
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

4922 

Journal of Cancer 
2024; 15(15): 4922-4938. doi: 10.7150/jca.96096 

Research Paper 

DNA methylation profiling deciphers three EMT 
subtypes with distinct prognoses and therapeutic 
vulnerabilities in breast cancer 
Shihao Sun1†, Shuang Chen2†, Nan Wang1†, Zehao Hong3, Yi Sun1, Yijia Xu1, Jiangrui Chi1, Xinxing 
Wang1, Lin Li1 

1. Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. 
2. Center of Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. 
3. Zhengzhou University, Henan 450052, China. 

†These authors have contributed equally to this work and share senior authorship.  

 Corresponding authors: Jiangrui Chi, Xinxing Wang, and Lin Li. Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, 
Zhengzhou, 450052, Henan, China. E-mail addresses: rebecca20110311@163.com (Jiangrui Chi), xx_wang86@163.com (Xinxing Wang) and fcclil6@zzu.edu.cn 
(Lin Li). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.03.08; Accepted: 2024.06.30; Published: 2024.07.16 

Abstract 

Background: Epithelial–mesenchymal transition (EMT), deemed a pivotal hallmark of tumours, is intricately 
regulated by DNA methylation and encompasses multiple states along tumour progression. The potential 
mechanisms that drive the intrinsic heterogeneity of breast cancer (BC) via EMT transformation have not been 
identified, presenting a significant obstacle in clinical diagnosis and treatment.  
Methods: A total of 7,602 patients have been included in this study. We leveraged integrated multiomics data 
(epigenomic, genomic, and transcriptomic data) to delineate the comprehensive landscape of EMT in BC. 
Subsequently, a subtyping classifier was developed through a machine learning framework proposed by us. 
Results: We classified the BC samples into three methylation-driven EMT subtypes with distinct features, 
namely, C1 (the mammary duct development subtype with TP53 activation), C2 (the immune infiltration 
subtype with high TP53 mutation), and C3 (the ERBB2 amplification subtype with an unfavorable prognosis). 
Specifically, patients with the C1 subtype might respond to endocrine therapy or the p53-MDM2 antagonist 
nutlin-3. Patients with the C2 subtype might benefit from combined therapeutic regimens involving 
radiotherapy, PARP inhibitors, and immune checkpoint blockade therapy. Patients with the C3 subtype might 
benefit from anti-HER2 agents such as lapatinib. Notably, to increase the clinical applicability of the EMT 
subtypes, we devised a 96-gene panel-based classifier via a machine learning framework.  
Conclusions: Our study identified three methylation-driven EMT subtypes with distinct prognoses and 
biological traits to capture heterogeneity in BC and provided a rationale for the use of this classification as a 
powerful tool for developing new strategies for clinical trials. 
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Introduction 
Breast cancer (BC) has emerged as the leading 

type of cancer among women and is characterized by 
high heterogeneity within malignant breast tissues. 
According to statistics published by the World Health 
Organization (WHO), nearly 2.3 million BC cases 
were diagnosed globally in 2020, and the death rate 
reached 15.5% in women[1]. The inherent 

heterogeneity of BC presents significant obstacles for 
targeted treatments, which range from surgery and 
chemotherapy to radiotherapy and emerging 
immunotherapies. BC heterogeneity frequently 
results in a spectrum of clinical complications, 
including BC recurrence, metastasis, and drug 
resistance. 
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Substantial research has confirmed that 
epithelial-mesenchymal transition (EMT) is a dynamic 
and continuous process marked by the transformation 
from an epithelial phenotype to a mesenchymal 
phenotype, with a continuum of phenotypes along the 
tumour progression[2]. Moreover, EMT plays a 
crucial role in facilitating the metastasis and 
recurrence of BC and is instrumental in preventing 
resistance to conventional treatments, including 
radiation, chemotherapy, endocrine therapy, and 
targeted regimens[3, 4]. EMT may contribute to the 
heterogeneity of BC. Notably, previous studies have 
focused on dissecting tumour heterogeneity based on 
the EMT process at the transcriptomic level[5], with 
little attention to the influence of epigenetic 
reprogramming. As one type of epigenetic 
reprogramming, DNA methylation is crucial for 
regulating gene expression and maintaining 
chromatin structure. Abnormal DNA methylation, 
which has been identified at the onset of cancer, plays 
a key role in the metastasis and invasion of BC and 
several other malignancies[6-8]. Prior studies have 
shown that DNA methylation precisely modulates the 
plasticity of the EMT process[3]. Nonetheless, the 
regulatory mechanisms of EMT-related methylation 
in BC warrant further investigation. An analysis 
focused on EMT methylation-related features might 
offer considerable promise for the precise 
stratification of BC patients, potentially allowing 
further personalization of treatment strategies. 

In the present study, based on 7,602 BC samples, 
we investigated EMT-related heterogeneity at the 
methylation level to refine the molecular classification 
of BC. The three novel EMT subtypes were 
characterized by distinct clinicopathological features, 
genomic driver events, biological functions, and 
immune landscapes. We devised a de novo computa-
tional framework for candidate drug identification. To 
accelerate the clinical application and translation of 
these findings, a machine learning (ML)-based 
classification system for identifying EMT subtypes 
was established. This study offers a paradigm for 
investigating the pathogenic mechanisms underlying 
BC and further pinpoints personalized strategies to 
specifically target vulnerabilities in BC. 

Materials and methods  
Cohort enrollment and data preprocessing 

This study focused on analyzing a cohort of 7,602 
BC patients with corresponding clinical information 
from multiple data repositories, including the Gene 
Expression Omnibus (GEO), the Molecular Taxonomy 
of Breast Cancer International Consortium 
(METABRIC), and The Cancer Genome Atlas (TCGA). 
RNA-seq, copy number, and mutation data from the 

TCGA were accessed through the National Cancer 
Genome Atlas (NCI) Genomic Data Commons (GDC) 
portal (https://portal.gdc.cancer.gov/), and clinical 
information was retrieved from the cBioPortal 
database (https://www.cbioportal.org). Survival 
information of BC patients was obtained from the 
TCGA Pan-Cancer Clinical Data Resource 
(TCGA-CDR). DNA methylation data were obtained 
via the University of California, Santa Cruz (UCSC) 
Xena Browser (https://gdc.xenahubs.net). In 
addition, seven BC datasets (GSE1456, GSE20685, 
GSE24450, GSE58644, GSE58812, GSE7390, and 
GSE96058) from the GEO database were utilized as 
validation sets. In this study, we included samples 
based on the following criteria: (a) diagnosis with 
histologically confirmed breast cancer; (b) status 
post-surgery; (c) availability of OS (overall survival) 
data. Additionally, samples were excluded if their 
transcriptome data were technical replications. For 
multi-omics data from the TCGA database, patients 
without matched transcriptome and methylation data 
were also removed. The distribution of features in the 
corresponding cohorts is described in Table S1. The 
detailed data processing procedure for these datasets 
is described in the Supplementary Methods. 

Methylation-driven EMT subtype classification 
via NMF 

We integrated a total of 5023 EMT-associated 
genes (EMTAGs) from various sources, including the 
Molecular Signatures Database (MsigDB, http:// 
www.broad.mit.edu/gsea/msigdb/), the EMTome 
(http://www.emtome.org/), and the dbEMT 
(http://dbemt.bioinfo-minzhao.org/) database 
(Table S2). Differential methylation analysis of 
tumour versus adjacent normal samples was 
performed utilizing the limma package. We 
considered genes with an absolute beta difference 
greater than 0.1 and an adjusted p-value less than 
0.001 as DNA differentially methylated genes. A total 
of 339 candidate EMTAGs were identified by 
intersecting the aforementioned DNA differentially 
methylated genes with the EMTAGs (Table S3). To 
identify methylation-dependent EMT patterns, we 
performed non-negative matrix factorization (NMF) 
on 339 candidate EMTAGs via the nmf package (runs 
= 100, rank = 2-10; method = 'brunet')[9]. The optimal 
rank was estimated according to the cophenetic 
correlation coefficient, the dispersion value, and the 
combined score of them. Ultimately, we determined 
three as the optimal rank. 

Collection of previous classical subtypes of BC 
To compare the associations between our EMT 

subtypes and previous classical subtypes, the 
TCGA-BRCA cohort and two other large cohorts 
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(METABRIC and GSE96058) were reclassified in 
accordance with prior classification criteria; these 
included PAM50 subtypes, Breast Cancer Consensus 
Subtypes (BCCS), Topological Data Analysis (TDA) 
subtypes and canonical immune subtypes. PAM50 
subtypes were identified via the genefu package, 
which assesses traditional intrinsic biological 
characteristics[10]. Mathews et al. employed the TDA 
approach to reclassify BC into 7 robust and 
interpretable PAM50 subtypes, named TDA 
subtypes[11]. The BCCS subtype classification system 
was developed by integrating six distinct 
unsupervised consensus-based clustering methods. 
Subsequently, six BC consensus subtypes were 
derived independent of the statistical methodology. 
In this study, BCCS subtyping was performed via the 
BCCSclassifier package. To investigate the BC 
immune microenvironment in our study, the six 
immune subtypes were analysed utilizing iAtlas 
(https://www.cri-iatlas.org/). To quantify the 
correlation between each EMT cluster and multiple 
molecular subtypes, we performed one-hot encoding 
of the EMT clusters and other molecular subtype 
levels and further calculated the Pearson correlation 
coefficients among these classification systems. 

Derivation of the EMT classifier 
We conducted an EMT classifier via our 

proposed step-by-step ML framework. The detailed 
procedure for developing the ML-based classifier is 
described in the Supplementary Methods. 

Transition map of the EMT subtypes 

To generate the transition map of EMT subtypes, 
we utilized the Potential of Heat-diffusion for 
Affinity-based Transition Embedding (PHATE) and 
the Uniform Manifold Approximation and Projection 
(UMAP) algorithm to project the data in a 
low-dimensional space. This process ensured intuitive 
visualization of EMT transcriptional programs in a 2D 
space. 

Molecular characterization of the EMT 
subtypes 

Gene set variation analysis (GSVA) analysis was 
executed to quantify the activity scores of 85 EMT 
gene sets. For depicting the EMT status and 
characterizing the hybrid E/M phenotype (E: 
epithelial, M: mesenchymal), we computed the scores 
of three previously established EMT signatures 
(EMT76GS, EMTKS, and EMT score). The significance 
of enrichment was evaluated utilizing default 
parameters and the criteria was set as adjust p-value 
<0.05. In addition, to comprehensively assess tumor 
proliferation, we extracted the G0 arrested score, 
proliferation rate, and CA20 score from previous 

publications. 

Immune cell deconvolution and clustering 
Kassandra algorithm was applied to quantify the 

tumour proportation and immune cell composition of 
each sample. DNA methylation beta values combined 
with signature gene data were subjected to 
CIBERSORT analysis for the deconvolution of 
immune cell populations via MethylCIBERSORT 
package. As depicted in one previous study, we 
classified BC samples into hot and cold immune 
phenotypes according to the immune cell populations 
obtained from MethylCIBERSORT analysis[12]. 

The tumour immune microenvironment of 
the EMT subtypes 

Through utilizing multiomics data, the 
expression patterns of immunomodulatory genes 
among EMT subtypes were compared. We acquired 
various variables that have been previously linked to 
the tumour immune microenvironment (TIME), 
including the cytolytic activity (CYT) score[13], IFN-γ 
signature score[14], T-cell-inflamed activity 
(TCIA)[14], extent of intratumoural heterogeneity 
(ITH) value, T-cell exhaustion signature score[15], and 
T-cell receptor (TCR) diversity score[16]. 
Additionally, a comprehensive set of tumour 
neoantigen-related parameters was retrieved, 
encompassing the aneuploidy score, cancer testis 
antigen score, extent of homologous recombination 
deficiency (HRD), indel neoantigen, and tumour 
mutational burden (TMB)[17]. Immune cycle-related 
gene sets (Step 1: Release of cancer antigens; Step 2: 
Cancer antigen presentation; Step 3: Priming and 
activation; Step 4: Trafficking of immune cells to 
tumours; Step 5: Infiltration of immune cells into 
tumours; Step 6: Recognition of cancer cells by T cells; 
Step 7: Killing of cancer cells) were obtained from 
previous studies[18, 19]. The cancer immunity cycle 
program was measured through the single sample 
gene set enrichment analysis (ssGSEA) approach. 

Immunotherapy response prediction 
Existing immunotherapy-treated cohorts with 

therapeutic response information were collected, 
comprising GSE91061 (melanoma)[20], GSE165252 
(esophageal cancer)[21], GSE100797 (melanoma)[22], 
GSE173839 (HER2-negative BC)[23], GSE35640 
(melanoma)[24], and Tuba N Gide (melanoma)[25]. 
The Subnetwork Mappings in Alignment of Pathways 
(Submap) analysis was conducted to predict the 
immune response via GenePattern tools. 

Genomic alteration characteristics related to 
EMT subtypes 

Detailed methods in this part are depicted in 
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Supplementary Methods. 

Evaluation of drug sensitivity in the clinical 
cohort 

To extend the study to the prediction of targeted 
therapies for each subtype, a computational pipeline 
was applied (Fig. 6A)[26]. Comprehensive 
pharmacogenomic datasets including CTRP and 
PRISM, aggregated comprehensive information on 
drug response and molecular profiles from human 
cancer cell lines, which enabled precise prediction of 
drug response in clinical samples[26]. Before 
conducting drug response prediction, the expression 
data of primary tumour samples were purified 
according to tumour purity estimates reported by 
Hoadley et al.[27] to correct potential signal 
obscuration from stromal cells in the tumour 
microenvironment. This purification process was 
adopted via the MOFA package. As previously 
mentioned[26], the pRRophetic package was 
employed to predict subtype-based sensitive drugs. In 
detail, the ridge regression model was trained on the 
mRNA expression profiles, and the drug response 
data of cancer cell lines with optimal predictive 
accuracy were evaluated via default 10-fold 
cross-validation. We applied the purified tumor 
expression profiles into this model to calculate drug 
response in clinical samples, ultimately identifying 
candidate-targeted drugs for each individual subtype. 
Apart from the abovementioned algorithm-based 
drug predictions, we also computed the radiosensi-
tivity index (RSI) and endocrine therapy sensitivity 
scores in light of previous studies to corroborate the 
accuracy of our drug predictions[28, 29]. 

Delineation of the EMT landscape in the C1 
subtype 

Recognizing the dynamic transition of the EMT 
procedure, we executed dimensionality reduction 
based on graph learning to unveil the inherent 
structure and distribution of individual samples. 
Following reducing dimension and sorting, the EMT 
landscape was ultimately evolved. This entire process 
was conducted via the monocle package. 

Statistical analysis 
Fisher's exact test was implemented for 

categorical variables, whereas Student’s t-test, the 
Wilcoxon rank-sum test, the ANOVA test, and the 
Kruskal-Wallis test were conducted for continuous 
variables. Spearman correlation was used for 
comparison of continuous versus continuous 
variables. Survival analysis was performed by 
utilizing Kaplan‒Meier curves and log-rank tests. To 
correct for multiple tests, the p-values were adjusted 
to the false discovery rate (FDR) utilizing the 

Benjamini – Hochberg method where appropriate. 
Unless otherwise indicated, all the statistical tests 
were two-tailed. Significance levels are indicated by 
asterisks (*p <0.05; **p <0.01; ***p <0.001, ****p 
<0.0001). The statistical and bioinformatics analyses 
described above were carried out with R software 
(version 4.2.1). 

Results 
Unsupervised clustering identifies three 
distinct methylation-related EMT subtypes 

To decode the EMT process in BC via a 
methylation-based analytical platform, we utilized the 
NMF algorithm to cluster BC into distinct subgroups 
based on the expression levels of BC-special EMTAGs 
(Fig. 1B; see Supplement Methods). According to 
dispersion, cophenetic coefficient, and combination of 
them, three methylation-based EMT subtypes with an 
average silhouette-width of 0.77 were identified and 
termed C1 (386), C2 (394), and C3 (275) (Fig. 1A, 1C). 
In addition, UMAP was conducted to project all the 
samples into a low-dimensional space, demonstrating 
significant discrimination (Fig. 1D). Unsupervised 
NMF clustering using the methylation profile 
revealed three EMT subgroups with strikingly 
different methylation patterns (Fig. S1A). Consistent 
with the previously reported continuity of the EMT 
process, we observed a potential EMT 
transformational spectrum from the methylation 
patterns of three subtypes, as evidenced by PHATE 
analysis (Fig. S1B). Subsequently, three EMT scoring 
metrics were employed to further quantify the EMT 
status for the subtypes. Compared to C1 and C3 
tumours, C2 tumours were characterized by high 
EMTKS and high EMT scores but low EMT76GS 
scores (Fig. 1E). These findings revealed that the 
mesenchymal state was enriched mainly in the C2 
subtype, whereas the C1 and C3 subtypes were more 
closely related to the epithelial state. GSVA further 
indicated that three distinct transcriptional programs 
were encoded by the different subtypes (Fig. 1G). 
DNA methylation participates in the regulation of 
EMT, thereby promoting tumour proliferation and 
metastasis. Thus, we compiled a list of epithelial, 
hybrid EMT, and mesenchymal markers from 
previous literature to explore EMT programmes in 
subtypes from multiomics (methylation and 
transcription) perspectives. At the transcriptome 
level, higher expression of H and M markers and 
lower expression of E markers were mainly observed 
in the C2 subtype. Notably, although no significant 
difference in quantitative EMT metrics was found 
between C1 and C3, it was found that C3, unlike C1, 
had increased H and M marker expression and 
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rigorously regulated methylation, which may be 
related to the less favorable prognosis of the C3 
subtype (Fig. 1F, 2A). In summary, these findings 
indicated that the progression of EMT programs was 
progressively transformed from C1 subtype (E states) 
to C3 subtype (H states), culminating in C2 subtype 
(M states). 

Survival analysis suggested that the C3 subtype 
had the worst overall survival (OS) prognostic 
outcome (p=0.002; Fig. 2A). In addition, we further 
explored the relevance of our subgroups to clinical 
features and canonical molecular subtypes. The C1 
subtype was linked to luminal A-like BC, which 
included the luminal A, BSC4, and basal/luminal 

subtypes. The C2 subtype was associated with the 
Basal, BCS2, Basal/myoepithelial as well as IS2, which 
indicated stromal invasion, immune infiltration, and a 
poor prognosis. The C3 subtype was characterized by 
advanced tumour stage and older age, associated with 
the luminal B, BCS3, Basal/luminal, and HER2/ 
luminal subtypes, which denoted the worst prognosis 
(Fig. 2B-F, Fig. S2). Similar clinical characteristics 
among the three subtypes were also observed in two 
other large cohorts, the METABRIC and GSE90685 
datasets (Table S4). In brief, the biological attributes 
exhibited by the other classifications were well 
captured into our three subtypes. 

 

 
Figure 1: Identification of distinct Methylation-EMT subtypes. A. Multiple metrics to determine the optimal number of clusters presented by different shapes 
(cophenetic: grey dot, dispersion: purple dot). The optimal rank was chosen when the combination metric (red dot) occurred to steep drop off. B. Heatmap of consensus matrix 
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with rank =3, mapping three subtypes labeled with different colors. C. The silhouette width of unsupervised clustering based on NMF method in methylation data when rank =3. 
D. UMAP plot of methylation expression profiles colored by distinct subtypes. E. EMT metrics of the samples in different subtypes. F. The normalized mean expression and DNA 
methylation levels of the 27 genes across EMT subtypes are indicated by the color gradient. E (epithelial) markers H(hybrid) markers, and M (mesenchymal) markers are displayed 
in the left, middle, and right panels, respectively. G. Heatmap of enrichment scores of EMT gene sets among subtypes. 

 

 
Figure 2: The construction of EMT classifier. A. Kaplan–Meier plot of overall survival among the three EMT subtypes in TCGA cohort. Log-rank test. B. Sankey plot 
showed the connection between EMT subtypes and other classical classifications, comprising PAM50, BCS, TDA, and immune subtypes. C-F. Correlation between EMT subtypes 
and other classical molecular clusters. Each panel indicated a molecular input to our EMT subtypes. G. The workflow of building an EMT classifier based on our ML framework. 
H. The scoring metrics for five classifiers evaluated the accuracy of the model, including balanced accuracy, AUPRC, and AUROC. I. Barplots showed comparable fractions of 
samples being assigned to each subtype in the training cohort and 6 validation datasets. 
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ML architecture for deriving the EMT classifier 
To identify EMT subtypes in a variety of cohorts 

and facilitate clinical translation, an ML-based 
classifier was developed, as described in Figure 2G. 
We first identify unbiased differential genes 
associated with the three subtypes utilizing consensus 
differential analysis (DA) strategy, which involves the 
intersection of genes obtained via three DA 
algorithms: Significance Analysis of Microarrays 
(SAM), resampling-based multiple hypothesis testing 
(multtest), and limma. Subsequently, we conducted 
quality control via logistic regression analysis with 
1000 iterations, yielding 513 leaf genes (Table S5). The 
sequential feature selection framework (SFS) for ML 
was deployed to recognize subtype stem genes 
(SSGs). (1) Initially, a filtering procedure based on 
Pearson correlation coefficients was applied to 
eliminate collinearity. (2) Wrapper methods including 
boruta and support vector machine recursive feature 
elimination (SVM-RFE) were adopted to retain highly 
informative genes. (3) Multinomial sparse group-lasso 
(MSGL) regression analysis for running 1000 times 
with 10-fold cross-validation to identify the most 
robust gene panel (Table S6). Through the SFS 
framework, the 96-gene panel was deemed as SSGs 
and was inputted into multiple ML methodologies 
(Table S7). For the five ML algorithms used to predict 
EMT subtypes, multiple scoring metrics including 
balance accuracy, AUROC, and AUPRC were used for 
model evaluation to select the optimal classifier after 5
×10 fold stratification and shuffled cross-validation 
via the 80% training and 20% test split. Ultimately, the 
SVM model exhibited remarkable performance in 
terms of model performance competition and was 
regarded as the most stable model for identifying 
EMT subtypes (Fig. 2H). When applying classifiers to 
gene expression data from different platforms, the 
ratios of subtypes were comparable across the 
TCGA-BRCA training cohort and six distinct 
validation datasets. As shown in Figure 2I, the ratio of 
subtypes showed similar trends across multiple 
cohorts (Table S1). Consistent with prior findings, 
patients with the C3 subtype had shorter OS (p <0.05 
in six cohorts). In biological scenarios, subtype 
transformation and correlation analysis also showed 
consistent trends in two large cohorts, METABRIC 
and GSE96058 (Fig. S3-S4). Thus, the SVM-based 
classifier is a powerful tool for interpretation of EMT 
subtypes and has high clinical application value. To 
further augment the transformation and verification 
of the classifier in clinical scenarios, we conducted an 
R package entitled “BCEMTSclassifier”, which is 

accessible under the website https://github.com/ 
LovelyMonkey123/BCEMTSclassifier. 

Comprehensive molecular characteristics 
related to EMT subtypes 

To further investigate the predominant 
molecular characteristics of the EMT subtypes, we 
employed Gene Set Enrichment Analysis (GSEA) for 
GO and KEGG entries, which yielded striking 
concurrence. In particular, the C1 subtype was linked 
to the enrichment of mammary epithelial 
development related pathways, encompassing 
mammary ductal morphogenesis, epithelial cilium 
motility, and Golgi vesicle transport (Fig. 3A). 
Notably, the proteasome pathway was prominently 
activated in the C1 subtype (Fig. 3D). The C2 subtype 
was enriched in immunologic pathways, primarily 
involving T cell co-stimulation, immune cell-mediated 
cytotoxicity, immune cell activation, and antigen 
processing and presentation (Fig. 3B, 3E). 
Importantly, the C3 subtype was characterized by 
upregulation of DNA replication and DNA‒protein 
complex assembly (Fig. 3C), the fanconi anemia 
pathway, and excision repair (Fig. 3F). Significant 
differences in the dominant features of the three 
subtypes were further revealed and proven through 
oncogenic hallmark pathway analysis (Fig. 3H). 
Tumor proliferation, a typical indication of 
tumorigenesis, was dramatically upregulated in the 
C2 and C3 subtypes (Fig. 3H). Moreover, centrosome 
amplification (CA), cell cycle arrest, and the cell 
proliferation rate are regarded to have immeasurable 
impacts on tumour proliferation. Based on this, we 
found that both C2 and C3 tumours showed higher 
proliferation rates, and CA20 scores, but lower G0 
arrested scores (Fig. 3G). 

We also explored in more detail the relationships 
between multiple states of EMT programs (C1, C2, 
and C3) and metastatic potential. Four 
metastasis-related gene sets were retrieved from 
previous research[30-33], aiming to assess the 
metastatic potential of BC. ssGSEA analysis of these 
gene sets revealed that the activity scores of metastatic 
gene sets exhibited marked upregulation in the C2 
subtype compared to C1 and C3 (Figure. S5A-E). In 
addition, the metastatic potential of BC was further 
evaluated using a risk score system encompassing 
nine metastasis-related genes, which was conducted 
by Xiao et al[34]. Here we found that patients in the 
C2 subtype showed a significantly higher risk of 
metastasis as indicated by their higher proportion in 
the high-risk group compared to patients in other 
subtypes (Fig. S5F). 
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Figure 3: Biological characterization of comprehensive characterization in EMT subtypes. A-C. Enrichment map of statistically significant, nonredundant GO 
categories in C1 (A), C2 (B), and C3 (C), respectively. Nodes in the network represented pathways and were colored by associated subpopulations. Enrichment maps were 
generated via GSEA for the top 50 pathways with NES>0 and FDR <0.05 in each subtype. D-F. GSEA plots of the top 5 KEGG pathways in C1 (D), C2 (E), and C3 (F), respectively 
(FDR<0.05). G. Boxplot depicting the proliferation rates, CA20, and G0 arrested scores for each subtype. H. Heatmap of the normalized GSVA enrichment score about cancer 
hallmark pathways. The FDR was shown in the right barplot. 

 
Immune states and therapy for the EMT 
subtypes 

Given that the EMT subtyping was independent 
of methylation platforms (Fig. S6), immune 

microenvironmental analyses were performed only 
with samples retrieved from the 450k methylation 
sequencing platform. For the precise reconstruction of 
TIME, we implemented the deconvolution algorithms 
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including Kassandra and MethylCIBERSORT 
utilizing transcriptome and methylation data, 
respectively. Combining PAM clustering with the 
composition of immune cells determined by 
MethyCIBERSORT, the tumours were stratified into 
two subtypes, immunologically cold (MetIS1) and hot 
(MetIS2) (Fig. S7). As presented in Figure 4A and 
4C-D, C2 tumours exhibited greater tumour- 
infiltrating lymphocytes (TILs) and an increased 
percentage of purity-estimated consensus 
measurements (CPE). In addition, C2 tumours had a 
higher percentage of MetIS2 and IS2 subtypes than 
other EMT subtypes (Fig. 4A-4B). A greater ratio of 
CD8 T cells to Tregs, a favourable marker for 
immune-thermal tumours and immunotherapy, was 
observed in C2 versus other EMT subtypes (Fig. 
4E-4F). 

In addition, twelve variables from 2 different 
categories related to (1) tumour neoantigens and (2) 
the TIME have been used to predict immunotherapy 
efficacy in a variety of tumours. We compared these 
factors among the EMT subtypes, and the results 
revealed that nearly all metrics were higher in the C2 
subtype, the exceptions were TMB, SNV neo score, 
and aneuploidy score, which increased in rank from 
C1 to C3 (Fig. 4G). Moreover, representative steps of 
the cancer immune cycle were employed, including 
antigen release, induction and activation, recruitment 
and infiltration of immune cells, cancer cell 
recognition, and cancer cell killing. The results 
showed that scores of these steps were significantly 
elevated in C2 compared with C1 and C3 (p < 0.05 in 
all seven steps, Fig. S8). 

In clinical oncology, immunomodulators are 
potential agonists and antagonists for tumor 
immunotherapy. We integrated multiomics data to 
compare the expression and regulatory roles of 
immunomodulators in EMT subtypes, revealing that 
C2 had the highest expression of immunomodulators 
(Fig. S9). Submap analysis also showed that the C2 
subtype exhibited gene expression patterns similar to 
immunoreactive subtypes in six discrete 
immunotherapy cohorts (Fig. 4H). In conclusion, C2 
patients may derive clinical benefit from 
immunotherapy. 

Mutational landscape of EMT subtypes 
We investigated the mutation and copy number 

landscapes of the three subtypes to discern 
subtype-specific genomic events. Differences in 
chromosome abundance and content were observed 
in the three subtypes (Fig. S10). Chromosomal 
instability, characterized by perturbations in the 
fraction of genome altered (FGA), the fraction of 
genome gained (FGG), and the fraction of genome lost 

(FGL), exhibited significant variances across the three 
subtypes, with notable upregulation in C3 (Fig. 
5A-C). Additionally, we noted that extensive 
alterations in chromosome 17 (ERBB2 amplification), 
were distinctive to the C3 (Fig. 5D, 5G). In terms of 
mutation signatures, C1 was enriched mainly in the 
BRCA1/2 mutation-related (Signature.3) and 
APOBEC-related (Signature.13) signatures, C2 was 
characterized by APOBEC-related signature 
(Signature.2) and Signature.8, and C3 was enriched 
predominantly in the age-related signature 
(Signature.1B). PIK3CA, a hotspot mutation in BC, 
occurred in C1 at a high frequency (50.6%, p <0.001), 
representing a potential clinical benefit of PIK3 
inhibitors. Other activating mutations with >10% 
change, such as KMT2C (13%, p =0.004) and MAP3K1 
(16%, p < 0.001) were also involved in C1. We 
observed the elevation of TP53 mutations in C2 (61%, 
p <0.001), which was associated with high 
immunogenic characteristics[35]. Somatic GATA3 
mutations were found prominently in C3 (21%, p 
<0.001) and C1 (19%), consistent with the epithelial 
characteristics of these subtypes[36]. Integrated 
analysis, leveraging the OncoKB database, which 
contains information on cancer-driving genes and a 
computational pipeline, was performed in this study 
to identify cis-driver cytoband segments 
(Supplementary Methods, Table S9). Specifically, C2 
was significantly associated with frequent 
amplification of CCNE1 (40.9%, p <0.001), while 
ERBB2 amplification was predominantly present in 
C3 (31.4%), and significantly associated with this 
subtype (p <0.001). Despite the fact that a high 
prevalence of MYC amplification (reaching 72.7%) 
was observed in C2, widespread MYC amplification 
patterns of >50% also occurred across all three 
subtypes. Further, we realized that not only copy 
number amplification, but also copy number deletion 
events were more common in C2 and C3, compared to 
C1; the C3 subtype was predominantly linked to the 
deletion of genes involved in tumour proliferation 
and DNA repair processes[37-39], encompassing 
BCL10, CDKN2B, MUTYH, CDKN2C, BACH2, and 
RUNX1 (Fig. 5F). Genomic alterations affecting 
several events were linked to the age-related 
(Signature.1B), APOBEC-related (Signature.2/13), 
BRCA1/2 mutations (Signature.3), and other 
signatures (Fig. 5E). Surprisingly, although the 
phenotypic age distributions of the three subtypes 
differed significantly, fluctuations in Signature.1B 
among subtypes were not interfered with 
subtype-specific driver events, implying that 
age-associated Signature.1B persisted independently 
of other mutational features. Most notably, the 
incidence of Signature.2 indicated subtle and quite 
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distinct associations in subtypes. For example, the 
PIK3CA mutation was strongly associated with an 
elevated incidence of Signature.2 in three subtypes, 
whereas in C1, the MAP2K4 mutation and wildtype 
GATA3 were linked with an increase of Signature.2. 
Intriguingly, the opposite trend was uncovered about 

the associations of PIK3CA and TP53 with 
Signature.2, suggesting that distinct mutation events 
mediate consistent pathways. In both C2 and C3, 
CCNE1 alterations showed a consistent correlation 
with Signature.2 (Fig. 5E). 

 

 
Figure 4: Characterization of the immune environment in three subtypes. The immune characteristics and therapy prediction of three subtypes. A. The correlation 
between the EMT subtypes and immune infiltrating cells from multi-omics views. B. The difference between MetIS subtypes and our EMT subtypes. C-D. The relative abundance 
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of TILs was estimated in three subtypes via transcriptome, methylation deconvolution algorithm. E-F. Scatter plots depicting the CD8 T cell/Treg ratio of the EMT subtypes. G. 
Boxplot showing the difference of twelve factors of two distinct classes linked to tumor neoantigens and tumor microenvironment in three subtypes. H. Submap analysis was 
used to explore the response of immunotherapy in three subtypes. 

 
Figure 5: Multi-omics alteration characteristics of three subtypes. A-C. The fraction of genome alteration (FGA), the fraction of genome gained (FGG), and the fraction 
of genome lost (FGL) in three subtypes. D. The differential distribution of chr17 alteration in three subtypes. E. Heatmaps depicting the increase (value >0) or decrease (value 
<0) in mutational signature prevalence in samples harbouring gene mutations or copy number changes. The color gradient indicates the median change in exposure compared to 
wild type. Only significant changes of >10% (in either direction) were retained with Wilcoxon rank-sum two-sided test p-value <0.05, which was marked using stars. F. Genomic 
alteration landscape in three subtypes. Subtype-enriched events (mutation or copy number alteration) were labeled the color of the corresponding subtype. Fisher’s exact test. 
G. The global copy number alteration landscape of three subtypes was shown via heatmap. 
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EMT dynamic landscape of BC via 
pseudo-temporal analysis 

To reveal the underlying structures of the 
distribution of individual patients, the EMT trajectory 
was segmented, and key EMT subprogrammes 
relying on our three subtypes were revealed. Actually, 
the trajectories with descriptive states unveiled the 
dynamics of EMT programs. The epithelial-like C1 
and C3 subtypes were positioned at the beginning of 
the pseudotime trajectory. Surprisingly, due to the 
heterogeneity of basal-like BC, the C2 subtype was 
placed at the terminal end of two distinct EMT-related 
branches (Fig. S10A). Although the C1 subgroup had 
the favourable prognosis, we observed that the 
samples of the C1 subtype were distributed in 
multiple branches of the EMT trajectory, which 
showed significant intro-subtype heterogeneity 
within C1 (Fig. S11B). C1 was further divided into 
three subtypes according to the location of the 
samples within the EMT trajectory (C1a-c), which 
showed apparent differences in EMT transcriptional 
status and methylation expression patterns (Fig. 
S11C-F). Survival analysis showed that there was 
poorer clinical outcome occurred in C1b, comparing 
to C1a and C1c (log-rank, p = 0.038; Fig. S11G). 
Overall, these findings indicated that our dynamic 
landscape analysis provided complementary benefits 
for further deciphering EMT programmes. 

Identification of subset-specific therapeutic 
agents in EMT subtypes 

To determine the potential vulnerabilities of and 
therapeutic options for patients with different EMT 
subtypes, we harnessed a computational framework 
to identify potential targeted drugs for each subtype 
by leveraging pharmacogenomic datasets including 
CTRP and PRISM (Fig. 6A). Given the potential 
impact of confounding signals originating from the 
tumour microenvironment on drug therapy, the 
MOFA technique was utilized to correct tumour 
purity, yielding normalized tumour expression 
profiles as the input for the next drug prediction. 
Employing drug prediction pipeline, 38 
subtype-specific targeted agents were identified (Fig. 
6B, Table S10). Notably, the candidate agents showed 
significant alignment with the genomic and molecular 
vulnerabilities specific to the corresponding subtypes. 
For example, nutlin-3, a C1-targeted agent, was 
engineered to target the TP53 wild-type, a feature that 
was abundant in C1. Meanwhile, C2 was 
characterized by extensive activation of oncogenic 
pathways, suggesting a broader range of therapeutic 
possibilities, as shown in Figure 6B. In line with the 
strikingly elevated expression of ERBB2 in C3 (Fig. 
S12H), lapatinib was identified as a potential targeted 

agent for C3. 
Next, we gathered information on several 

treatment response-associated signatures to facilitate 
precise subtype-based treatment in clinical scenarios. 
Unexpectedly, the highest endocrine sensitivity score 
was observed in C1 and corresponded to elevated 
luminal-related gene expression in this subtype (Fig. 
6D, Fig. S12A-G). C2 had the lowest RSI, which 
indicated that radiotherapy is a promising clinical 
option for patients with this subtype (Fig. 6C). 
Altogether, these results delineated that for patients 
with distinct EMT subtypes, a more precise and 
tailored target strategy is imperative. 

Discussion 
BC is a clinically heterogeneous disease. An 

in-depth comprehension of epigenetic heterogeneity 
in BC could greatly improve the stratification of 
populations and reveal opportunities for precision 
therapies. In contrast to prior efforts to unravel the 
complexity of EMT in multiple tumours at the 
transcriptome level[40, 41], our study delineated EMT 
subtypes from a methylation standpoint to decode the 
intrinsic heterogeneity of BC. Multiomics data were 
employed to assess the clinicopathological features 
and molecular mechanisms underlying the EMT 
subtypes. Integrated EMT-based analysis clearly 
classified BC samples into three subtypes with distinct 
clinical characteristics, biological phenotypes, 
genomic variants, and immune landscapes. 
Pseudo-temporal analysis was employed to further 
dissect the intra-cluster heterogeneity of EMT 
subtypes. Large-scale drug identification frameworks 
were utilized to identify potential targeted drugs that 
may be effective in treating specific subtypes. In 
addition, based on the ML pipeline proposed in our 
study, the EMT classifier was developed to enhance 
clinical utility and feasibility. Comprehensive 
molecular and biological features unique to each EMT 
subtype identified through our analysis are shown in 
Figure 7. 

The C1 (mammary duct development) subtype 
was distinguished by a high PIK3CA mutation 
frequency, TP53 activation, and a favorable prognosis, 
aligning with the characteristics of the luminal A, 
BSC4, and basal/luminal classifications. In response 
to previous studies, our study also demonstrated that 
mammary gland duct development and cancer 
progression are modulated mainly by ER 
alpha-mediated increases in estrogen levels[42]. 
Accumulating research has unveiled that PIK3CA 
mutations predominantly occur in ER+ BC with a 
favorable prognosis[43, 44]; these features are 
consistent with the features identified in C1. 
Overexpression of luminal-related genes and elevated 
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endocrine sensitivity scores indicate sensitivity to 
endocrine therapy for the C1 subtype in this study[29, 
45, 46]. The low proliferative activity of C1 implied 
that commonly utilized chemotherapy drugs, such as 
paclitaxel which primarily acts on the proliferation 
pathway in BC, might encounter limitations in their 
effectiveness. With the goal of further improving the 
clinical outcomes of C1, we employed a ridge 
regression model and identified a potential 
therapeutic drug for C1: nutlin-3. TP53 is activated in 
the C1 subtype, and the efficacy of nutlin-3 in treating 
TP53 wild-type BC was confirmed in earlier 
studies[47]. More importantly, a subgroup of patients 
in the C1 subtype (C1b) exhibited an unfavorable 
prognosis than other subclusters (C1a and C1b) 
through EMT dynamic landscape analysis, suggesting 
some degree of intro-subtype heterogeneity. 

The C2 (immune infiltration) subtype, was 
recognized by a high prevalence of TP53 mutation, 
extensive genomic alterations, and markedly 
increased metastatic potential, and was linked to the 
Basal, BCS2, basal/myoepithelial, and IS2 
(interferon-γ subtype) classifications from previous 
literature. C2 exhibited co-inactivation of key tumour 
suppressor genes, particularly TP53 and PTEN, which 
induced widespread activation of various oncogenic 
pathways, notably the PI3K/AKT/mTOR and P53 

pathways[48-50]. We also observed that CCNE1 
amplification drove the promotion of proliferative 
pathways and contributed to an enhanced 
mesenchymal phenotype in C2[49, 51]. Additionally, 
the amplification of CCNE1 and MYC indicated 
worse clinical outcomes in metastatic tumours[52]. 
Intriguingly, the loss of function of KMT2D, a histone 
methyltransferase, mediates genomic damage, 
thereby accelerating cancer progression[53]. In line 
with this, the TIME was remodeled to upregulate 
tumour immunogenicity[53], emerging the proficient 
immune response of the C2 subtype. Our research 
demonstrated that tumours with high HRD scores 
and low RSI scores tended to be C2 tumours, which 
suggested that the combination regimens of PARP 
inhibitors with radiotherapy and immunotherapy 
may conquer clinical obstacles [23]. In this context, 
olaparib was identified as an outstanding regimen in 
C2 patients. Stromal-enriched tumours indicate 
elevated vascular infiltration in C2, consistent with 
the targeted effects of various angiogenesis inhibitors 
including axitinib, pazopanib, and sunitinib. 

The C3 (ERBB2 amplification) subtype, defined 
by obvious ERBB2 amplification, was predominantly 
associated with the conventional luminal B, BCS3, 
basal/luminal, and HER2/luminal classifications. 
GATA3-inactivating mutations are known to promote 

 

 
Figure 6: Identification of subset-specific therapeutic agents in EMT subtypes. A. Scheme of computational pipeline for identifying therapeutic agents. B-C. Boxplot 
comparing the RSI (B), and endocrine sensitivity score (C) in three subtypes. Kruskal-Wallis test. D. Candidate agents for three subtypes were depicted through heatmap. 
PRISM-Score and CTRP-Score represent the normalized drug sensitivity score via min-max transformation.  
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metastatic invasion in BC[36, 54], a phenomenon 
reflecting the attributes of the C3 subtype, which is 
characterized by advanced clinicopathological grade 
and early metastasis. The elevated frequency of 
deletions of multiple tumour suppressor genes 
contributed to the high DNA repair capacity and cell 
proliferation activity of C3, further enhancing 
malignant tumour progression. We utilized our 
computational pipeline to pinpoint ERBB2 (also 
known as HER2 or neu) amplification as the most 
significant genomic event in C3, and our results also 
indicated that the mRNA expression of ERBB2 was 
markedly upregulated in C3 than C1 and C2. 
Correspondingly, our drug identification pipeline 
suggested lapatinib, a dual-targeted HER receptor 
tyrosine kinase inhibitor[55], as a personalized 
treatment option for C3 samples. To expand the 
therapeutic options for patients in the C3 subtype, 
tanespimycin was also identified as a second-line 
treatment regimen.  

Beyond subtype heterogeneity, our study 
revealed an inherent phenotypic continuum among 
EMT subtypes, wherein a transition occurs from the 

C1 (relative epithelial state) to C3 (relative hybrid 
state), followed by the C2 (relative mesenchymal 
state) subtype, as evidenced by PHATE analysis. Our 
findings indicated that during this dynamic 
transformation, the EMT program was increasingly 
activated with the disturbance of genomic alterations 
and the enrichment of immune infiltration, 
concurrently with a gradual decline in tumor purity. 
This evolutionary pattern was critical in tumor 
progression as it enhanced metastatic potential and 
modulated immune components. The EMT process 
was closely interactive with the immune 
microenvironment within the tumour. The C2 
subtype had high immune cell infiltration and 
adequate enhancement of anti-tumour immune 
program, as evidenced by the significantly elevated 
immune-related pathways. These observations 
suggested that heightened EMT activation might 
foster immune infiltration and augment response to 
immunotherapy. As previously discussed, the 
genomic alterations in the three subtypes were 
associated with their unique therapeutic 
vulnerabilities. However, the alteration patterns of 

 
Figure 7: The overview of different characteristics unique to individual EMT subtype.      
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FGA, FGG, and FGL did not consistently align with 
the transformation pattern of the EMT process across 
the three subtypes. Conversely, we observed that the 
percentage of genomic alterations followed a similar 
trend of deteriorating clinical outcomes, progressing 
from C1 through C2, culminating in the highest 
accumulation in C3. C3, representing an intermediate 
EMT state, is characterized by the poorest prognosis 
and the richest genomic alterations. In summary, the 
EMT classification system was confirmed as a 
powerful tool for dissecting the heterogeneity and 
dynamic nature of the EMT process. 

Our research delineated an EMT classification 
framework for BC, which precisely captured the 
molecular and clinicopathological characteristics in 
each individual subtype. This framework could 
facilitate the development of personalized treatment 
strategies tailored to each EMT subtype. Based on our 
proposed ML pipeline, a 96-gene-based EMT classifier 
was developed, aiming to streamline the clinical 
implementation of the EMT classifying system in 
real-world scenarios. This study paves the way for 
unraveling the complexities of EMT heterogeneity in 
BC and lays the groundwork for precision in both 
tumour classification and treatment. While our 
classifying system holds promise, it is hindered by the 
absence of real-world validation. To address these 
challenges, the R package, BCEMTSclassifier was 
conducted. More importantly, we have designed a 
forthcoming clinical study aimed at refining the 
validation of EMT subtype classification at the 
single-cell level, with the goal of elucidating 
underlying molecular mechanisms and ultimately 
facilitating clinical translation in the future. 
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