted mediating effects 
(Supplementary Table S12 and Figure 4). 
Specifically, protein S100-A12 levels mediate the effect 

of SM (d36:2) levels on LC, with a mediation effect 
accounting for 8.7%; TNF-beta levels mediate the 
effects of PC (18:1_18:2) and PC (16:0_20:4) levels on 
LC, with mediation effects of 3.5% and 9.6%, 
respectively; IL-7 levels mediate the effects of PC 
(18:0_20:2), PC (16:0_20:4), SM (d34:0), and PC 
(18:0_20:4) levels on SqCLC, with mediation effects of 
9.2%, 11.3%, 7.1%, and 16.4%, respectively; IL-18 
levels mediate not only the effect of PC (16:0_20:4) 
levels on LC (mediation effect of 9.6%) but also the 
effects of PC (16:0_20:4) and PC (18:0_20:4) levels on 
SqCLC, with mediation effects of 5.3% and 8.0%, 
respectively. Additionally, delta and Notch-like 
epidermal growth factor-related receptor (DNER) 
levels mediate the effects of PC (16:0_20:4) and PC 
(18:0_20:4) levels on SqCLC, with mediation effects of 
11.7% and 10.2%, respectively (Supplementary Table 
S12 and Figure 5). No evidence was found for other 
inflammatory proteins mediating the causal effects of 
plasma lipids on LC and subtypes. Figure 6 provides 
an intuitive illustration of the regulatory network of 
plasma lipidome and inflammatory proteins on LC 
and subtypes. 
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Figure 5. Mediation analysis of inflammatory proteins between plasma lipidome and lung carcinoma or subtypes. 

 

 
Figure 6. Regulatory network of lung carcinoma and subtypes by plasma lipidome and inflammatory proteins. 
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Discussion 
This study employed an MR design to elucidate 

the causal relationship between plasma lipidome and 
LC and subtypes. Mediation MR analysis revealed 
that inflammatory proteins may play a significant role 
in the impact of plasma lipidome on LC. Our findings 
highlight the complex interplay between plasma 
lipidome, inflammatory proteins, and LC, 
underscoring the potential for devising preventive 
strategies. 

The lipid metabolism network in cancer cells is 
highly complex. On one hand, lipid metabolism in 
cancer cells is regulated not only by intracellular 
oncogenic signals but also by the tumor 
microenvironment, which comprises various 
components, including lipids. On the other hand, 
aberrant lipid metabolism can alter oncogenic signals 
in cancer cells, affecting nearby non-cancerous cells by 
modifying the secretion of substances, including 
lipids, from cancer cells [25]. Excessive lipid levels are 
also associated with cancer cell proliferation and 
metastasis. By altering the composition of lipid 
membranes, cancer cells can invade adjacent tissues 
and overcome cell death mechanisms. Cancer cells 
can acquire energy and protect themselves from 
oxidative stress damage by modulating lipid 
breakdown and synthesis metabolism. Additionally, 
cancer cells can exploit lipid metabolism to regulate 
the activity of immune cells, thereby evading the 
host's normal immune clearance functions [26]. Key 
genes/proteins associated with lipid metabolism may 
serve as potential indicators for predicting the 
prognosis of various cancers [27]. 

As the most abundant phospholipid in the body, 
multiple studies have explored the relationship 
between PC and LC. One study, based on scRNA-seq 
and lipidomics, found that five PC subclasses could 
serve as important detection features for early LC [28]. 
Another metabolomic analysis indicated that levels of 
saturated PC and monounsaturated PC significantly 
increase in NSCLC, whereas levels of polyunsaturated 
PC decrease significantly in NSCLC patients [3]. A 
cross-omics analysis focusing on clinical features and 
lipidomic profiles among different subtypes of LC 
patients found that PC (19:0–19:0 and 19:0–21:2) is 
specifically associated with LADC [29]. Our study 
identified 7 subclasses of PC associated with the risk 
of LC and subtypes. Specifically, a high PC 
(16:0_20:2), PC (O-16:1_18:0), PC (17:0_18:1), PC 
(18:0_20:2), PC (18:1_18:1), PC (18:1_18:2), and PC 
(O-18:1_20:3) levels were associated with a decreased 
risk of LC, LADC, and SqCLC. On the contrary, a high 
PC (16:0_20:4), PC (16:0_20:5), PC (17:0_20:4), PC 
(O-16:0_20:3), PC (O-16:1_20:3), PC (O-16:1_20:4), PC 

(O-18:0_14:0), and PC (O-18:2_20:4) levels increased 
the risk of LC, LADC, SqCLC, and SCLC. It is worth 
noting that different subclasses of PC exhibited 
bidirectional effects on the risk of LC or subtypes. This 
suggests that the spatial structure of lipids, such as 
carbon atoms, double bonds, or isomerism, may affect 
the proliferation and differentiation of cancer cells. 

PE is the second most abundant phospholipid 
after PC. PE participates in various cellular functions, 
including activating oxidative phosphorylation, 
maintaining mitochondrial morphology, and 
participating in cell death pathways such as 
ferroptosis and apoptosis [30, 31]. Mechanistic studies 
have found that excessive production of 
mitochondrial PE can inhibit cancer cell proliferation 
[32]. Evidence from retrospective studies suggests 
significant differences in the levels of PE among 
patients with malignant or benign pulmonary 
nodules [33]. However, cross-omics analysis revealed 
that specific PE subtype levels are significantly higher 
in SCLC compared to other LC subtypes or healthy 
controls [29]. This study found that high PE 
(O-18:1_20:4), PE (18:0_18:2), and PE (O-18:2_18:1) 
levels are associated with a low LADC or SqCLC risk. 
Our results further support the role of PE as a 
protective factor against LC. 

DAG, as a lipid second messenger, is involved in 
transmitting intracellular signals that influence 
mammalian cell proliferation, survival, and motility. 
DAG has been widely implicated in the onset, 
progression, and metastasis of cancers [34]. Some 
molecules that indirectly regulate DAG, such as 
protein kinase C (PKC) isoform PKCε and 
phosphatidic acid phosphatase Lipin-1, are associated 
with the progression and adverse outcomes of LC [35, 
36]. Our study provided further evidence that 
elevated DAG (16:1_18:1) and DAG (16:0_18:2) levels 
are associated with an increased LC and LADC risk. 

Our study also demonstrated that elevated 
SM(d36:2) and SM(d34:0) levels are associated with an 
increased LC, SqCLC, or SCLC risk. A case-control 
study conducted in Japan supports our findings [37]. 
This study found that increased SM levels in primary 
LC tissue samples are associated with an increased 
risk of LC recurrence. Furthermore, we also found 
that elevated genetically predicted TAG (48:0) and 
TAG (58:7) levels are associated with an increased 
LADC risk, while increased SE (27:1/20:2) levels are 
associated with a low LC and LADC risk. High PI 
(18:1_20:4) levels are associated with a lower SCLC 
risk. However, there is currently no observational 
evidence linking these three lipids to LC. 

Our mediation MR analysis also revealed the 
involvement of inflammatory proteins in the causal 
effect of plasma lipidome on LC or subtypes. Among 
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them, IL-7 and IL-18 are both pro-inflammatory 
cytokines, and several studies have reported the 
therapeutic potential of IL-7 and IL-18 in LC [38-42]. 
Our MR analysis revealed that high IL-7 and IL-18 
levels are associated with a low LC or SqCLC risk. PC 
(18:0_20:2), PC (16:0_20:4), and PC (16:0_20:4) levels 
may potentially influence the incidence of SqCLC by 
modulating the levels of IL-7. PC (16:0_20:4) may also 
increase the risk of LC and SqCLC by reducing the 
levels of IL-18. Additionally, protein S100-A12 is 
involved in the regulation of SM (d36:2) for LC. 
TNF-beta partially mediates the effects of PC 
(18:1_18:2) and PC (16:0_20:4) on LC. The causal 
effects of PC (16:0_20:4) and PC (18:0_20:4) on SqCLC 
are partially mediated by DNER. These three 
inflammatory proteins have been reported to be 
associated with prostate cancer, papillary thyroid 
carcinoma, ovarian cancer, gastric cancer, and breast 
cancer [43-47]. Our study is the first to identify their 
involvement in the effects of the lipidome on LC or 
subtypes. The mechanisms of these inflammatory 
proteins on LC require further investigation. 

This is the first study to systematically explore 
the causal relationship between plasma lipidome and 
LC and subtypes using MR design. We also identified 
5 inflammatory proteins playing crucial mediating 
roles in the association between plasma lipidome and 
LC and subtypes. However, MR methods have 
limitations that need to be acknowledged. First, 
despite using SNPs as genetic instruments to mitigate 
confounding effects, some unmeasured confounders 
that influence the genetic instruments may still bias 
the results of MR analysis. In this study, we rigorously 
employed 4 additional MR methods, the BMA-MR 
approach, and sensitivity analyses to maximize the 
reduction of potential biases from unmeasured 
confounders. Second, to obtain adequate genetic 
instruments, our study used a threshold of p < 1E-5 
for SNP screening. However, this may violate the MR 
assumption that there is a strong association between 
genetic instruments and exposure. Therefore, further 
MR analysis is needed when more appropriate genetic 
instruments are available. Finally, this MR study was 
primarily based on European populations. Since the 
same genetic instruments may have different effects 
in different ethnic groups, this may limit the 
generalizability of our results to broader populations. 

In conclusion, our findings underscore the 
intricate network between plasma lipidome and 
inflammatory proteins in regulating LC. Further 
research is needed to identify the key lipids and 
inflammatory proteins that play critical roles in cancer 
development, along with corresponding functional 
studies and experimental validations to elucidate the 
underlying mechanisms involved. Additionally, our 

study highlights the potential of integrating plasma 
lipidome into clinical practice. Incorporating plasma 
lipidome into cancer risk assessment and prevention 
strategies may pave the way for new approaches in 
the prevention and management of LC. 
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