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Abstract 

Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. 
However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to 
overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the 
present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, 
and gene expression levels of enzymes important to these metabolites and then correlated the 
expression to the survival of patients receiving tamoxifen.  
Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were 
metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and 
the findings were correlated with the expression of genes that encode the key enzymes of the significant 
metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was 
assessed using the Kaplan-Meier plotter web tool.  
Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, 
and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate 
and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine 
dehydrogenase and glutathione synthase gene expression were downregulated, whereas 
glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased 
expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. 
Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in 
tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of 
resistance. 
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Introduction 
Breast cancer is the most diagnosed cancer 

worldwide, with an estimated 2.3 million new cases in 
2020 [1]. It is also the leading cause of cancer-related 

deaths in females in countries with low/medium 
human development index (HDI); whereas, it is 
surpassed only by lung cancer in high HDI countries 
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[1]. There are four clinically relevant molecular 
subtypes of invasive ductal carcinoma: luminal A, 
luminal B, HER2/neu, and basal-like breast cancer, 
based on the expression of the hormone receptors: 
estrogen (ER) and progesterone (PR), as well as the 
human epidermal growth factor (HER2).  Luminal A 
is the most common molecular subtype of breast 
cancer, accounting for approximately 50% of invasive 
breast cancer cases [2], and is characterized as 
estrogen receptor-positive (ER+), progesterone 
receptor-positive (PR+), HER2/Neu-negative, with 
low Ki-67 expression [3]. Abnormal estrogen 
signaling through ERα is a major driver of 
tumorigenesis in luminal A and luminal B breast 
cancers [4], as it promotes the proliferation of cancer 
cells by overexpressing cyclin D1 and c-Myc, both of 
which enable the tumors to bypass the G1/S 
checkpoint [5].  

Selective estrogen receptor modulators (SERMs) 
are a class of compounds that inhibit the estrogen 
signaling pathway and cell cycle progression, which 
consequently inhibits cell growth [6]. Tamoxifen is the 
prototypical SERM that has both agonistic and 
antagonistic effects depending on the tissue, for 
example in breast tissue, tamoxifen exhibits an 
antagonistic effect [7]. Breast cancer treatment is 
usually multimodal, utilizing surgery, radiotherapy, 
chemotherapy, immunotherapy, and targeted 
therapy. Most patients undergo surgery combined 
with adjuvant and/or neoadjuvant chemotherapy, 
depending on the stage of the disease, followed by a 
long course of SERM if the cancer cells express 
hormonal receptors. Patients with the luminal A 
subtype are usually treated with tamoxifen for 5 to 10 
years [8]. However, 15% to 20% of ER+ tumors are 
intrinsically resistant to endocrine treatment while 
30% to 40% of ER+ tumors develop endocrine 
resistance to this class of drugs throughout treatment 
[9, 10]. Therefore, understanding the underlying 
mechanisms of tamoxifen resistance in breast cancer is 
critical to reducing the prevalence of treatment 
resistance in breast cancer and associated mortality.  

Metabolic reprogramming; a hallmark of cancer 
and treatment resistance development seen in tumors 
including those of the breast is driven by genetic and 
epigenetic factors to support their continuous growth 
and survival in harsh environments [11, 12]. Most of 
these changes modulate amino acids, lipids, and 
glucose metabolism [13]. The first identified and 
widely recognized metabolic reprogramming 
pathway is the Warburg effect - a phenomenon that 
involves the increase in glucose consumption rate and 
its fermentation to lactate in tumors, even in the 
presence of oxygen [14, 15]. In addition to glucose, an 
increased influx of glutamine into cells has been 

linked to the development of resistance to 
chemotherapy and endocrine therapies by activating 
pathways that support both survival and proliferation 
[16]. This discovery paved the way for the 
identification of potential therapeutic targets and 
resistance markers that could significantly contribute 
to the treatment of breast cancer [17, 18].  

Metabolomics is an advanced analytical 
approach used to profile the complete set of 
metabolites, such as small molecule products or 
intermediates of biochemical processes inside cells, 
tissues, organs, systems, or organisms [19]. It is one of 
the four branches of omics sciences alongside 
genomics, transcriptomics, and proteomics that 
altogether aim to comprehensively investigate cellular 
components at different levels [20]. In this study, the 
metabolomic profiles of three tamoxifen-resistant 
MCF-7 cell lines were characterized using nuclear 
magnetic resonance (NMR) spectroscopy. Addition-
ally, changes in the expression levels of genes that are 
associated with the significantly altered metabolites 
and their respective metabolic pathways were studied 
using RT-qPCR and correlated with alterations in the 
metabolite levels, followed by correlation to the 
survival of patients receiving tamoxifen using data 
obtained from Kaplan Meier webtool. The findings in 
the present work contribute to understanding the 
metabolic and molecular mechanisms behind 
tamoxifen resistance in breast cancer.  

Materials and Methods 
Cell culturing and tamoxifen-resistance 
development 

MCF-7 cell lines (ATCC, USA) were cultured in 
RPMI 1640 media (EuroClone S.p.A., Italy) 
supplemented with 1% penicillin-streptomycin, 1% 
L-Glutamine, and 10% fetal bovine serum (FBS) and 
incubated in a 37 °C incubator under 5% CO2 
atmosphere. Three tamoxifen-resistant MCF7 cell 
lines were developed using 3 different tamoxifen 
concentration approaches as previously described 
[21–23]. The first approach involved treating the cells 
with increasing tamoxifen concentrations starting 
with 100 nM until a concentration of 50 µM was 
reached. In the second approach, the cells were 
treated with a starting concentration of 100 nM and 
increased until 35 µM was reached. The cells were 
then treated six more times with 35 µM. For each 
media change with a new concentration, cells were 
treated with tamoxifen for 24 h, then the media was 
replaced with fresh media. The next dose was added 
when cells reached 70% confluence. In the third 
approach, cells were treated with a starting 
concentration of 100 nM, and the concentration was 
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increased until reaching 35 µM, the treatment was 
then fixed at 35 µM, which was repeated four times. 
The cells were then permanently maintained in media 
containing only 1 µM of tamoxifen as seen in 
(Supplementary Scheme 1). The continued treatment 
with 1 µM was done as this concentration is within 
range of the serum concentrations of the sum of 
tamoxifen and its metabolites in breast cancer patients 
treated with tamoxifen [24]. Cells were labeled 50, 
35x6, and 4+1 (each group contains 9 samples) to 
represent the concentration and number of treatments 
the cells received throughout the metabolic and 
molecular studies. 

Metabolites extraction  
MCF-7 cells were grown in 100 mm* 20 mm cell 

culture dishes (Corning, USA) until 80-90% 
confluency. The media was then removed, and the 
cells were washed using a prewarmed 37 °C 
phosphate buffer solution. To quench the metabolism, 
500 µl of precooled -48 °C 100% methanol (Sigma, 
Germany) was added to the cells, which were then 
incubated for 30 minutes at -80 °C. The cells were then 
placed on dry ice and scraped, and the suspension 
was collected in a 2 ml Eppendorf tube. 500 µl of 
chloroform was added to the cells and the suspension 
was vortexed for 1 hour at 4 °C. This was followed by 
the addition of 300 µl of water and the resulting 
suspension was centrifuged at 18,500 g for 10 minutes 
at 4 °C. After centrifuging, the upper phase, which 
mainly contains polar metabolites, was transferred 
into a new 2 ml Eppendorf and the solvent was 
evaporated by a vacuum evaporator. Before NMR 
analysis, the sample was reconstituted in 50 µl of 
precooled 4 °C methanol, centrifuged at 18,500 g for 
10 minutes at 4 °C and the resulting supernatant was 
transferred into a precooled 2 ml Eppendorf and then 
stored at -80 °C [25].  

Sample preparation and measurement 
conditions for NMR 

All the NMR experiments were carried out at 
600.13 MHz for 1H detection, on BRUKER AVANCE 
NEO 600 spectrometer equipped with a cryogenic 
NMR probe to enhance the sensitivity. To achieve 
water suppression of water signal, cell culture 
samples were measured with a double watergate 
sequence with excitation sculpting [26] dissolved in 
D2O. The “Electronic Reference To access in vivo 
Concentrations” (ERETIC) technique was employed 
for the calibration of the sample spectra [27]. 

NMR-related statistical analysis  

The web server Metaboanalyst 5.0 was used to 
conduct univariate and multivariate statistical 

analyses [28, 29]. To prevent the contribution of 
dilution effects, metabolite data were mean-centered 
and the intensities of the spectral peaks of each given 
sample were normalized to the sum of all metabolite 
concentrations. The boxplots of metabolite concentra-
tions were created using the "geom_boxplot" and 
"facet_wrap" modules of R studio software. 

NMR data analysis 

Chenomx NMR suite 9.0 (Chenomx Inc., 
Edmonton, AB, Canada) was used for metabolite 
detection and quantification. Metabolite concentra-
tions were determined using DSS as a reference 
compound and reported in μM. We also used 
MetaboAnalyst v5.0 (Xia Lab @ McGill University, 
Montreal, QC, Canada) [30] to identify the metabolites 
that contribute to group separation using Partial Least 
Squares-Discriminant Analysis (PLS-DA), heat map, 
and pathway analysis. Model robustness was 
assessed using Receiver Operating Characteristic - 
Area Under Curve (ROC-AUC) analysis in 
MetaboAnalyst software. Statistical significance was 
set at p<0.05 (estimated based on t-test and one-way 
ANOVA). The metabolite concentration boxplots 
were created using the R studio software's 
"geom_boxplot" and "facet_wrap" modules. 

Gene expression assay 

Total RNA samples were extracted from 
tamoxifen resistance and tamoxifen sensitive cells 
using RNeasy® Plus Mini Kit (QIAGEN, USA). 
mRNA samples were converted to cDNA using the 
High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems™, USA). qRT-PCR CFX96 
real-time PCR (Bio-rad, USA) and SYBR® Green 
Master Mix (Bio-rad, USA) were used in gene 
expression analysis experiments with different 
primers sets of the genes encoding the primary 
enzymes involved in the metabolites found to be 
dysregulated (Supplementary Table 1). 

Kaplan–Meier Plotter  

The potential correlation of gene expression on 
patients’ overall survival was assessed using Kaplan–
Meier Plotter (www.kmplot.com) [31] among ER/PR 
positive breast cancer patients receiving tamoxifen as 
endocrine therapy. Kaplan–Meier Plotter is an open 
accessed database that allows the correlation of gene 
expression and survival of thousands of patients 
having different types of tumors including breast 
cancer. Expressed genes with p < 0.05 were 
considered significant and hazard ratios (HR) > 1 of 
significantly expressed genes were linked to poor 
prognosis and survival among breast cancer patients. 
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Results 
Metabolite profiling of the three 
tamoxifen-treated groups vs. control group  

NMR-based metabolic profiling was used to 
identify the metabolic properties of four cell lines: 
control MCF7 cells, which are tamoxifen-sensitive, 
and three tamoxifen-resistant MCF7 cell lines, by 
performing univariate and multivariate data analyses. 
41 metabolites were detected in the four groups 
(Supplementary Figure 1). The PLS-DA and heat map 
in Figure 1 show that resistant cells treated 
continuously with 1 µM tamoxifen (4+1), a 
concentration that is often measured in patients (24), 
showed different metabolic clusters compared to the 
other two resistant groups (50 and 35x6) and the 
control (tamoxifen-sensitive) group, indicating that 
they had markedly different metabolic characteristics 
(Figure 1A). Furthermore, the concentration of several 
metabolites was higher in the 4+1 group compared to 
the other two treated and control groups except for 

L-cysteine, D-glucose, L-glutamic acid, and pyruvate, 
which were lower (Figure 1B and Figure 2). Of note, 
the concentration of these four metabolites in the 50 
and 35x6 resistant groups was similar to those in the 
control group (Figure 1B and Figure 2).  

Boxplots were used to show the concentrations 
of the most significantly altered metabolites in the 
treated groups (50), (35x6), and (4+1) compared to the 
control group (Figure 2), with their respective 
p-values (Table 1). We identified a total of 18 
metabolites that are so-called marked metabolites for 
the 4+1 group (Table 1, Supplementary Figure 2), 
including taurine, L-glutamic acid, glutathione, 
L-glutamine, and xanthine. In contrast, 11 
metabolites, including L-threonine, L-valine, and 
choline, are marked metabolites for group 50 (Table 1, 
Supplementary Figure 3). Finally, L-tyrosine, 
L-leucine, L-alanine, and L-aspartic acid are among 
the 14 marked metabolites for group (35x6) (Table 1, 
Supplementary Figure 4). 

 

Table 1. Metabolites (n = 41) detected in breast cancer cells treated with tamoxifen using three protocols to establish resistance (4+1, 
50, 35x6) vs untreated cells using cryogenic probe NMR spectroscopy. Incidences represent the number of samples (9 samples in each 
group) in which the respective metabolite could be detected. Data processing was done as described in the methodological section. p‐
values are used to compare metabolite levels in the different tamoxifen treatment groups to levels in untreated cells. p‐values for 
metabolites with significantly different levels between the two groups are shown in bold and were determined by performing a t‐test using 
Metaboanalyst software. *p < 0.05, **p< 0.01, ***p < 0.001, and ****p < 0.0001. 

Metabolites 4+1 50 35x6 
L-Cysteine 1.64E-14       **** 0.31573 0.37459 
Taurine 4.756E-14     **** 0.36107 0.037432       * 
Choline 1.89E-12       **** 0.0054549      ** 2.211E-05     **** 
L-Proline 4.836E-12     **** 0.24607 0.0011115      ** 
L-Glutamic acid 6.991E-12     **** 0.37563 0.55601 
Glutathione 4.267E-11     **** 0.63693 0.2502 
Phosphorylcholine 2.162E-10     **** 0.0087274      ** 0.0005702     *** 
L-Lactic acid 4.511E-09     **** 0.010465        * 0.0012575     ** 
L-Glutamine 1.992E-07     **** 0.71639 0.71033 
Xanthine 1.048E-06     **** 0.49453 0.30562 
D-Glucose 4.961E-06     **** 0.005362        ** 0.010507       * 
Glycerophosphocholine 1.771E-05     **** 0.78459 0.34956 
L-Alanine 2.153E-05     **** 0.059341 0.025604       * 
L-Isoleucine 6.168E-05     **** 0.0003494      *** 0.0021019     ** 
Pyruvate 0.0055735     **   0.388 0.22113 
Creatine phosphate 0.027903       * 0.0001213      ***  7.261E-06     **** 
L-Methionine 0.029121       * 0.67311 0.086321 
L-Aspartic acid 0.03581         * 0.30317 0.014135       * 
Tryptophan 0.050196 0.71498 0.025093       * 
Histidine 0.11641 0.85935 0.081534 
L-Tyrosine 0.13097 0.13079 0.0014601     ** 
Fumaric acid 0.18159 0.28003 0.79872 
L-Arginine 0.18681 0.22732 0.75362 
L-Phenylalanine 0.19337 0.41619 0.26398 
Glycerol 3-phosphate 0.29278 0.066759 0.047568       * 
L-Valine 0.33961 0.0027706      ** 0.4856 
Myo-Inositol 0.38766 0.33387 0.64249 
L-Threonine 0.4278 0.0008473      *** 0.39498 
L-Leucine 0.46269 0.013605        * 0.0017004     ** 
ATP 0.47863 0.35012 0.82597 
Glycine 0.48907 0.36714 0.1938 
Succinic acid 0.49288 0.019693        * 0.052117 
Creatine 0.52339 0.20504 0.1217 
AMP 0.53587 0.036564        * 0.60668 
Acetic acid 0.5485 0.67169 0.93954 
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Metabolites 4+1 50 35x6 
ADP 0.80683 0.87673 0.94498 
L-Lysine 0.83533 0.40689 0.12504 
NAD+ 0.86299 0.82639 0.71918 
NADH 0.91812 0.9737 0.35642 
Serine 0.91853 0.41901 0.36719 
Formic acid 0.97434 0.31877 0.11075 

 

 
Figure 1. Metabolic profile displayed differential metabolic features in 3 resistance groups (4+1, 50, and 35x6) compared to control by using cryogenic probe NMR spectroscopy. (A) PLS-DA 
score plot as multivariate data analyses based on metabolomics data between three tamoxifen-treated groups (each group contains 9 samples) compared to the control group (n = 9). (B) Heat 
map presenting the 41 metabolites found in the four treatment groups. The higher values (red) reflect higher metabolite concentrations, and lower values (blue) reflect lower levels. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4052 

 
Figure 2. Metabolic changes in tamoxifen-resistant MCF7 breast cancer cells. Boxplots showing the concentrations (y-axis) of the significantly altered metabolites in control (n = 
9), compared to 50 (n = 9), 35x6 (n = 9), and 4+1 (n = 9) treatment groups analyzed by one-way ANOVA, p-value <0.05. The black bars show the respective median of a distribution, while 
the yellow triangles show the respective average. Please note that the scale of the y-axis was adapted to the concentration range and is therefore different among the different metabolites.  

 
According to univariate and multivariate data 

analyses (Figures 1 and 2), resistant cells treated 
continuously with 1 µM tamoxifen (4+1), showed a 
distinct metabolic profile compared to the other two 
resistant groups and the control group. 

Metabolite profiling of cells treated 
continuously with tamoxifen (4+1) vs. control 
untreated cells 

Significant differences in metabolic concentr-
ations were discovered in the 4+1 group when 
compared to the control. As described above, with the 
respective p-values provided (Table 1). The top 10 
significantly altered metabolites between the control 
and the 4+1 treatment group are taurine, choline, 
L-proline, glutathione, phosphorylcholine, L-lactic 
acid, L-glutamine, and xanthine, which were all 
significantly higher in 4+1 group compared to the 
control group (Figure 3). In contrast, L-cysteine and 
L-glutamic acid were found to be significantly 
decreased in the 4+1 group compared with control. 

The pathway analysis tool integrated into the 
MetaboAnalyst software was used to identify altered 
metabolic pathways based on the most significantly 
altered metabolites in the 4+1 tamoxifen-resistant cell 
line compared to the control (sensitive) cell line. 
Pathway analysis revealed that cysteine, methionine, 
taurine, glutathione, proline, and purine metabolism 
were significantly altered in the 4+1 group compared 
to the control group (Figure 4). The results of the 
metabolic pathway analysis are illustrated using a 

bubble plot, with each bubble representing a different 
metabolic pathway. The size of each bubble indicates 
the influence factor of the pathway. 

Metabolite profiling of the three different 
subtypes of treated groups  

Cells continuously treated with tamoxifen (4+1) 
exhibited significantly different changes in metabolite 
levels when compared to the cells in the other treated 
groups that received fixed concentrations of 
tamoxifen (50 and 35x6) for a specific duration of time, 
as described in the methods (Figure 5). “Area under 
the curve” (AUC) values were used to evaluate the 
ability of important metabolites to discriminate 
between groups. AUC was obtained from receiver 
operating characteristic (ROC) curves analysis based 
on the metabolite levels determined in the 
continuously treated group compared to 50 and 35x6 
treated breast cancer cells (n = 27) analyzed in this 
study. Sixteen of the 41 metabolites showed an AUC 
value higher than 0.9, while nine of the 41 metabolites 
showed an AUC value equal to 1 (Supplementary 
Table 2, Supplementary Figure 5). Based on their 
p-values (Supplementary Table 3), taurine, 
glutathione, L-lactic acid, L-glutamine, xanthine, 
L-proline, glycerophosphocholine, L-alanine, 
phosphorylcholine, choline, L-tyrosine, L-leucine, and 
L-methionine significantly increased in group (A); 
whereas, L-cysteine, L-glutamic acid, pyruvate, 
D-glucose, succinic acid, AMP, L-isoleucine, and 
creatine significantly increased in group (B). 
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Figure 3. Boxplots showing the concentrations (y-axis) of the most significantly altered metabolites found in 4+1 vs control groups. The black bars show the respective median of the 
distribution, while the yellow triangles show the respective average. The scale of the y-axis was adapted to the concentration range and is therefore different among the different metabolites. 
Boxplots are representative of n = 9 replicates. **** represents p < 0.0001 calculated using the student's t-test. 

 
Figure 4. Pathway analysis generated with the MetaboAnalyst software between 4+1 and control groups for significant metabolites (p-value < 0.05), identifying the most relevant metabolic 
pathways. The color and size of each circle are based on the p-value and pathway impact value, respectively. 

 
Figure 5. Boxplots of the concentrations of all significantly different metabolites between groups continuously treated with tamoxifen (n = 9) which was labeled (A) and group 50, 35x6 which 
was labeled (B) (n = 18). Data processing based on our raw data was performed by removing control samples and performing zero imputing. The black bar shows the median of a distribution, 
while the yellow triangle shows the average. Each box is drawn from the 25 to the 75 percentiles. p‐values of metabolites were determined with a Welch two-sample t‐test. *p < 0.05, **p< 
0.01, ***p < 0.001, and **** p < 0.0001 calculated using the students’ t-test. 
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Gene expression analysis 
Metabolic profiling showed dysregulation of 

many metabolites with glutathione, xanthine, and 
glutamine exhibiting more significant differences 
among resistant cells maintained under tamoxifen 
(4+1) and the two other resistant cell lines (50 and 
35x6). As a result, gene expression analysis of 
glutathione synthetase (GSS), glucose-6-phosphate 
dehydrogenase (G6PD), xanthine oxidoreductase 
(XDH), and glutaminase (GLS); the key enzymes 
involved in their metabolic pathways was carried out 
using RT-qPCR (Figure 6). These specific enzymes 
were selected because they catalyze the committed 
steps in the synthesis or degradation of the respective 
metabolite. The results show that GSS was 
significantly downregulated by at least 2-fold in the 
three tamoxifen-resistant cell lines compared to the 
tamoxifen-sensitive control MCF-7 cells, while the 
expression of G6PD was significantly upregulated by 
2- to 5-fold in all three treatment groups. In contrast, 
the expression of xanthine oxidoreductase (XDH) was 
significantly downregulated in cells maintained in 1 
µM tamoxifen (4+1) as well as those treated six times 
with 35 µM tamoxifen (35x6) by 13- and 3-fold, 
respectively. The third tamoxifen-resistant cell line, 
which was treated with up to 50 µM tamoxifen 
showed no significant change in XDH expression. 
Meanwhile, the expression of GLS, which encodes the 
enzyme responsible for glutamate production from 
glutamine deamination, was significantly 
downregulated in the 4+1 treatment group by 5-fold 
but was increased in the 50 and 35x6 
tamoxifen-resistance cell lines. Gene expression levels 

of GLS were correlated to the changes in the levels of 
glutamine and glutamate found in the three cell lines 
as seen in Figure 5. 

Correlation between gene expression and overall 
survival of breast cancer patients receiving tamoxifen 
as endocrine therapy extracted from GEO and EGA 
repositories using Kaplan-Meier webtool 
(Kmplot.com) [32] showed that high expression of 
G6PD and low expression of GSS and XDH are 
significantly linked to poor prognosis and decreased 
overall survival (Figure 7). Changes in GLS gene 
expression are not significantly linked to overall 
survival among patients receiving tamoxifen and are 
included in the database. As seen in Figure 7, patients 
with low G6PD gene expression had a higher survival 
rate than patients with high G6PD expression (HR = 
1.31, 1.02 – 1.67, p = 0.032). The median survival of the 
high expression group was 53.04 months while the 
median survival of the low expression group was 
91.36 months (p = 0.032). Patients with low GSS and 
XDH expression had lower survival than patients 
with high expression levels (HR = 0.72, 0.53 – 0.98, p = 
0.039) and (HR = 0.46, 0.36 – 0.59, p < 0.0001) for GSS 
and XDH, respectively. The median survival of the 
high-expression group of GSS was 173.2 months and 
the median survival of the low-expression group was 
97.25 months (p = 0.039). Meanwhile, the median 
survival of the high-expression group of XDH was 
107.43 months and the median survival of the 
low-expression group was 38 months (p < 0.0001). 
Overall, these data indicate that the expression of 
G6PD, GSS, and XDH could be further assessed to 
correlate tamoxifen treatment to patients' survival. 

 
 

 
Figure 6. Relative gene expression levels (folds) of (A) GSS, (B) G6PD, (C) XDH, and 
(D) GLS of tamoxifen-resistant cell lines in comparison to control MCF-7 cell lines. 
Folds increase and decrease are presented ± SD and one-way ANOVA was used. p* 
< 0.05, p** < 0.01, p*** < 0.001, and p**** < 0.0001. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4055 

 
Figure 7. Kaplan–Meier survival curves of G6PD, GLS, GSS, and XDH with univariate Cox scores (p-values, (HR) hazard ratios) of BC patients treated with tamoxifen using Kaplan–Meier 
Plotter. GLS shows no significant link with the survival (p > 0.1). G6PD overexpression is linked to poor prognosis (HR > 1) while downregulation of GSS and XDH is significantly linked to poor 
prognosis and decreased overall survival (HR < 1). 

 
 

Discussion 
This study was designed to monitor the 

metabolic changes in tamoxifen resistance in MCF-7 
breast cancer cell lines. There was an increase in 
glutamine, taurine, glutathione, and xanthine in the 
tamoxifen-resistant compared to sensitive cells. 
Furthermore, we observed a significant decrease in 
the branched-chain amino acids, valine and 
isoleucine, and a depletion in glutamate and cysteine 
levels. These metabolic changes were more prominent 
in cells under continuous tamoxifen treatment.  

The increase in glutamine levels and the with 
decreased glutamate mainly in resistant cells 
maintained under tamoxifen indicates increased 
synthesis of glutamine from glutamate and decreased 
glutamine deamination. This was associated with 
increased expression of glutamate-ammonia ligase 
(GLUL) together and decreased GSS expression. This 
is in agreement with our previous study in which 
tamoxifen-resistant cells were reported to have high 
GLUL levels [22], which was attributed to the 
activation of the PI3K/AKT/PTEN signaling 
pathway, which is known to increase proliferation 
and cellular invasion [33]. This was also reported in 

hepatic cells from mice treated with tamoxifen [34]. 
Glutamate is a major source of carbon and nitrogen 
for the TCA cycle and transamination reactions, 
respectively. Additionally, it is used in the 
biosynthesis of glutathione [33, 35]. Moreover, 
glutamine is an important source of amide nitrogen 
for nucleotide synthesis, and it contributes to the 
activation of the mTORC1 pathway which promotes 
mTORC1-dependant metabolic reprogramming, 
increasing the proliferation and growth of tumors 
[36–40].  

In the current work, taurine was significantly 
increased in cells under continuous treatment of 
tamoxifen. Taurine is a nonproteinogenic amino acid 
that has protective and regulatory functions in many 
tissues, including the neural, cardiac, and skeletal 
muscle. It also has known direct and indirect 
antioxidant effects in normal tissues [41], and it 
downregulates the pro-apoptotic proteins in ischemic 
reperfusion injury [42, 43]. Moreover, taurine 
interferes with mitochondria-dependent apoptosis 
and the unfolded protein response [44], it 
downregulates the p53-Chk1 pathway [45] and 
upregulates extracellular-signal-regulated kinases 
(ERK) and Wnt/β-catenin pathway [44, 46]. The 
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former increases survival by inhibiting apoptosis and 
increasing resistance to oxidative stress. Moreover, 
taurine has been shown to increase the expression of 
copper/zinc superoxide dismutase, catalase, and 
glutathione peroxidase (GPx) in B16F10 melanoma 
[47], and increase the activity of glutathione reductase 
in rats [48]. The role of taurine in cancer is unclear and 
needs further studies, as there are conflicting studies 
on its role and effect in cancer and tumorigenesis, [49]. 
There are studies demonstrating that taurine has 
pro-apoptotic effects on human colorectal cancer cells 
[50], inhibits lung metastasis in breast cancer in mice, 
and attenuates anthracene-induced breast tumori-
genesis in mice [51, 52]. On the other hand, increased 
levels of taurine were reported in retinoblastoma, 
glioblastoma, and medulloblastoma in vivo [53, 54].   

Glutathione is an important scavenger of 
reactive oxygen species. It is either synthesized from 
γ-glutamyl-cysteine and glycine by glutathione 
synthetase (GSS) or recycled from glutathione 
disulfide by glutathione reductase (GSR) using 
NADPH as a reducing agent [33]. Glutathione has a 
protective effect in normal tissues; [55] however, 
tumors also exploit this effect to protect themselves 
against oxidative stress. GSH has been associated with 
chemoresistance in many types of cancer, including 
breast, pancreatic, neuroblastoma, and glioblastoma 
[56–59]. Cancers with higher GSH levels were more 
likely to survive vascular endothelial-induced 
oxidative and nitrosative stress and metastasize at 
different sites [60]. These changes are caused by 
genetic and epigenetic changes in the tumor, and 
increased GSH was associated with epithelial- 
mesenchymal transition, local invasion, metastasis, 
and tumor survival [61, 62]. Additionally, higher GSH 
concentrations were found in tumors exhibiting 
aggressive behavior compared to less aggressive 
tumors of the same kind or normal tissue [63]. In 
breast cancer, increased GSH levels are associated 
with higher rates of metastasis, tumor growth, 
chemoresistance, and more aggressive behavior [64]. 
Prolonged treatment of neuroblastoma cell lines with 
standard chemotherapy agents, etoposide or 
doxorubicin showed increased levels and synthesis of 
GSH, increased expression of γ-glutamyl-cysteinyl 
ligase, and decreased depletion of GSH [58, 65]. 
Moreover, increased glutathione levels in 
glioblastoma were associated with higher rates of 
radiotherapy resistance when compared to cell lines 
with low GSH [66]. The high levels of GSH, associated 
with the downregulation of GSS and increased G6PD 
expression, which is the main source of NADPH, is an 
indicator of a switch from GSH synthesis to 
glutathione recycling. This effect is more prominent in 
cells under continuous tamoxifen treatment. 

The role of xanthine in resistance development is 
still not understood and more studies are needed to 
understand its role and the pathways associated with 
it, as it may be a potential marker for treatment 
resistance in different cancers, especially breast 
cancer. Xanthine is a purine base that is found in the 
body as a product of purine degradation. Xanthine is 
further oxidized by xanthine dehydrogenase (XDH) to 
form urate [67]. However, xanthine could also be 
salvaged through the purine salvage pathway and 
used as a backbone for the synthesis of purine 
nucleosides, guanosine, and adenosine [68]. Herein, 
an increase in xanthine levels and a decrease in XDH 
expression in cells under continuous tamoxifen 
treatment was noted indicating a switch from 
xanthine oxidation to the purine salvage pathway and 
thus increased purine nucleoside synthesis. Increased 
G6PD activity, which is the gatekeeping enzyme of 
the pentose phosphate pathway [69], and xanthine 
suggest an increased turnover rate for purine 
nucleosides, which may arise from the increased DNA 
damage from continuous exposure to tamoxifen. This 
hypothesis is supported by the fact that these changes 
are only observed in cells under continuous treatment 
and not the other cell lines. In another study, 
glioblastoma cell lines that had higher xanthine and 
hypoxanthine levels were more likely to develop 
radiotherapy resistance when compared to cell lines 
with lower xanthine levels [66]. It was also previously 
shown that low XDH expression in breast cancer 
patients was associated with a lower disease-free 
survival (DFS) that was almost half the median 
survival time of patients with high XDH expression.  

Conclusion 
Metabolic changes in tamoxifen-resistant MCF-7 

cell lines were manifested with the increase of 
glutathione, xanthine, and other metabolites involved 
in antioxidant pathways along with their 
dysfunctional genes' expression. The significant 
increase in taurine, xanthine, and glutathione in 
tamoxifen-resistant cells indicates an increase in 
antioxidative activity in the cells, especially in the cell 
line under continuous tamoxifen treatment. A 
correlation of XDH and GSS genes’ expression and 
poor prognosis among breast cancer patients treated 
with tamoxifen was seen. Further investigation of 
xanthine and glutathione's role in tamoxifen-resistant 
cells would highlight their prognostic value among 
BC patients. 
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