
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

4985 

Journal of Cancer 
2024; 15(15): 4985-5006. doi: 10.7150/jca.98044 

Research Paper 

Prognostic and immunotherapeutic significances of M2 
macrophage-related genes signature in lung cancer 
Haixia Wu1#, Yilin Yu2#, Wei Wang1#, Gen Lin2, Shaolin Lin1, Jiguang Zhang3, Zhaojun Yu3, Jiewei Luo1, 
Deju Ye5, Wu Chi1,4, Xing Lin1,3 

1. Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China. 
2. Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China. 
3. Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, China.  
4. Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, 

China. 
5. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation 

Center (ChemBIC), Nanjing University, Nanjing, China. 

# Haixia Wu, Yilin Yu, and Wei Wang contributed equally as first authors to this manuscript. 

 Corresponding authors: Xing Lin (Email: linxing@fjmu.edu.cn) and Wu Chi (Email: fjslyychiwu@163.com). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.05.03; Accepted: 2024.07.09; Published: 2024.07.22 

Abstract 

Objective: We aimed to investigate the immunological significance of M2 macrophage-related genes in 
lung cancer (LC) patients, specifically focusing on constructing a risk score to predict patient prognosis 
and response to immunotherapy. 
Methods: We developed a novel risk score by identifying and incorporating 12 M2 macrophage-related 
genes. The risk score was calculated by multiplying the expression levels of risk genes by their respective 
coefficients. Through comprehensive enrichment analysis, we explored the potential functions 
distinguishing high- and low-risk groups. Moreover, we examined the relationship between patients in 
different risk groups and immune infiltration as well as their response to immunotherapy. The single-cell 
RNA sequencing data were acquired to ascertain the spatial pattern of RNF130 expression. The 
expression of RNF130 was examined using TCGA datasets and verified by HPA. The qRT-PCR was 
employed to examine RNF130 expression in LC cells. Finally, in vitro experiments were carried out to 
validate the expression and function of RNF130. 
Results: Our results indicated that the risk score constructed from 12 M2 macrophage-related genes 
was an independent prognostic factor. Patients in the high-risk group had a significantly worse prognosis 
compared to those in the low-risk group. Functional enrichment analysis showed a significant relationship 
between the risk score and immunity. Furthermore, we explored immune infiltration in different risk 
groups using seven immune algorithms. The results demonstrated a negative correlation between 
high-risk group patients and immune infiltration of B cells, CD4+ cells, and CD8+ cells. We further 
validated these findings using an immunotherapy response database, which revealed that high-risk 
patients were more likely to exhibit immune evasion and might have poorer immunotherapy outcomes. 
Additionally, drug sensitivity analysis indicated that patients in the high-risk group were more sensitive to 
certain chemotherapeutic and targeted drugs than those in the low-risk group. Single-cell analysis 
indicated that macrophages were the primary site of RNF130 distribution. The results from the TCGA 
and HPA database demonstrated a trend toward a low expression of RNF130 in LC. Finally, in vitro 
experiments further validated the expression and function of RNF130 in LC cells. 
Conclusions: The high-risk group constructed with M2 macrophage-related genes in LC was closely 
associated with poor prognosis, low immune cell infiltration, and poorer response to immunotherapy. 
This risk score can help differentiate and predict the prognosis and immune status of LC patients, thereby 
aiding in the development of precise and personalized immunotherapy strategies. 

Keywords: M2 macrophages; Lung cancer; M2 macrophage-related risk score; Tumor microenvironment; Immunotherapy 
response. 
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Introduction 
Lung cancer (LC) is the major cause of cancer 

death globally. According to the most recent data, it 
will claim the lives of over 350 people each day [1]. 
Despite the availability of surgical intervention, 
chemotherapy, targeted therapy, and immunotherapy 
for LC patients, the overall survival (OS) rate remains 
significantly unsatisfactory [2]. Among the various 
treatment options, immunotherapy is the most 
promising for patients with LC, revolutionizing 
anti-tumor therapy and ushering in a new era [3]. 
However, there is still a need for greater clarity 
regarding the specific features of patient groups that 
would benefit from immunotherapy and the 
predictors associated with this benefit [4]. 

There is increasing evidence that macrophages 
play important roles as mediators coordinating the 
interaction between the immunological defense of 
tumors and the potential anti-tumor actions of the 
immune system [5]. The macrophage phenotype is 
plastic in response to the microenvironment and 
signals, with two primary subsets: conventionally 
activated (M1) and alternatively activated (M2) 
macrophages[6]. In general, M1 macrophages secrete 
pro-inflammatory cytokines that contribute to the 
destruction of tumor cells, while M2 macrophages 
secrete anti-inflammatory cytokines that promote 
tumor angiogenesis and growth [7].  

Most clinical researches have indicated that 
tumor-associated macrophages infiltration in solid 
tumors is correlated with the expression of genes 
associated with M2 gene profiles [8, 9]. By secreting a 
variety of immunosuppressive cytokines, M2 
macrophages weaken the immune system, thereby 
promoting tumor growth [10]. M2-tumor associated 
macrophages constitute a significant group that 
impedes the activation and infiltration of CD8+ T 
lymphocytes in the tumor microenvironment [11]. 
There is extensive evidence indicating that M2 
macrophages play a significant role in tumor 
progression [12]. Lan et al. found that exosomes 
generated from M2 macrophages enhance the 
migration and invasion of colon cancer cells [13]. 
Inducing M2 polarization of macrophages in tumor 
microenvironments has been found to promote breast 
cancer progression [14] and increase pancreatic cancer 
metastasis [15]. Additionally, Wei et al. reported a 
close correlation between M2 macrophage infiltration 
and LC prognosis [16]. Consequently, investigating 
the fundamental function of M2 macrophages and 
their associated molecules in LC is imperative. 

In this study, our aim was to investigate a 
predictive marker for LC using M2 
macrophage-related genes. We obtained RNA-seq 

data from The Cancer Genome Atlas (TCGA) and the 
Gene Expression Omnibus (GEO) datasets. Then, we 
identified 12 genes by least absolute shrinkage and 
selection operator (LASSO) regression analysis. The 
risk score was calculated by multiplying the 
expression of risk genes by their respective 
coefficients. Patients were then categorized into high- 
and low-risk groups based on this score. Through 
gene set enrichment analysis (GSEA), we explored 
potential functional differences between high- and 
low-risk groups. Besides, we examined the 
relationship between different risk groups and 
immune infiltration, as well as their response to 
immunotherapy. We also investigated the differences 
in drug sensitivity among patients in different risk 
groups. The single-cell RNA sequencing data were 
acquired to ascertain the spatial pattern of RNF130 
expression. The expression of RNF130 was examined 
using TCGA datasets and verified by the Human 
Protein Atlas (HPA). The quantitative real‑time 
polymerase chain reaction (qRT‑PCR) was employed 
to examine RNF130 expression in LC cells. Finally, in 
vitro experiments were carried out to validated the 
expression and function of RNF130. Our findings 
suggested that M2 macrophage-related genes may 
have a role in the prognosis of LC, offering insights 
into the function of these genes in the LC tumor 
microenvironment and identifying potential 
therapeutic and prognostic targets for LC. 

Methods  
Dataset acquisition and processing 

We acquired expression profiles and clinical data 
of LC patients from two databases, namely the TCGA 
and GEO, which provide open access to this 
information. A comprehensive analysis was 
conducted on the combined datasets from the TCGA, 
GSE50081, GSE30219, GSE31210, and GSE37745 
cohorts to enhance the robustness and generalizability 
of the findings. LC patients included in our study met 
the following criteria: (a) Confirmed diagnosis of LC 
based on histopathological examination; (b) 
Availability of gene expression data and 
corresponding clinical information; (c) Adequate 
follow-up information to assess clinical outcomes. 
Exclusion criteria: (a) Patients with missing or 
incomplete clinical data, including survival outcome 
or treatment information. (b) Patients with significant 
comorbidities that could confound the expression 
status of M2 macrophage-related genes and 
prognosis; (c) Patients with incomplete gene 
expression profiles or low-quality data in the TCGA 
and GEO databases; (d) Patients with insufficient 
follow-up duration to evaluate long-term survival 
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outcomes. R and Perl scripts were used to analyze the 
raw data. 

Identification of M2 macrophage-related genes 
in LC 

We obtained M2 macrophage-related genes from 
the TCGA database in LC patients. M2 macrophages 
abundance were estimated using CIBERSORT [17], 
and genes were selected based on a correlation greater 
than 0.3 and a p-value less than 0.001. Comprehensive 
networks were then employed to investigate the 
relationship between these genes and M2 
macrophages. 

Biological enrichment analysis 
The "ClusterProfiler" R package [18] was utilized 

to conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analysis. Statistical significance for both analyses was 
determined using a p-value threshold of less than 
0.05.  

LASSO regularization and development of M2 
macrophage-related risk score 

Within the TCGA training cohort, univariate Cox 
regression analysis was conducted to explore the 
association between patient survival and the 
expression of risk genes. In order to further refine 
prognostic genes selection, LASSO cross-validation 
approaches were applied using the "glmnet" R 
package, with a significance threshold of p<0.05. The 
risk score was defined as the expression of genes 
multiplied by their respective coefficients. Based on 
the median value, patients were stratified into low- or 
high-risk group. To compare the two groups' survival 
rates, we utilized Kaplan-Meier survival analysis and 
a bilateral log-rank test to analyze differences. The R 
packages "Survcomp" and "SurvivalROC" were 
utilized to construct receiver operating characteristic 
(ROC) curves for assessing the predictive power of 
the risk score. Furthermore, we independently 
utilized three GEO databases to validate the 
prognostic significance of the risk score for LC 
patients. Finally, a nomogram was developed using 
clinical features and the risk score through the 
utilization of the "rms" package. Each variable in the 
nomogram scoring system was assigned a score, and 
the total score for each sample was calculated by 
summing all scores. The prognostic power was 
assessed using the testing sets from Datasets 
GSE50081. 

Gene set enrichment analysis of low-risk and 
high-risk groups 

We used the GSEA approach to identify 
potential biological functions and pathways in the 

low- and high-risk groups. HALLMARK gene sets 
(c5.go.symbols.gmt and c2.cp.kegg.symbols.gmt) 
sourced from the MSigDB were utilized for analyses 
[19, 20]. For each analysis, 1000 gene set permutations 
were performed. A normalized enrichment score 
(NES) greater than 1 or less than -1, and a false 
discovery rate (FDR) value less than 0.05, were 
deemed to indicate significant enrichment in each 
phenotype.  

Comparative analysis of immune infiltration 
between low-risk and high-risk groups  

The CIBERSORT algorithm was used to evaluate 
the correlation between risk groups and immune cell 
infiltration [17]. Besides, eight immune 
checkpoint-related genes were selected to assess their 
association with the risk score. Additionally, we 
employed six algorithms (xCell, EPIC, quantiseq, 
TIMER, MCPcounter, and ESTIMATE) to evaluate the 
immunological cell abundance across different risk 
categories [21-26]. To determine the amount of 
immune infiltration in each sample, the “IOBR” 
function of the R package was utilized to compute the 
TCGA expression matrix for the training set, 
encompassing important immune-infiltrating cells 
such as CD4+ T cells, CD8+ T cells, macrophages, B 
cells, and NK cells. 

Evaluation of immunotherapy response 
In order to investigate the relationship between 

the risk group and immunotherapy response, the 
Tumor Immune Dysfunction and Exclusion (TIDE) 
analysis tool (http://tide.dfci.harvard.edu/) was 
utilized [27, 28]. LC patients were allocated a TIDE 
score according to their normalized expression 
profile. TIDE was used to obtain the TIDE, MSI Expr 
Sig, CD274, CD8, Dysfunction, Exclusion, MDSC, 
CAF, and TAM M2 treatment scores of each LC 
sample. 

Exploring drug sensitivity between low-risk 
and high-risk groups  

Information on drug sensitivity was extracted 
from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database [29]. Predictions were made 
regarding drug sensitivity in patients between the two 
different risk groups. The half inhibitory 
concentration (IC50), representing the concentration 
of a drug inhibiting half of the maximum response, 
was selected as the benchmark for comparing 
pharmacological responses across different risk 
groups. 

Single cells analysis 
The Tumor Immune Single Cell Center (TISCH) 

database, a repository of single‑cell RNA data 
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(http://tisch.comp-genomics.org), was utilized to 
evaluate the expression level of RNF130 in various 
cell types within the tumor microenvironment [30]. 

HPA databases 
The HPA provides a comprehensive map of all 

the proteins found in human cells, tissues, and 
systems (www.proteinatlas.org) [31, 32]. The protein 
expression of RNF130 in normal and LC tissues was 
compared using the HPA. 

Cell lines culture 
The Beas-2a, A549, H1299, PC9, HCC827, and 

H1975 cells were purchased from FuHeng Cell 
Center, Shanghai, China. The cells were grown in 
RPMI-1640 media containing 10% fetal bovine serum 
and 1% penicillin-streptomycin. The incubator was 
configured to maintain environmental conditions at a 
temperature of 37°C and a CO2 concentration of 5%. 

qRT‑PCR 
The RNA was isolated using TRNzol Universal 

Reagent from Tiangen Biotech (China). Reverse 
transcription was carried out with Tiangen Biotech's 
FastKing gDNA Dispelling RT SuperMix. Applied 
Biosystems' StepOnePlus System was used for 
quantitative PCR with SuperReal PreMix Plus from 
Tiangen Biotech. The fold change of gene expression 
was calculated using the 2−ΔΔCT method, with ACTIN 
serving as the normalization control. The primer 
sequences utilized in this work were included in 
Supplementary Table s1. The PCR reaction was 
conducted three times. 

Cell transfection 
RNF130 silencing in A549 cells was synthesized 

by transfection with RNF130 siRNA (Sangon, China). 
The transfection was performed using 
lipofectamine™ 3000 (Thermo Fisher Scientific, USA) 
according to the manufacturer's instructions. The 
siRNA sequences were shown in Supplementary 
Table s2. 

Cell proliferation assays 
The evaluation of cell proliferation was 

conducted using the cell counting kit-8 (CCK-8) 
assays (APExBIO, USA). At 24-, 48-, and 72-hours 
post-transfection, 10 μL of CCK-8 reagent was 
introduced to each well, and the absorbance was 
quantified at a wavelength of 450 nm by Multi-Mode 
Microplate Reader (SpectraMax ID5, USA). Each 
experiment was repeated three times. 

Wound healing assay 
A549 cell transfected with si-RNF130 were 

seeded in 6-well plates. Once the cell density reached 

90-100%, we utilized a 10 µl pipette tip to create a 
straight wound by scratching. Microscopic images 
were captured at 0 and 48 hours, and the experiment 
was replicated three times. 

Statistical analysis  
The data were visualized and statistically 

analyzed using R version 4.3.1 and Perl version 
v5.30.0. Differences between groups were assessed by 
two tailed Student’s t-tests, χ2 test, or Wilcox tests. 
Kaplan-Meier analysis and the Log-rank test were 
used to examine the survival data. To determine the 
correlation coefficients, Spearman's correlation 
analyses were utilized as the appropriate method. The 
risk score's validity was validated using the ROC 
curve. In this study, all tests were two-tailed, and 
statistical significance was defined as a p-value<0.05. 

Results  
Identification of genes associated with M2 
macrophages in LC  

The characteristics of the patients were 
presented in Table 1. A total of 245 genes associated 
to M2 macrophages were discovered. A thorough 
network analysis was presented to investigate the 
correlation between these genes and M2 macrophages 
(Figure 1A). In addition, Figure 1B showed the top 30 
genes associated with M2 macrophages. Notably, 
each of these genes exhibited a positive association 
with M2 macrophages, and the top 30 genes also 
demonstrated a positive correlation with each other. 

Biological enrichment analysis of M2 
macrophage-related genes in LC  

Functional and pathway enrichment analysis 
were conducted to gain a deeper understanding of the 
potential role of M2 macrophage-related genes in LC. 
A total of 245 genes were investigated in order to 
identify 707 GO terms and 10 KEGG pathways. The 
following categories were defined and presented: 
biological processes (BP), cellular components (CC), 
and molecular function (MF) (Figure 2A). Terms such 
as interleukin-1 production, myeloid leukocyte 
activation, positive regulation of cytokine production, 
activation of immune response, regulation of immune 
effector process, immune response-regulating 
signaling pathway, and leukocyte mediated 
immunity were enriched in the BP category; secretory 
granule membrane, lysosomal membrane, and 
external side of plasma membrane were enriched in 
the CC category; immune receptor activity, IgG 
binding, immunoglobulin binding, and MHC class II 
protein complex binding were enriched in the MF 
category.  
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Figure 1. The identification of genes associated with M2 macrophages in LC. (A) Interconnected networks between genes related to M2 macrophages and M2 macrophages; (B) 
The correlation between the top 30 genes associated with M2 macrophages. LC, lung cancer. 

 

Table 1. The clinical characteristics of the LC patients. 

Clinicopathologic variable 
 

Total (N) Percentage (%) 
Gender 

   
 

Male 599 59.8  
Female 403 40.2 

Age 
   

 
≤65 years old  423 42.2  
>65 years old 551 55.0  
Unknown 28 2.8 

T stage 
   

 
T1 283 28.2  
T2 559 55.8  
T3 116 11.6  
T4 41 4.1  
Tx 3 0.3 

N stage 
   

 
N0 641 64.0  
N1 224 22.4  
N2 112 11.2  
N3 7 0.7  
Nx 17 1.7  
Unknown 1 0.1 

M stage 
   

 
M0 749 74.8  
M1 31 3.1  
Mx 214 21.4  
Unknown 8 0.8 

TNM stage 
   

 
Stage I 511 51.0  
Stage II 283 28.2  
Stage III 164 16.4  
Stage IV 32 3.2  
Unknown 12 1.2 

Risk group 
   

 
Low 501 50.0  
High 501 50.0 

Vital status 
   

 
Dead 397 39.6  
Alive 605 60.4 

 

Figure 2B presented the top six enriched 
functional categories for BP, CC, and MF in a circular 
diagram. In addition, comprehensive networks were 
created to investigate the interaction between the 
genes connected to macrophages and the BPs of GO, 
as shown in Figure 2C. Regarding the KEGG 
pathways, M2 macrophage-related genes was 
primarily enriched in pathways related to 
phagosome, lysosome, neutrophil extracellular trap 
formation, antigen processing and presentation, and 
cytokine and cytokine receptor (Figure 3A-C). These 
findings demonstrated a strong correlation between 
M2 macrophage-related genes and the immunological 
response.  

Development of a M2 macrophage-related 
genes prognostic risk score  

Univariate Cox regression analysis was 
performed to screen 245 M2 macrophage-related 
genes. A total of 13 genes showed statistical 
significance in relation to overall survival (p<0.05) 
(Figure 4A). Following the application of LASSO 
regression analysis to reduce the scope of OS-related 
genes, a total of twelve genes were selected for the 
creation of the prognostic model (Figure 4B-C). The 
12 genes included MRO, CTSL, HPGDS, P2RY12, 
SDCBP, ANXA5, RNF130, ACSM5, HS3ST2, PPM1M, 
P2RY13, and TNFRSF13C. Afterwards, the risk score 
associated with M2 macrophages was computed by 
multiplying the weights of these genes with their 
respective expression levels. The coefficient of these 
genes was shown in Table 2. In order to categorize 
patients into high-risk and low-risk groups, risk 
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scores were computed for every individual in the 
TCGA and GSE50081 cohorts. Kaplan-Meier survival 
analysis demonstrated a significant association 
between OS and risk score, indicating that patients 
with a low-risk score had superior OS compared to 
those with a high-risk score (p<0.001) (Figure 5A). 
Then, using a separate cohort (GSE50081), we 
conducted a survival analysis to evaluate the validity 
of risk score. Notably, the results were comparable to 
those of the TCGA cohort (p<0.01) (Figure 5B). In 
addition, both univariate and multivariate Cox 

regression analyses showed that the risk score was an 
independent prognostic factor in LC (Figure 5C-D). 
The ROC curve showed that the area under the curve 
for the risk score is greater than that for age, gender, 
and stage (Figure 6A). ROC curves were also used to 
validate the risk score, which identified an area under 
the ROC curve for prediction of 1-, 3-, and 5-year OS 
of 0.632, 0.639, and 0.624, respectively (Figure 6B). 
The relationship between the 12 risk genes and 
survival was displayed in Figure 6C using a heat 
map. 

 

 
Figure 2. Functional enrichment analysis of genes associated with M2 macrophages in LC. (A) BP, CC, and MF of GO analysis for M2 macrophage-related genes; (B) BP, CC, and 
MF of the top six GO analysis for M2 macrophage-related genes; (C) Interconnected networks of GO BP and M2 macrophage-related genes. LC, lung cancer; BP, biological 
process; CC, cell component; MF, molecular function; GO, Gene Ontology. 
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Figure 3. Pathway enrichment analysis of genes associated with M2 macrophages in LC. (A-B) KEGG pathway analysis for M2 macrophage-related genes; (C) Interconnected 
networks of KEGG pathways and M2 macrophage-related genes. LC, lung cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

 

Table 2. The coefficient of 12 M2 macrophage-related genes. 

Gene Coefficient 
MRO 0.12539 
CTSL 0.226438 
HPGDS -0.01027 
P2RY12 -0.02269 
SDCBP 0.106269 
ANXA5 0.085241 
RNF130 -0.12156 
ACSM5 -0.0859 
HS3ST2 -0.0563 
PPM1M -0.09421 
P2RY13 -0.06242 
TNFRSF13C -0.02262 

Moreover, the three GEO databases also 
validated that the risk score had a significant impact 
on the prognosis of LC patients, with high-risk group 
patients exhibiting significantly poorer outcomes 
compared to the low-risk group (all p<0.05) (Figure 
6D-F). We then created a nomogram to predict the 1-, 
3-, and 5-year survival of patients in order to improve 
the use of the risk score in the clinic. This was 
accomplished by integrating the risk score with 
additional clinicopathological indicators. The 
predicted probabilities of OS for LC patients at 1-, 3-, 
and 5-years were 0.918, 0.756, and 0.631, respectively. 
(Figure 7A). Finally, we conducted a prognostic 
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analysis of high- and low-risk patients in different 
subgroups based on age, gender, and stage. The 
results showed that the prognosis of high-risk group 
was worse than that of low-risk group (p<0.001) 
(Figure 7B-C). 

Prognostic value of risk score in LC 
progression 

To further investigate the impact of the risk score 
on patient prognosis, we also conducted a prognostic 
analysis of progression-free survival and disease-free 
survival in high- and low-risk groups. In the TCGA 
cohort, our results showed that patients in the 

high-risk group had significantly lower 
progression-free survival rates compared to those in 
the low-risk group (p<0.01) (Figure 8A). Additionally, 
in the validation cohort from GEO, we found that 
patients in the high-risk group also had poorer 
disease-free survival rates than those in the low-risk 
group (p<0.01) (Figure 8B). Finally, we combined the 
risk score with other clinical factors to construct a 
model for predicting PFS in LC patients for 1-, 3-, and 
5-years. The predicted probabilities of PFS for LC 
patients at 1-, 3-, and 5-years were 0.862, 0.639, and 
0.555, respectively (Figure 8C). 

 

 
Figure 4. Identification of twelve M2 macrophage-related genes in LC. (A) Univariate Cox analysis of 13 M2 macrophage-related genes with prognostic value; (B-C) 
Cross-validation and LASSO regression analysis of M2 macrophage-related prognostic genes. LC, lung cancer. 
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Figure 5. The risk score constructed by the 12 M2 macrophage-related genes in LC. (A) Survival curves of the high-risk and low-risk groups in TCGA cohorts; (B) Survival curves 
of high-risk and low-risk groups in GEO cohorts; (C-D) Univariate and multivariate analysis of the high-risk and low-risk groups in TCGA cohorts. LC, lung cancer; TCGA, the 
Cancer Genome Atlas; GEO, Gene Expression Omnibus. 

 

GSEA of high- and low-risk groups  
In light of the correlation between the 12 M2 

macrophage-related genes and prognosis, we 
conducted a more detailed examination of the 
signature functions and pathways associated with the 
low-risk and high-risk groups by utilizing GSEA. The 

signature functions of the high-risk group were 
enriched in inflammatory response, cytokine 
production involved in immune response, negative 
regulation of production of molecular mediator of 
immune response, regulation of innate immune 
response, and regulation of production of molecular 
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mediator of immune response (Figure 9A), whereas 
the signature functions of the low-risk group were 
enriched in the B cell mediated immunity, immune 
response regulating cell surface receptor signaling 
pathway, immune response regulating signaling 
pathway, macrophage chemotaxis, and T cell selection 
(Figure 9B). Besides, the significantly signature 
pathways enriched in the high-risk group were cell 
cycle, cytokine cytokine receptor interaction, DNA 
replication, nod like receptor signaling pathway, and 

PPAR signaling pathway (Figure 9C). Finally, the 
significantly signature pathways enriched in the 
low-risk group were B cell receptor signaling 
pathway, drug metabolism cytochrome, intestinal 
immune network for IgA production, metabolism of 
xenobiotics by cytochrome P450, and primary 
immunodeficiency (Figure 9D). These results 
indicated that the risk score was closely associated 
with the immune and metabolic status of the LC 
patients. 

 

 
Figure 6. The ROC curve, risk diagram, and survival status distributions of the risk score. (A)The ROC curve of the risk score, age, gender, and stage; (B) The ROC curve for 
OS of the risk score at 1-, 3-, and 5-years; (C) The risk diagram and survival status distributions of the risk score; (D) Survival curves of high-risk and low-risk groups in GSE30219 
cohorts; (E) Survival curves of high-risk and low-risk groups in GSE31210 cohorts; (F) Survival curves of high-risk and low-risk groups in GSE37745 cohorts. ROC, receiver 
operating characteristic; OS, overall survival. 
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Immune characteristics of high- and low-risk 
groups 

By comparing the distribution of 22 different 
types of immune cells in different risk groups, the 
CIBERSORT algorithm was used to investigate the 
immune cell composition in the two groups. Our 
results demonstrated that B cell naïve, plasma cells, 
dendritic cells resting, and mast cells resting were 
more abundant in the low-risk group whereas 
macrophages M0, macrophages M2, natural killer 
cells resting, and neutrophils were more plentiful in 
the high-risk group (p<0.05) (Figure 10A). The 
visualization in Figure 10B illustrated the correlation 
between the 12 risk genes and the risk score with 
immune cells infiltration. A higher prevalence of 
macrophages M2 infiltration was linked to a lower 
survival rate. We also explored the correlation 
between the risk score and immune 
checkpoint-related genes. We found that the risk score 
of LC patients was negatively correlated with PD-1 

and CTLA-4 (p<0.05) (Figure 10C). This suggested 
that patients in the high-risk group might have poorer 
immune responses. To further explore the 
relationship between the risk score and immune cell 
infiltration, we applied another six algorithms for 
validation. Figure 11A-D respectively demonstrated 
the relationship between high- and low-risk groups 
and immune cell infiltration using the xCell, EPIC, 
and quantiseq algorithms. Figure 12A-C then 
respectively used TIMER, MCPcounter, and 
ESTIMATE algorithms to validate the relationship 
between high- and low-risk groups and immune cell 
infiltration. Interestingly, these results also indicated 
that patients in the high-risk group were associated 
with lower infiltration of B cell, CD8+ cell, and CD4+ 
cell (p<0.05). This was consistent with our previous 
results and further suggested a potential association 
between high-risk patients and poorer 
immunotherapy response. 

 

 
Figure 7. The macrophage-related model and subgroup prognostic analysis of the risk score. (A) The predicted model of OS for LC patients at 1-, 3-, and 5-years; (B) The 
subgroup prognostic analysis of risk score according to age; (C) The subgroup prognostic analysis of risk score according to gender; (D) The subgroup prognostic analysis of risk 
score according to stage. OS, overall survival; LC, lung cancer. 
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Analysis of immunotherapy prediction in high- 
and low-risk groups 

TIDE was used to evaluate the differences in 
immunotherapy sensitivity between the two groups. 
It was discovered that CD8, T cell dysfunction, and T 
cell exclusion showed variation between the two risk 
groups. Additionally, the TIDE score was higher in 
the high-risk group (p<0.001) (Figure 12D). A greater 
TIDE prediction score was associated with a higher 
possibility of immune evasion, indicating that these 
patients were less likely to benefit from 
immunotherapy. In addition, Myeloid Derived 
Suppressor Cell (MDSC) was also shown to be higher 
in the high-risk group (p<0.001). The elevated 
exclusion score of the high-risk group further 
indicated a greater potential for immunological 
evasion (p<0.001). Collectively, these findings 

suggested that the risk score significantly influenced 
the tumor immune microenvironment. 

Drug sensitivity analysis of high- and low-risk 
groups 

In the TCGA cohort, we sought to identify 
associations between different risk groups and the 
efficacy of therapy for treating LC patients. The 
results revealed that the high-risk group was 
associated with a lower IC50 for chemo-therapeutics 
such as Cisplatin, Docetaxel, 5-Fluorouracil, 
Cytarabine, Vinorelbine, and Paclitaxel (p<0.001) 
(Figure 13A-F). In addition, the high-risk group was 
associated with a low IC50 in targeted drug, including 
Crizotinib, Gefitinib, and Erlotinib (p<0.001) (Figure 
13G-I).  

 

 
Figure 8. Prognostic value of risk score in LC progression. (A) Survival curves of the high-risk and low-risk groups in TCGA cohorts; (B) Survival curves of high-risk and low-risk 
groups in GEO cohorts; (C) The predicted model of progression-free survival for LC patients at 1-, 3-, and 5-years. LC, lung cancer; TCGA, the Cancer Genome Atlas; GEO, 
Gene Expression Omnibus. 
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Characterization of RNF130 expression in 
several datasets and in vitro assays 

We examined the RNF130 expression in LC 
using single-cell datasets (NSCLC_GSE131907, 
NSCLC_GSE148071, NSCLC_GSE139555, and 
NSCLC_GSE163498) from the TISCH database. The 
data indicated that macrophages were the primary 
site of RNF130 distribution (Figure 14A-L). The data 
suggested that RNF130 was associated with M2 
macrophage polarization. We also discovered that LC 
samples from the TCGA database exhibited 
significantly lower levels of RNF130 mRNA 
expression than normal tissues (p<0.001) (Figure 
15A-B). The results from the HPA database further 
demonstrated a trend toward a low expression of 
RNF130 at the protein level in LC (Figure 15C-F). 
Compared to low RNF130 mRNA expression, the 
prognosis for high RNF130 mRNA expression level 
was favorable (p<0.01) (Figure 15G). Importantly, we 
discovered that a significant percentage of immune 
cells had positive correlations with RNF130 
expression (p<0.05) (Figure 15H). Furthermore, we 

assessed the RNF130 expression level in five distinct 
lung cancer cell lines and a normal bronchial 
epithelial cell line. Similarly, our results showed that 
the expression of RNF130 was lower the five types of 
LC cells (p<0.001) (Figure 16A). To better investigate 
the role of RNF130 in LC, we transfected A549 cells 
with RNF130 siRNA, and used qRT-PCR to assess the 
efficacy of RNF130 transfection. Given that the 
qRT-PCR results indicated siRNA-1 and siRNA-2 had 
the most effective knockdown, we selected these two 
siRNAs for subsequent experiments (p<0.001) (Figure 
16B). The CCK8 assay showed that the proliferation 
capacity of A549 cells after siRNA treatment was 
significantly higher than that of the normal control 
(NC) group (p<0.001) (Figure 16C). Finally, the 
wound healing assay demonstrated that the migration 
ability of A549 cells after siRNA treatment was 
significantly greater than that of the NC group 
(p<0.05) (Figure 16D). These results suggested that 
suppressing RNF130 can promote the proliferation 
and migration of LC. 

 

 
Figure 9. GSEA of high- and low-risk groups. (A) The significantly signature functions enriched in the high-risk group; (B) The significantly signature functions enriched in the 
low-risk group; (C) The significantly signature pathways enriched in the high-risk group; (D) The significantly signature pathways enriched in the low-risk group. GSEA, Gene set 
enrichment analysis. 
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Figure 10. The correlation of the risk score with immune infiltration in the TCGA cohort. (A) The correlation between different risk groups and immune cell infiltration levels 
in LC patients (CIBERSORT algorithm); (B) The correlation between the 12 risk genes and the risk score with immune cells infiltration in LC patients; (C) The correlation 
between the risk score and immune checkpoint-related genes in LC patients. TCGA, the Cancer Genome Atlas; LC, lung cancer. 

 

Discussion 
Notwithstanding the advancements that has 

been made in screening and treatment, LC continues 
to be the most common type of cancer and the 
primary cause of death from cancer in the world [1]. 
The interaction between the tumor immune 
microenvironment and genetic alterations is a key 

component in the intricate and ever-changing process 
of LC occurrence and progression [30]. Whether for 
patients with lung adenocarcinoma or lung squamous 
cell carcinoma, immunotherapy is one of the most 
prominent treatment modalities among many. It has 
changed the landscape of anti-tumor therapy and 
ushered in a new era of anti-tumor treatment [3]. 
While immune checkpoint inhibitors have 
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demonstrated significant effectiveness in the 
treatment of LC, only a small proportion of patients 
have a positive response to these therapies [31]. 
Hence, there remains a need for further clarification 
regarding the screening of groups that would benefit 
from immunotherapy and the predictors associated 
with this benefit. 

Macrophages, which are intrinsically malleable 
immune cells, undergo activation through the 

integration of microenvironmental signals [5, 9, 32]. 
More and more evidence pointed to the important 
roles played by tumor-associated macrophages as 
mediators between the immune system's potential 
antitumor effector mechanisms and the tumors' 
anti-immune defenses [5, 33]. Given the important 
role macrophages in tumor immunity and their close 
relationship with LC, this could provide a 
breakthrough in fully examining the immunological 

 

 
Figure 11. The correlation of the risk groups with immune cell infiltration in the TCGA cohort. (A-B) The correlation between different risk groups and immune cell infiltration 
levels in LC patients (xCell algorithm); (C) The correlation between different risk groups and immune cell infiltration levels in LC patients (EPIC algorithm); (D) The correlation 
between different risk groups and immune cell infiltration levels in LC patients (quantiseq algorithm). TCGA, the Cancer Genome Atlas; LC, lung cancer. 
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landscape in LC. Nevertheless, limited research has 
naturally concentrated on the characteristics of the 
tumor immune microenvironment and prognostic 
prediction from the perspective of macrophage- 
related genes in LC. Consequently, there is an urgent 
need to investigate the immunological subtypes of 
LC. 

In the present study, we developed a risk score 
incorporating 12 identified M2 macrophage-related 
genes, specifically focusing on LC patients with 
TCGA cohort. We then verified the dependability of 
this risk score by testing it on GEO cohort. Patients 
were divided into high- and low- risk groups 
according to the risk score. The risk score stood out as 
an independent prognostic factor for LC patient 
prognosis, according to our findings. When 
contrasted with the low-risk group, the high-risk 
patients' prognosis was substantially poorer. A 
statistically significant correlation between risk score 
and immunity was found in the GSEA. In addition, 
we used seven immunological algorithms to 

investigate immune cell infiltration in various risk 
groups. Immune cell infiltration of B cells, CD4+ cells, 
and CD8+ cells was negatively correlated with 
high-risk group patients. Patients in the high-risk 
group are more prone to immune evasion and might 
experience worse immunotherapy outcomes, as we 
further confirmed by utilizing an immunotherapy 
response database. Ultimately, by doing drug 
sensitivity study, we discovered that individuals 
classified in the high-risk group exhibited greater 
sensitivity to several chemotherapeutic and targeted 
medications compared to those in the low-risk group. 
At the single-cell level, RNF130 expression was found 
to be substantially concentrated in macrophages. 
Moreover, RNF130 had low expression levels in LC 
tumor tissues and was found to be correlated with 
prognosis. We investigated RNF130 expression in LC 
cells and found that it was similarly underexpressed 
in these cells, Finally, in vitro experiments suggested 
that suppressing RNF130 can promote the 
proliferation and migration of LC. 

 

 
Figure 12. The correlation of the risk groups with immune cell infiltration and immunotherapy response in the TCGA cohort. (A) The correlation between different risk groups 
and immune cell infiltration levels in LC patients (TIMER algorithm); (B) The correlation between different risk groups and immune cell infiltration levels in LC patients 
(MCPcounter algorithm); (C) The correlation between different risk groups and immune cell infiltration levels in LC patients (ESTIMATE algorithm); (D) The differences of 
immunotherapy response between different risk groups in LC patients. TCGA, the Cancer Genome Atlas; LC, lung cancer. 
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Figure 13. Drug-sensitivity analysis based on different risk group in LC. (A) Analysis of drug sensitivity for chemotherapeutic drug in high- and low-risk group. (B) Analysis of drug 
sensitivity for targeted drug in high- and low-risk group. LC, lung cancer. 

 
The occurrence and development of cancer result 

from the interaction of multiple genes and signaling 
pathways. Merely concentrating on a small number of 
genetic indicators is inadequate for establishing a 
correlation between LC immunological response and 
prognosis. Additionally, discovering potential 
biomarkers and therapeutic targets through the 
exhaustive and methodical profiling of different 
immune cells from diverse tumor samples, relying 
solely on experimental evidence, is a challenging and 
time-consuming process. Through the use of 
advanced computational methods, bioinformatics 
techniques are able to directly extract information 
relevant to cell types [34, 35]. In light of this, we 
developed a risk score model and a subgroup 
categorization system for 12 M2 macrophage-related 
genes. Eight of these genes were considered to be 
favorable prognostic genes in individuals with LC, 
whereas the remaining four genes were considered to 
be adverse prognostic genes. The bioinformatics 

methods were used in our study to investigate the 
immune microenvironment and M2 macrophage- 
related genes in different LC patients. The risk score 
demonstrated good performance on external and 
independent datasets. Consequently, we deduced that 
the risk score possessed both a high level of clinical 
feasibility and applicability. 

Due to the high concentration of T cells in 
healthy lung tissue, LC serves as a model disease for 
investigating cancer immunosurveillance [36]. In 
addition, LC shows promising reactions to immune 
checkpoint inhibitors (ICIs) that target T cells through 
the PD-1/PD-L1 and CTLA-4 pathways [37-39]. 
Nevertheless, only a small proportion of patients can 
derive benefits from ICIs treatment. Our research 
results suggested that patients with higher risk scores 
had lower levels of infiltration by major immune cells 
(B cells, CD4+ cells, and CD8+ cells) and were 
significantly negatively correlated with ICIs (PD-1 
and CTLA4). Another important finding was that 
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patients with higher risk scores were more likely to 
experience immune escape and might have a poorer 
response to immunotherapy. The effectiveness of the 
antitumor immune response is a key factor in 
determining the prognosis of numerous solid tumors. 
Monoclonal antibodies targeting PD-1/PD-L1 and 
CTLA4 have greatly enhanced the survival outlook 
for individuals with cancer. Furthermore, several 
studies have illustrated that the survival rate of cancer 
patients is closely related to the degree of infiltration 
of CD8+ T cells within the tumor [40]. Therefore, our 
risk score might have the potential to offer significant 
insights into the prediction of immunotherapy 
response and prognosis, as well as the direction of 
clinical practice. 

We further explored the sensitivity of 
chemotherapeutic and targeted drugs in LC patients 
across the two risk groups. The results indicated that 
patients in the high-risk group were more sensitive to 
several commonly used chemotherapeutic and 
targeted drugs in LC patients. Following the 
application of the predictive risk score, these drugs 
were identified as potential treatments for LC in 
certain circumstances. Our results demonstrated a 
promising potential for guiding individualized 
strategies and managing chemo/targeted therapy. 
Nonetheless, additional research is required to 
investigate the relationship between the risk score and 
the underlying biological mechanisms. 

 

 
Figure 14. Analysis of RNF130 expression in several cell types at the single cell level. Single-cell mapping for visualizing RNF130 expression levels in different cell types in the 
NSCLC_GSE131907(A-C), NSCLC_GSE148071(D-F), NSCLC_GSE139555(G-I), and NSCLC_GSE163498(J-L) datasets. 
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Figure 15. The expression levels of RNF130 in LC. (A) Expression levels of RNF130 in non-paired tumor and normal samples; (B) Expression levels of RNF130 in paired tumor 
and normal samples. The expression levels of RNF130 in LC were determined using the HPA. (C) Medium; (D) Not detected; (E) Medium, and (F) Low; (G)The overall survival 
between high RNF130 and low RNF130 expression groups; (H)The correlation between RNF130 expression and the infiltration of immune cells. LC, lung cancer; HPA, Human 
Protein Atlas. 
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Figure 16 The characterization of RNF130 expression and in vitro assays in LC. (A) The expression of RNF130 in LC cells and normal bronchial epithelial cell line (Beas-2a); (B) 
The knockdown efficiency of siRNA-1, siRNA-2, and siRNA-3. (C) CCK8 assay of NC, siRNA-1, and siRNA-2 group; (D) The wound healing assay of NC, siRNA-1, and siRNA-2 
group. LC, lung cancer; NC, normal control. 

 
The risk score provides a personalized 

prognostic tool that can identify high-risk patients 
who may benefit from more aggressive treatment 
strategies or closer monitoring. By predicting immune 
cell infiltration and potential responses to 
immunotherapy, the risk score can guide clinicians in 
selecting appropriate immunotherapeutic approaches 
for LC patients. Besides, the identification of high-risk 
patients who are more sensitive to certain 
chemotherapeutic and targeted drugs enables the 
development of tailored treatment regimens, 
potentially improving patient outcomes. Finally, the 
significant associations between the risk score and 
immune-related functions open new avenues for 
research into the underlying biological mechanisms, 
potentially leading to the discovery of novel 
therapeutic targets. Nevertheless, even though there 
have been some encouraging outcomes, there are still 
certain limitations. Firstly, public databases, such as 
the TCGA and GEO, served as the basis for the study. 
These databases are wonderful resource; nevertheless, 
they have limitations, including the possibility of 
heterogeneity in terms of data quality and patient 
characteristics. Secondly, our research demonstrated a 
substantial correlation between the prognosis of LC 
patients and the twelve M2 macrophage-related 

genes. This correlation was determined only through 
the process of data mining. In order to shed light on 
the function and mechanisms of these genes, 
additional experimental research to be conducted is 
required. Furthermore, the risk score was employed 
to simulate patient response to treatment with ICIs. 
However, the current number of immunotherapy 
cohorts is insufficient to fully verify our results, thus 
the risk score remains insufficient to entirely 
substitute the actual treatment response. 
Notwithstanding these constraints, the advancement 
of bioinformatics has undeniably aided researchers in 
discovering prospective therapeutic targets for LC. 
Despite these limitations, the progress of 
bioinformatics has undoubtedly benefited researchers 
in identifying potential therapeutic targets for LC. 
Hence, additional prospective studies are still 
required. 

Conclusion 
In summary, we constructed a twelve-gene risk 

score and verified it using independent LC cohorts. 
The high-risk group constructed with M2 
macrophage-related genes in LC was closely 
associated with poor prognosis, low immune cell 
infiltration, and poorer response to immunotherapy. 
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These findings could serve as a theoretical foundation 
for future investigations and the development of 
precise, personalized immunotherapy for patients 
with LC. This risk score can help differentiate and 
predict the prognosis and immune status of LC 
patients. 
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