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Abstract 

Background: Matrix metalloproteinases (MMPs) are involved in many processes of tumour progression 
and invasion. However, few studies have analysed the effects of MMP expression patterns on endometrial 
cancer (EC) development from the perspective of the tumour microenvironment (TME). we quantified 
MMP expression in individual by constructing an MMP score and found MMP score effectively predict the 
prognosis of EC patients.  
Methods: MMPs expression profiles were determined based on the differential expression of 12 
MMP-related regulators. Principal component analysis (PCA) was used to construct an MMP scoring 
system which can quantify the MMPs expression patterns individually of EC patients. Kaplan–Meier 
analysis, the log-rank test, and time-dependent receiver operating characteristic (ROC) curve analysis 
were used to evaluate the value of MMPs expression in predicting prognosis. Single-cell RNA sequencing 
(scRNA-seq) dataset was used to verify correlation between MMPs and progression of EC. Gene 
Ontology (GO) analysis was used to investigate the pathways and functions underlying MMPs expression. 
Tumour immune dysfunction, exclusion prediction, and pharmacotherapy response analyses were 
performed to assess the potential response to pharmacotherapy based on MMPs patterns.  
Results: We downloaded the MMPs expression data, somatic mutation data and corresponding clinical 
information of EC patients from the TCGA website and ICGC portal. Based on the MMP-related 
differentially expressed genes (DEGs), the MMP score was constructed, and EC patients were divided 
into high and low MMP score groups. There was a positive correlation between MMP score and 
prognosis of EC patients. Patients with high MMP scores had better prognosis, more abundant immune 
cell infiltration and stronger antitumoor immunity. Although prognosis is worse with the lower group 
than the high, patients with low MMP score had better response to immunotherapy, which means they 
could prolong the survival time through Immunological checkpoint blockade (ICB) therapy. scRNA-seq 
analysis identified significant heterogeneity between MMP score and classical pathways in EC. 
Conclusion: Our work indicates that the MMP score could be a potential tool to evaluate MMP 
expression patterns, immune cell infiltration, response to pharmacotherapy, clinicopathological features, 
and survival outcomes in EC. This will provide the more effective guide to select immunotherapeutic 
strategies of EC in the future. 
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1. Introduction 
Endometrial cancer (EC) has the second highest 

incidence among types of gynaecologic cancer [1]. 
Ninety percent of women complain that they suffer 
the symptom of postmenopausal bleeding (PMB), 
however, only around ten percent of them have a 
chance of developing into EC [2], which suggests that 
PMB is not a specific indicator of EC diagnosis. 
Similarly, laboratory tests for evaluation of EC, such 
as cytology and transvaginal ultrasonography, lack 
specificity. Thus, there is a necessity for accurate 
screening tools to identify early EC patients. Recently, 
numerous studies have demonstrated a correlation 
between matrix metalloproteinases (MMPs) and EC 
[3, 4]. Therefore, the functional roles and regulatory 
mechanisms of MMPs in EC need to be further 
investigated, and it is crucial to elucidate the 
association between MMPs and prognosis of EC.  

The tumour microenvironment (TME) is the 
cellular environment in which tumours or tumour 
stem cells exist, including tumour cells, adipocytes, 
fibroblasts, lymphocytes, dendritic cells, cancer- 
associated fibroblasts (CAF), and tumour vasculature, 
and it is widely associated with tumourigenesis [5, 6]. 
These cells interact with the circulatory and lymphatic 
systems to promote tumourigenesis and cancer 
progression. CAF of different origins contribute to the 
heterogeneity of tumour cells and exert functional 
effects on tumours via various mechanisms [7-9]. 
Oncogenic signalling mediates tumour immune 
escape, including decreased effective immunocyte 
infiltration and function and increased levels of 
immunosuppressive cells in the TME [10-13]. The two 
important stages of tumour development are 
degradation of the basement membrane and invasion 
of tumour cells into the surrounding tissue. Metastasis 
of cancer cells is a complex multistep process, 
involving changes in intercellular adhesion, 
degradation of the extracellular matrix (ECM) and 
basement membrane, detachment of tumour cells in 
situ, and extensive infiltration of proteolytic enzymes 
into lymphatic or blood vessels [5, 6]. MMPs are 
diverse enzymes involved in ECM, which are 
primarily responsible for the reshaping of tissue by 
degrading collagen IV and laminin [8, 9]. Various 
MMPs are produced by tumours and tumour-related 
cells. In the TME, MMP-1, MMP-2 and MMP-3, 
secreted by fibroblasts, are essential mediators of 
tumour angiogenesis and progression. MMP-9 
secreted by neutrophils, mast cells, and macrophages 
degrades the main components of the basement 
membrane to promote tumour invasion [14, 15]. 
Fibroblasts and tumour cells secrete MMP-13, MMP-7, 
and MMP-14. MMP-13 promotes tumour 
angiogenesis [16], MMP-7 degrades HB-EGF and 

E-cadherin in the basement membrane [17, 18], and 
MMP-14 degrades CD-44 and electron-cadherin in the 
basement membrane [19], which together play a vital 
role in tumour invasion. MMP-10 is highly expressed 
in squamous cells and promotes the recruitment of 
infiltrating cells by remodelling ECM. MMP-10 can 
also upregulate the expression of MMP-7, MMP-9, 
and MMP-13, which are critical for tumour 
progression [20]. Recently, Zhang et al. reported 
significantly higher MMP-7 expression in ovarian 
cancer tissue than in normal ovarian tissue [21]. To 
summarise, MMPs play an important role in 
regulating tumour metastasis.  

However, it is still unclear whether the 
expression levels of MMPs are related to the 
occurrence and progression of EC, and whether they 
have a predictive effect on the prognosis of EC. In this 
study, we used The Cancer Genome Atlas (TCGA) 
and International Cancer Genome Consortium (ICGC) 
databases to analyse differentially expressed genes 
(DEGs) of MMPs. Unsupervised clustering was used 
to identify two expression patterns (MMP cluster A 
and MMP cluster B). We performed a series of 
correlation analysis of the infiltration of immune cells 
under the two patterns and found that MMP clusters 
A and B were highly consistent with immune rejection 
and immune inflammation phenotypes, respectively. 
Furthermore, in consideration of individual 
heterogeneity, we constructed the MMP score to 
predict prognosis, which is of great significance for 
guiding the clinical treatment of EC patients. 

2. Methods 
2.1 EC dataset source and preprocessing  

We downloaded the MMPs expression data, 
somatic mutation data and corresponding clinical 
information of EC patients from the TCGA website 
(https://portal.gdc.cancer.gov/projects/TCGA-UCE
C) and ICGC portal (https://dcc.icgc.org/ 
projects/UCEC-US) up to July 31, 2023. In total, 
eligible TCGA-UCEC (The Cancer Genome 
Atlas-Uterine Corpus Endometrial Carcinoma) and 
UCEC-US (Uterine Corpus Endometrial Carcinoma- 
TCGA, US) were gathered in this study for further 
analysis. The gene expression profiles were 
normalized using the scale method provided in the 
‘limma’ package (version 3.58.1), and normalized read 
count values were used. 

2.2 Unsupervised clustering and consensus 
clustering analysis  

A total of 12 MMP-related genes were extracted 
from TCGA datasets to identify the different 
expression patterns mediated by 12 MMPs. The 12 
MMPs were MMP2, MMP-3, MMP-10, MMP-9, 
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MMP-11, MMP-12, MMP-13, MMP-15, MMP-19, 
MMP-23B, MMP-24, and MMP-28. Unsupervised 
clustering analysis was used to identify distinct 
MMP-related gene patterns based on their expression, 
and patients were classified for further analysis. The 
number of clusters and their stabilities were 
determined using a consensus clustering algorithm. 
The ‘ConsensusClusterPlus’ package (version 1.66.0) 
was used to perform the above steps and 1000 
repetitions were conducted to guarantee the stability 
of the classification.  

Geneset variation analysis (GSVA) enrichment 
analysis, conducted using the ‘GSVA’ package 
(version 1.50.0), was performed to investigate the 
differences in biological processes between MMP 
patterns. GSVA, a non-parametric and unsupervised 
method, is commonly employed to estimate the 
variation in pathways and biological process activities 
in the samples of an expression dataset. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
is a useful tool to search mediated mechanisms and 
pathway [22]. The gene sets of ‘c2.cp.kegg.v6.2. 
Symbols’ were downloaded from the MSigDB 
database for analysis. Adjusted P-values of <0.05 were 
considered to indicate statistical significance. The 
‘clusterProfiler’ package (version 4.1.0) was used to 
perform functional annotation of MMP-related genes 
with a cut-off value of false discovery rate <0.05.  

2.3 Identification of DEGs between MMPs gene 
distinct phenotypes and TME cell infiltration 
estimation  

To identify MMP-related genes, we classified the 
patients into two distinct MMP patterns based on 
MMP gene expression. The empirical Bayesian 
approach of the ‘limma’ package was used to identify 
DEGs between different patterns. The significance 
criteria for determining DEGs were set at an adjusted 
P value of < 0.001. We used a single-sample gene set 
enrichment analysis (ssGSEA) algorithm to quantify 
the relative abundance of each type of cell infiltration 
in the EC TME [23]. The gene set for marking each 
TME infiltrating immune cell type was obtained from 
the study by Charoentong, which stored various 
human immune cell subtypes, including activated 
CD8 T cells, activated dendritic cells, macrophages, 
natural killer T cells, and regulatory T cells. The 
enrichment scores caculated by ssGSEA, were used to 
represent the relative abundance of each 
TME-infiltrating cell in each sample.  

2.4 Design and generation of an MMP score 
The MMP gene signature, a set of scoring 

systems termed the MMP score, was constructed to 
evaluate the MMP patterns in individual patients 
with EC. The MMP gene signature was established as 

follows:  
First, we identified DEGs from two MMP 

clusters which were normalized, and extracted the 
overlapping genes. By adopting an unsupervised 
clustering method to analyse overlapping DEGs, 
patients were classified into three groups for further 
analysis. A consensus-clustering algorithm was used 
to define the number of gene clusters and their 
stability.  

Second, we performed prognostic analysis for 
each gene in the signature using a univariate Cox 
regression model. Genes with significant prognostic 
values were extracted for further analysis. We 
conducted principal component analysis (PCA) to 
construct an MMP-relevant gene signature. Principal 
components 1 and 2 were selected as signature scores 
[24].  

MMP score = Σ(PC1i+PC2i) 

Where i is the expression of MMP 
phenotype-related genes.  

2.5 Assessing the response to immunotherapy 
and drug sensitivity 

Tumor Immune Dysfunction and Exclusion 
(TIDE) is a computational method that models 
tumour immune evasion. We used TIDE to predict the 
response to Immunological checkpoint blockade (ICB) 
in different MMP score groups (http:// 
tide.dfci.harvard.edu/). The ‘limma’ package was 
used to calculate TIDE scores in different MMP score 
groups, and the ‘pRRophetic’ package was used to 
analyse the expression profile of the drug sensitivity 
analysis.  

2.6 Correlation between the MMP gene score 
and other related biological processes or clinic 
features 

We performed a correlation analysis to examine 
the association between the MMP gene signature and 
some related biological pathways or clinical features, 
including (1) immune-checkpoints such as CD 44, CD 
274 and PDCD1; (2) microsatellites, such as 
microsatellite-stable (MSS), microsatellite instability- 
low (MSI-L), microsatellite instability-high (MSI-H); 
(3) tumour mutational burden (TMB); (4) age; (5) 
tumour grade; (6) several drugs including 
thapisgargin, doxorubicin, rapamycin, nilotinib and 
temsirolimus; (7) ESTIMATES score; (8) immune 
score;  (9) stromal score; (10) tumour purity.  

2.7 Immunohistochemistry of six samples and 
Quantitative real-time polymerase chain 
reaction (qRT-PCR) 

Endometrial tissue samples were collected from 
three EC patients and three normal women 
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respectively in the First Hospital of Shanxi medical 
University. We selected samples based on the findings 
of histopathology, which was performed by a 
pathologist with More than two years of clinical 
experience. To improve accuracy of diagnosis for 
endometrial tissue, forceps were used to remove two 
additional pieces of tissue (approximately 5 mm 
each). EC patients were included with histologically 
proven endometrial carcinoma, but normal women 
were included with normal endometrial tissue using 
the same methods. Additionally, following samples 
were excluded: (1) history of hysterectomy; (2) 
pregnancy; (3) combined with other site malignancies; 
(4) severe cardiovascular and cerebrovascular 
diseases; (5) no prior chemoradiotherapy or 
immunotherapy. This study was approved by the 
ethics committee (number: 2021-K-K221) and all 
enrolled patients signed informed consent. 

We performed qRT-PCR after collection of 
samples. Firstly, the tissue was washed with 
physiological saline and placed in a solution 
containing RNA preservation and tissue fixation. 
Secondly, samples were stored overnight in a 4°C 
refrigerator and then transferred to a -20°C 
refrigerator for storage at room temperature for 
hematoxylin and eosin samples. Thirdly, total RNA 
was extracted from normal and EC tissue using 
TRlzol reagent (Invitrogen) according to the 
manufacturer's instructions. The primers were 
synthesized by Sangon Biotech (Shanghai, China). 
The housekeeping gene GADPH was used as an 
internal control. The primers used are listed as 
follows: MMP-3 forward, 5'-GGTGAGGACACCAG 
CATGAA-3' and reverse, 5'-TCAGGGGGAGTCCA 
TAGAG-3'; MMP-10 forward, 5'-ACAAGGATCT 
TCCCAGCAAT-3' and reverse, 5'-AGGAGCTGAAG 
TGACCAACG-3'; MMP-11 forward, 5'-GATCGACT 
TCGCCAGGTACT-3' and reverse, 5'-TTTCACCGTC 
GTACACCCAG-3'; MMP-12 forward, 5'-TTTCACC 
GTCGTACACCCAG-3' and reverse, 5'-TTTCCCACG 
GTAGTGACAGC-3'; MMP-13 forward, 5'-ATGCAG 
CAAGCTCCATGACT-3' and reverse, 5'-ATGCAGC 
AAGCTCCATGACT-3'; MMP-19 forward, 5'-CCAG 
TAGCGGTCACCTTTGA-3' and reverse, 5'-AGTACC 
CGGAGCCCCTTAAA-3'. All reactions were 
conducted on Roche LightCycler 96PCR Machine 
(Roche, Mannheim, Germany) using the following 
cycling parameters: step 1: denaturation at 94°C for 30 
seconds; step 2: 40 cycles of 94°C for 5 seconds and 
60°C for 30 seconds. Gene expression was calculated 
using the ΔΔCt method. All data represent the 
average of three replicates. 

2.8 Single-cell RNA sequencing (scRNA-seq) 
dataset processing and analysis 

ScRNA-seq dataset was performed on samples 
of a normal and an EC patients’ endometrial tissue. 
The inclusion and exclusion criteria are the same as in 
section 2.7. scRNA-seq data preprocessing raw reads 
in the .fastq files of human endometrial cells were 
processed in the Cell Ranger Software Suite (10x 
Genomics Cell Ranger 4.0.0) using refdata-gex- 
GRCh38-2020-A as reference to map reads on the 
human genome (GRCh38/hg38), and generate the 
unique molecular identifier (UMI) matrices [25]. The 
Cell Ranger outputs were imported into Seurat by the 
‘Read10X’ function [26]. Among each sample, cells 
with UMI counts above upper 10% are removed. Then 
cells with fewer than 500 UMI counts detected or 
>40% mitochondrial UMI counts were filtered out. 
Finally, genes expressed in less than 10 cells were also 
removed. The ‘Seurat’ package (version 4.0) was 
applied in the quality control procedure. To eliminate 
differences in gene expression between cells based on 
count data, a global scaling normalization method, 
LogNormalize, was applied to normalize the 
measurements of characteristic expression per cell as 
well as the total expression. Data were normalized 
using the ScaleData function in the ‘Seurat’ package 
(version 4.0). The data were scaled according to a 
linear transformation to ensure that each gene was 
given the same weight, with a mean of 0 and a 
variance of 1. To reduce the computational burden 
and noise in the data, PCA was used for initial 
dimensionality reduction. The annotated information 
for each cell in the dataset reported was visualized 
using uniform manifold approximation and 
projection. K-nearest-neighbour graphs were 
constructed using the FindNeighbors function based 
on the Euclidean distance in the PCA space, whereas 
cells were clustered using the Louvain algorithm. The 
annotated information for each cell in the dataset 
reported was visualized using uniform manifold 
approximation and projection (UMAP). 

2.9 Statistical analysis 
Data were analysed using R (version 3.6.1) and R 

Bioconductor packages. One-way analysis of variance 
(ANOVA) and the Kruskal–Wallis test were used to 
compare the differences among three or more groups. 
Spearman’s and distance correlation analyses were 
used to calculate the correlation coefficients between 
the expression of MMP regulators and the infiltrating 
immune cells. The ‘survminer’ package (version 0.4.7) 
was used to determine the optimal cut-off point of the 
MMP score for predicting prognosis, and patients 
were divided into high and low MMP score groups. 
Survival curves were generated using the Kaplan–
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Meier method, and log-rank tests were used to 
identify the significance of differences. A univariate 
Cox regression model was used to calculate the 
Hazard Ratios (HRs) for MMP regulators and MMP 
phenotype-related genes. Multivariate Cox regression 
analysis was used to evaluate the independent 
prognostic factors. The specificity and sensitivity of 
the MMP score were assessed using a receiver 
operating characteristic curve (ROC), and the area 
under the curve was quantified using the ‘pROC’ 
package (version 1.78.0). Waterfall plots representing 
the mutation landscapes of the high and low MMP 
score groups were created using the waterfall 
function of ‘maftools’ package (version 2.18.0). All 
tests were bilateral, and P < 0.05 was considered 
statistically significant. Power calculations were 
performed using ‘rstatix’ package (version 0.7.2) at a 
significance level of 0.05. 

3. Results 
3.1 MMPs genetic variation and the expression 
landscape in EC 

In this study, to investigate the relationship 
between MMPs CNV and expression, we 
systematically profiled the prevalence of the MMPs 
CNV and somatic mutations in EC. Investigation of 
CNV alteration frequency showed prevalent CNV 
alterations in 12 regulators (Figure 1A). MMP-23B, 
MMP-24, MMP-2 and MMP-28 showed CNV 
deletions, but other genes expressed widespread CNV 
amplification. The chromosomal locations of the 
MMPs are shown in Figure 1B. The results showed 
that a change in CNV may be the main factor leading 
to the disruption of MMPs expression. There were 
significant differences in the expression levels of the 
MMPs between patients with EC and normal controls 
(Figure 1C and Supplementary Figure 1). The 
correlation network diagram depicted the 
relationship between MMP interactions and further 
confirmed the ubiquitous correlation between the 12 
MMPs (Figure 1D). We examined the Pearson 
correlation between the 11 MMPs associated with EC 
using Spearman’s correlation analysis and found a 
positive correlation among MMPs (Figure 1E). To 
explore the relationship between biological 
behaviours and the genes contained in the CNV in EC, 
the KEGG and GO functional enrichment were 
performed. The results showed that those genes were 
enriched in metalloendopeptidase activity, 
metallopeptidase activity, endopeptidase activity, and 
IL-17 signalling pathway (Supplementary Figure 2A 
and 2B). In the TCGA cohort, we categorised a series 
of patients with different MMP expression patterns 
according to the expression of 12 MMPs. Two distinct 

expression patterns were identified using 
unsupervised clustering (Figure 1F). These patterns 
were named MMP clusters A and B according to the 
results of PCA (Figure 1G). Prognostic analysis of the 
two MMP expression subtypes revealed that MMP 
cluster B expressed more prominent survival 
advantage than cluster A (P = 0.020) (Figure 1H). To 
further explore the characteristics of MMP expression 
patterns, we conducted unsupervised clustering of 11 
MMP regulators in TCGA cohort, including 
demographic and clinical data such as age, clinical 
stage, and survival status. The heat map not only 
revealed the characteristics of different clinical traits 
in the two MMP expression patterns but also their 
correlation with the expression of MMP regulators. 
There was a significant difference in the MMP-related 
gene transcriptional profiles between the two MMP 
expression patterns; most MMP regulators were 
downregulated in cluster A but MMPs were highly 
expressed in cluster B (Figure 1I, J).  

The biological behaviours of MMPs were 
analysed using KEEG enrichment based on 
TCGA-UCEC and UCEC-US cohorts. The KEGG 
pathways of MMP cluster A were significantly 
enriched in ‘drug metabolism cytochrome P450’, and 
‘maturity onset diabetes of the young’. Many KEGG 
pathways of MMP cluster B were significantly 
enriched, such as the ‘neurotrophin signalling 
pathway’, ‘renal cell carcinoma’, ‘chronic myeloid 
leukaemia’, and ‘pancreatic cancer’. To further 
investigate the potential biological behaviour of MMP 
gene patterns, we performed GO enrichment analysis 
for these gene sets. Notably, the KEGG pathways of 
the MMP cluster B in GO terms were profuse such as: 
‘negative regulation of tyrosine phosphorylation of 
stat protein’, ‘kinase regulator activity’, ‘regulation of 
protein dephosphorylation’, and ‘regulation of 
dephosphorylation’ (Figure 1K, L).  

3.2 Generation of MMP gene signatures and 
exploration of its clinical immune relevance 

To investigate the potential biological behaviour 
of each MMP expression pattern, we identified 468 
DEGs associated with the MMP phenotypes (Figure 
2A). To further validate the regulatory mechanisms of 
MMPs, we performed a consistent clustering analysis 
of the screened genes, which revealed three distinct 
MMPs genomic phenotypes in contrast to the 
clustered grouping of MMP expression patterns. We 
named three clusters as MMP gene clusters A, B, and 
C (Figure 2B). To explore the correlation between 
MMP expression genomic phenotypes, the clinical 
traits and biological behaviours of EC patients, 
unsupervised clustering analysis of MMP 
phenotype-related DEGs and clinical traits, such as 
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age, clinical stage, and survival status, was conducted. 
Three distinct MMP gene clusters were identified, and 

403 patients with EC were divided into three different 
genomic subtypes.  

 

 
Figure 1. MMPs genetic variation and expression landscape in EC. (A) The CNV variation frequency of MMPs from TCGA-UCEC and UCEC-US cohort. The height of the 
column represents the alteration frequency. The deletion frequency, green dot; The amplification frequency, red dot. (B) The location of CNV alteration of MMPs on 23 
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chromosomes using TCGA-UCEC. The deletion frequency, blue dot; The amplification frequency, red dot. (C) Expression heat map of the 11 MMPs in normal and EC samples 
in TCGA-UCEC cohort. Tumour, red; Normal, blue. (D) The interaction of expression on 11 MMPs in EC. (E) The Pearson correlation among 11 MMPs. The positive correlation 
is marked with red, and negative correlation is marked with blue. The size of circle represents the absolute value of correlation coefficients. (F) Consensus matrices of the 
significant MMPs for k = 2. (G) Principal component analysis for the transcriptome profiles of MMP expression patterns, showing a remarkable difference in the transcriptome 
between different expression patterns. (H) Survival difference among two MMP expression patterns (P = 0.020, Kruskal–Wallis test). MMP cluster-A, yellow; MMP cluster-B, blue. 
(I) Unsupervised clustering of 11 MMP regulators in the TCGA-UCEC cohort identified a significant difference in the expression of regulators among the two expression patterns. 
The MMP clusters, TCGA project, age, sex, clinical stage, and survival status were used as patient annotations. Red, high expression of regulators; blue, low expression of 
regulators. (J) Differences of 11 MMPs gene expression between MMP cluster A and MMP cluster B. MMP cluster-A, blue; MMP cluster-B, yellow, the upper and lower ends of 
the boxes represent the interquartile range of values. The lines in the boxes represent the median value, and black dots showed outliers. The asterisks represented the statistical 
P value (*P < 0.05; **P < 0.01; ***P < 0.001). (K) The biological behaviour between these different MMPs expression patterns were analysed by KEEG enrichment using 
TCGA-UCEC and UCEC-US cohort; red represents activated pathways and blue represents inhibited pathways. (L) GO analysis showing the Cellular Component, Molecular 
Function and distinct biological processes in in distinct MMP cluster expression patterns using TCGA-UCEC and UCEC-US cohort. The heatmap was used to visualize these 
biological processes, and red represents activated pathways and blue represents inhibited pathways. MMP, matrix metalloproteinases; EC, endometrial cancer; CNV, copy 
number variation; TCGA-UCEC, The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma; UCEC-US, Uterine Corpus Endometrial Carcinoma-TCGA, US; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology. 

 
As shown in the heatmap, the three distinct gene 

clusters were characterized by different signature 
genes, and there were more downregulated genes in 
Cluster A than in the other gene clusters (Figure 2C 
and 2E). These results demonstrated that two MMP 
expression patterns were present in ECs and were 
closely related to the clinicopathological 
characteristics. Survival analysis revealed significant 
differences among the three gene clusters (P = 0. 033); 
EC patients in gene cluster C were associated with 
better prognosis. In contrast, patients in Cluster A had 
a poorer prognosis (Figure 2D). The difference in 
MMP gene expression between clusters A, B, and C is 
shown, where the majority of MMP genes were highly 
expressed in cluster C (Figure 2E). This suggested the 
existence of two distinct MMP expression patterns in 
EC. We performed GO analysis of different MMP 
gene clusters and found that they were significantly 
enriched in the ECM, collagen, and extracellular 
structural tissue (Figure 2F). Above analyses were 
based on the entire cohort. To further explore the 
heterogeneity and complexity of MMP expression, we 
constructed a set of scoring models based on these 
phenotype-related genes and called the MMP score, 
which conduced to quantify the MMP expression in 
individual tumour cells and to predict treatment 
response and prognosis of EC patients. The Kruskal–
Wallis test revealed associations not only between the 
MMP clusters and MMP score, but also between the 
MMP gene clusters and MMP score. Next, we sought 
to determine the value of the MMP score in predicting 
patient prognosis. Patients were divided into the low 
or high MMP score group using a cut-off value of P < 
0.05. Kaplan–Meier curves showed that patients with 
high MMP scores had a significant survival benefit (P 
< 0.05) (Figure 2G). Compared to the other clusters, 
MMP cluster A showed a significantly lower MMP 
score, whereas MMP cluster B showed a high median 
score (P < 0.05) (Figure 2H). Among three gene 
clusters, MMP gene cluster C had the highest median 
score, whereas MMP gene cluster A had the lowest 
(Figure 2I). MMP cluster B focused mainly on MMP 
gene clusters B and C, had higher MMP score and 
proportion of patients at an advanced clinical stage 

(Figure 2J).  
In addition, we observed significantly different 

levels of immune cell infiltration in the two MMP 
clusters. To investigate the role of MMP expression in 
immune cell infiltration in the TME, we first 
compared immune cell characteristics among 
different MMP clusters. The two types of MMP 
clusters were significantly correlated with infiltration 
of the activated dendritic cells, activated CD4+ T cells, 
eosinophilna, gamma delta T cells, immature 
dendritic cells, macrophagena, natural killer cells, 
regulatory T cells, and type II T helper cells. MMP 
cluster B is remarkably abundant in innate immune 
cells, including immature dendritic cells, activated 
CD4+ T cells, natural killer cells, and type II T helper 
cells (Figure 2K). Considering the role of immune cell 
infiltration in tumour occurrence and development 
and its prognostic impact, we analysed the correlation 
between survival and the ssGSEA scores of 22 types of 
immune cells. As indicated by the heatmap, there was 
no significant correlation between survival status and 
the ssGSEA score of immune cells other than plasma 
cells (Supplementary Figure 2C). Further analysis by 
ssGSEA revealed that different MMP scores were 
significantly associated with high and low levels of 
immunological function and immune infiltration in 
the tumour tissue (Figure 2L, and Supplementary 
Figure 2D). Therefore, there was a remarkable 
difference of immune cell expression with MMP 
clusters and MMP score. The high MMP score group 
generally had higher immune cell scores, including 
those of mast cells, T helper cells, type I helper cells, 
and regulatory T cells.  

3.3 The MMP score activates immune 
infiltration  

To better characterise the correlation between 
immune cells and the MMP score, we examined the 
specific correlation between each TME-infiltrating cell 
type and the MMP score using Spearman correlation 
analysis, which showed a strong correlation of the 
majority in Figure 3A. Our study showed that TME 
immune cell infiltration was significantly increased in 
tumour with high MMP scores, showing a significant 
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positive correlation with follicular helper T cells, CD4 
memory activated, naive B cells, and activated 

dendritic cells (Figure 3B, C).  

 

 
Figure 2. Construction of MMP gene signatures and functional annotation. (A) Four hundred and sixty-eight MMP-related DEGs between two MMP clusters are shown in the 
Venn diagram. (B) Three different genomic subtypes identified by unsupervised clustering based on the overlapping MMP phenotype-related DEGs (MMP gene cluster A, MMP 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4028 

gene cluster B, and MMP gene cluster C). (C) Unsupervised clustering of overlapping MMP phenotype-related DEGs identified three significantly different genomic subtypes. (D) 
survival difference among three MMP gene clusters (P = 0.033, Kruskal–Wallis test). Blue, MMP gene cluster A; yellow, MMP gene cluster B, and red, MMP gene cluster C. (E) 
Differences in the gene expression of 11 MMPs between MMP cluster A, MMP cluster B, and MMP cluster C. The thick line represents the median value. The bottom and top of 
the boxes were the 25th and 75th percentiles (interquartile range). The statistical difference of three gene clusters was compared through the Kruskal–Wallis H test. (F) The GO 
enrichment analysis is based on the overlapping MMP phenotype-related genes. The colour depth of the bar chart indicates the number of genes enriched. The length of the bar 
chart indicates the count of genes enriched. BP, biological process; CC, cellular component; MF, molecular function. (G) Survival analysis based on the MMP score patient groups 
in the TCGA cohort (Log-rank test, P < 0.003). (H) Differences in the MMP score among the two MMP clusters in the TCGA UCEC cohort (P < 0.001, Kruskal–Wallis test). (I) 
Differences in the MMP score among the three MMP gene clusters in the TCGA UCEC cohort (P < 0.001, Kruskal–Wallis test). (J) Sankey diagram demonstrating the relationship 
between MMP cluster, MMP gene cluster, MMP score, and survival status. (K) Correlation between immune cells and the MMP score. Infiltrating immune cell analysis based on 
the MMP cluster. The abundance of infiltrating immune cells was different among the two MMP clusters. (L) Differences in immune infiltrating cells between high MMP score and 
low MMP score groups in the ssGSEA. Blue, low MMP score group; red, high MMP score group. DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas; ssGSEA, 
single-sample gene set enrichment analysis.  

 
Upon investigation of the correlation between 

the MMP score and human leukocyte antigen (HLA) 
related-molecules, we found that the MMP score 
showed a significant positive correlation with 
immune checkpoints (Figure 3D, Supplementary 
Figure 3 and 4). Among them, CD274 and ICOS 
showed the most significant positive correlation 
(Figure 3E, F). In addition, we found that different 
types of HLA were positively correlated with the 
MMP score (Figure 3G), thereinto, HLA-E and HLA-F 
being the most prominent (Figure 3H, I). This shows 
that the MMP score can positively regulate many 
immune checkpoints in EC, such as HLA molecules 
and interleukins. To investigate the role and functions 
of immune cells in EC, we examined the association 
between MMP scores and immune cells using linear 
regression analysis. Significant positive correlations 
were observed, such as CD4+ memory activation in T 
cells. Most immune checkpoints, such as CD276, 
TNFRSF9, CD274 and so on, were significantly 
different. For immune regulation, we found a 
correlation between the MMP score and interleukins 
(Figure 3J), thereinto TLSP being the most significant 
(Figure 3K). These results demonstrated that the MMP 
score directly positively regulates the immune 
function of T cells. Subsequently, we measured 
mRNA expression to further explore the relationship 
between the MMP score and stem-like properties of 
ECs tumour cells (Figure 3L). The MMP score was 
significantly negatively associated with stem cell 
mRNAs, indicating that a higher MMP score is closely 
correlated with lower tumour stem cell activity and a 
higher degree of tumour differentiation. All of the 
above results show that the MMP expression of EC 
play a significant role in immunologic function and 
immune infiltration.  

3.4 Clinical features of the MMP expression 
patterns 

We used the MMP score to systematically 
evaluate EC in terms of clinical characteristics 
including age, clinical stage, and fustat status. Based 
on these results, we performed a survival analysis to 
explore the distribution of survival status between 
patients with high and low MMP scores. In the low 
MMP score group, 81% of patients were alive and 19% 

were dead, and in the high MMP score group, 92% of 
patients were alive and 8% were dead (Figure 4A). It 
was showed significant differences (P = 0.044) 
between scores and survival status in Figure 4B. In 
addition, we analysed the correlation between MSI 
and MMP scores, found that patients in the high MMP 
score group had a higher proportion of MSI-H (Figure 
4C). We observed an elevated proportion of patients 
with an advanced clinical grade in the high-scoring 
group (Figure 4D). Patients with G1 or G2 grade had 
lower MMP scores than those with G3 grade (Figure 
4F). In addition, we also calculated the MMP score 
among patients of different ages and found a 
significant difference between patients <65 and ≥65 
years. Thereinto, a high MMP score was also 
significantly correlated with the patients’ age, 
especially in patients ≤65 with a better survival 
prognosis (Figure 4G, I). To further assess the 
prognostic value of the MMP score in the different 
subgroups, we performed Kaplan–Meier analyses 
(Figure 4E, H). We found that the MMP score 
exhibited prognostic power in various subgroups. 
Among women, those younger than 65 years, and 
those with G3 disease, the high MMP score group had 
a better prognosis than the low MMP score group. 
These results demonstrate that MMP score has the 
potential to act as a biomarker for assessing clinical 
characteristics and predicting prognosis in patients 
with EC. To better demonstrate the features of the 
MMP signature, we also verified the correlation 
between the TME-infiltrating cells and the MMP score, 
which showed a positive relationship. A positive 
correlation between the TMB and MMP scores in the 
three gene clusters is shown in Figure 4J (R = 0.12, P = 
0. 023). We divided the patients with EC into two 
categories: L-TMB and H-TMB. Kaplan–Meier curves 
revealed that the H-TMB had the longer survival (P = 
0.023) (Supplementary Figure 5A). Next, we evaluated 
the survival among EC patients with TMB and MMP 
scores. Based on previous results, we believed that 
patients with high MMP and TMB scores should have 
the most significant survival advantage (Figure 4K). 
We then analysed the distribution differences of 
somatic mutations between the low and high MMP 
score groups in the TCGA cohort (Figure 4L, and 
Supplementary Figure 5B). 
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Figure 3. Correlation between different immune cells and the MMP score of EC patients. (A) Spearman’s correlation analysis was used to analyse the correlation between the 
MMP score and known gene signatures in the TCGA UCEC cohort. The size of the dots represents the strength of the correlation. Red, positive correlation; blue, negative 
correlation. (B) Correlation between MMP score and T cells follicular helper in EC. R = 0.17, P = 0.009. (C) Correlation between MMP score and T cells CD4 memory activated 
in EC. R = 0.2, P = 0.0018. (D) Correlation between the MMP score and immune checkpoints. (E) Correlation between the MMP score and CD274 in EC. R = 0.24, p < 0.001. 
(F) Correlation between the MMP score and ICOS in EC. R = 0. 24, P < 0.001. (G) Correlation between the MMP score and HLA. (H) Correlation between the MMP score and 
HLA-E in EC. R = 0.17, P = 00066. (I) Correlation between the MMP score and HLA-F in EC. R = 0.16, P = 0. 0011. (J) Correlation between the MMP score and interleukins in 
EC. (K) Correlation between the MMP score and TSLP in EC. R = 0.14, P = 0063. (L) Correlation between RNAss and the MMP score in EC. R = 0.13, P = 0.011. HLA, human 
leukocyte antigens. 
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Some studies have shown that patients with a 
higher TMB have sustained clinical benefits and 
survival. In our analysis, we reached a similar 
conclusion: the high MMP score group presented with 
more extensive tumour mutations than the low score 
group.  

3.5 The role of the MMP score in predicting 
immunotherapeutic benefits 

We found that the TIDE score was also 
associated with prognosis; patients with the high 
TIDE score had a distinctly better prognosis than the 
low score group (Figure 5A). Survival analysis based 
on both TIDE and MMP scores showed that patients 
with low TIDE and MMP scores had the worst 
prognosis, whereas patients with high MMP and 
TIDE scores had the best prognosis (Figure 5B). We 
further analysed the targeted CAF, CD274, and 
immune dysfunction. Consistent with the TIDE score 
distribution, there was positive correlation between 
MMP scores and immune dysfunction, which patients 
with high immune dysfunction had more significant 
prognostic advantage than the low (Supplementary 
Figure 5C). Survival analysis combining immune 
dysfunction with the MMP score showed that patients 
with a high MMP score and immune dysfunction had 
the best survival (Figure 5C). Moreover, we found 
similar results in the analyses of CAF and CD274. 
Patients with a high MMP score were more likely to 
have CAF, and patients with a high CAF had a 
significant prognostic advantage over those with the 
low. Survival analysis combining CAF with MMP 
scores showed that patients with a high MMP score 
and high CAF had the best survival (Figure 5D–F). 
Patients with high MMP scores were more likely to 
express CD274, and patients with high CD274 
expression had a significant prognostic advantage 
over those with low. Survival analysis combining 
CD274 with the MMP score showed that patients with 
a high MMP score and high CD274 had the best 
survival (Figure 5G–I). Therefore, regardless of TIDE, 
immune dysfunction, CAF, and CD274 scores, 
patients in the high MMP score group consistently 
had better survival than those in the low, indicating 
the value of the MMP score in predicting the 
therapeutic effect on ICB.  

To explore the correlation between the MMP 
score and the TME, we analysed the stromal, immune, 
and ESTIMATE scores respectively (Supplementary 
Figure 5D). Patients with high MMP scores showed 
higher stromal scores than those with low (Figure 5J). 
Therefore, compared with the low MMP score group, 
the high score group had tumours with more 
abundant stromal components, which means they had 
stronger immune function and better prognosis. 

Furthermore, we performed GSVA enrichment 
analysis to compare the differences in the activation 
states of immune functions and immune cells between 
distinct MMP score groups. As shown in the heatmap, 
the high MMP score group showed significant 
enrichment in multiple immune pathways such as 
mast cells and regulatory T cells (Figure 5K). To assess 
the potential relationship between the MMP score and 
scores representing the seven functional states, we 
conducted a series of Pearson correlation analyses of 
the functional states (Supplementary Figure 5L). 
Specifically, we found that in EC, the MMP score was 
significantly positively correlated with CAF, CD274, 
the stromal score, immune score, STIMATE score, and 
TIDE, but negatively correlated with tumour purity.  

3.6 The MMP score is predictive of the 
therapeutic response to chemotherapeutic 
drugs in EC patients 

The efficacy of doxorubicin-based chemotherapy 
as a first-line therapy after EC surgery has been 
widely demonstrated. Researchers continue to 
investigate novel drugs for the treatment of EC. 
Considering the differences in survival and response 
to ICB in the different MMP score groups, we 
analysed the ability of the MMP score to predict the 
response of different chemotherapeutic drugs, 
including TG101348, WH-4-023, BMS-754807, 
Foretinib, AUY922 and BX-795 (Supplementary 
Figure 6A–F). These results indicated that EC patients 
with low MMP scores have a better therapeutic 
response to these drugs than patients with the high. 
We examined the correlation between the MMP score 
and sensitivity to these drugs. Significant positive 
correlations were observed in TG101348, WH-4-023, 
and BMS-754807 respectively (Supplementary Figure 
6G–L). These results suggested that our prognostic 
model was an essential indicator for EC patients to 
choose antitumour drugs. We found a series of 
expression levels of MMPs in EC patients from the 
website (http://www.proteinatlas.org/), The 
immunohistochemical staining results showed that 
MMP-9, MMP-11, MMP-15 and MMP-24 were all 
highly expressed in EC tissue (Supplementary Figure 
8). These results were consistent with those of our 
study above, indicating that patients in the high MMP 
score group showed a better prognosis, but patients 
with low MMP score could have a poor prognosis.  

3.7 Single-cell RNA-seq reveals extensive 
heterogeneity of MMPs in EC 

To understand the cellular diversity and 
molecular features of the endometrial tissue in EC 
patients, a normal and an EC sample were collected 
for single-cell RNA-seq data.  
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Figure 4. Correlation between clinicopathological characteristics and the MMP score. (A) The proportions of living and dead EC patients in the low and high MMP score groups. 
Blue, living patients; red, deceased patients. (B) MMP score based on survival status. Blue, living patients; red, deceased patients. (C) Relationships between MMP score and MSI. 
Blue, MSS group; red, MSI-L group; yellow, MSI-H group. (D) The proportions of patients with three clinical grades in the low and high MMP score groups. Blue, grade 1 group; 
red, grade 2 group; yellow, grade 3 group. (E) Kaplan–Meier survival analysis for high and low MMP score patient groups in the patients with G3. Log-rank test, P = 0.001. (F) 
Differences in the MMP score among distinct grade clinical response groups. (G) The proportion of patient ages in the low or high MMP score group. Blue, patients ≤65 years; 
red, patients >65 years. (H) Kaplan–Meier survival analysis for high and low MMP score patient groups in patients ≤65 years. Log-rank test, P = 0.036. (I) Differences in the MMP 
score among distinct age clinical response groups. (J) Correlation between the MMP score and tumour burden mutation in the MMP gene clusters. MMP gene cluster-A, blue; 
MMP gene cluster-B, yellow; MMP gene cluster-C, red. (K) Survival analyses stratified by both the MMP score and TMB using Kaplan–Meier curves (P = 0.008, log-rank test). Red, 
the patients with a high TMB and high MMP score; blue, the patients with a high TMB and low MMP score; purple, the patients with a low TMB and high MMP score; green, the 
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patients with a low TMB and low MMP score. (L) Mutational landscape of genes in the TCGA UCEC cohort stratified by high versus low MMP score subgroups. Each column 
represents individual patients. The upper bar plot shows TMB, the right bar plot shows the mutation frequency of each gene in separate MMP score groups. MSS, 
Microsatellite-stable; MSI-L, Microsatellite instability-low; MSI-H, Microsatellite instability-high; TMB, tumour mutational burden. 

 
Figure 5. Association between the MMP score and immune. (A) Survival analysis for the patients with a high TIDE score and the patients with a low TIDE score (P = 0.005, 
Log-rank test). Blue, high TIDE group; yellow, low TIDE group. (B) Survival analyses stratified by both the MMP score and TIDE using Kaplan–Meier curves (P < 0.001, Log-rank 
test). (C) Survival analyses stratified by both the MMP score and dysfunction using Kaplan–Meier curves. (D) The relative distribution of CAF scores was compared between the 
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low and high MMP score groups. There was a significant difference in the predicted response to immunotherapy between the two MMP score groups. (E) The correlations 
between CAF and MMP score in three gene clusters. (F) Survival analyses stratified by both the MMP score and CAF using Kaplan−Meier curves. (G) The correlations between 
CD274 and MMP score in three gene clusters. (I) Survival analyses stratified by both the MMP score and CD274 using Kaplan−Meier curves. (J) The violin plot shows the 
difference in the stromal score between the low and high MMP score groups. (K) GSVA enrichment analysis showing the activation states of immune functions and immune cells 
in distinct MMP score groups, and the tumour purity, ESTIMATE score, immune score, and stromal score were used as patient annotations. Red, activated state; blue, inhibition 
state. (L) The correlation analysis of MMP score and immune including CAF, CD27, StromalScore, ImmuneScore, STIMATEScore, TummorPurity, and TIDE. TIDE, Tumor 
Immune Dysfunction and Exclusion; CAF, Cancer-associated fibroblast. 

 
After quality control, 9012 cells were retained for 

subsequent analysis, comprising 2923 cells from 
normal sample and 6089 from EC sample. Six known 
cell types including 3096 epithelial cells, 2161 
endothelial cells, 1543 macrophages, 959 lymphocytes, 
839 fibroblasts, 414 smooth muscle cells, were 
identified and annotated by using classical marker 
genes (Figure 6A and B, Supplementary Figure 7A). 
The expressions of MMP-14 and MMP-7 were 
up-regulated in EC tissue, but MMP-2 was 
down-regulated in EC tissue (Figure 6C-E, 
Supplementary Figure 7C). To explore the 
distribution ratio of MMPs in each cell 
(Supplementary Figure 7B), it can be seen that the 
proportion of MMPs in endothelial cells is the highest, 
followed by macrophages (Figure 6F). Most 
up-regulated DEGs were clustered in epithelial cells, 
while the down-regulated DEGs were mostly 
clustered in other cell types (Figure 6G). Furthermore, 
to probe the association between the MMP regulators 
and progression of EC, we used AUCell and GSEA 
database to perform the correlation between MMP 
score and classical pathways in EC to explore the 
influence of MMP regulators on cancer-related 
pathways. Notably, we found MMP score were 
upregulating PD-1 (R > 0.8) and cancer proliferation 
(R > 0.8), but downregulating carcinogenic activation 
pathways, such as Wnt pathway (R < -0.8), epithelial 
cell proliferation (R < -0.8) and TGF-β pathway (R < 
-0.8) in EC patients (Figure 6H). Additionally, we 
analysed the relationship between individual MMP 
genes and the classical biological gene pathways. The 
results showed MMP-14 and epithelial cells 
proliferation (r = 0.29, P < 0.001), MMP-2 and WNT 
signalling pathway (r = 0.29, P < 0.001), MMP-7 and 
P53 mediated pathway (r = 0.42, P < 0.001), MMP-7 
and abnormality of complement system (r = 0.36, P < 
0.001) were positively correlated, respectively (Figure 
6I-K, Supplementary Figure 7D). In summary, there 
was significant heterogeneity in the expression of 
MMPs in single-cell analysis.  

3.8 MMP expression is generally increased in 
EC tissue 

We verified the expression of the MMP gene set 
in EC tissue using immunohistochemistry, and found 
that MMP expression in normal endometrial tissue 
showed high expression, demonstrating the 
effectiveness of the MMP score (Supplementary Table 

1). To verify whether the expression of the MMP gene 
set is generalized at the molecular level in tissue of 
patients with EC, we conducted HE and qRT-PCR 
experiments on endometrial tissue from three cases of 
EC and three healthy individuals. HE staining 
revealed cell polarity disorder, increased mitotic 
figures, and abnormal cells breaking through the 
basal layer in EC tissue, which is consistent with the 
diagnosis of EC. 

HE staining of endometrial tissue in the control 
group conformed with normal endometrial tissue 
pathological characteristics (Figure 7A-C). We 
observed that the expression of MMP-3, MMP-12 and 
MMP-13 genes in EC tissue was generally higher than 
that in normal endometrial tissue (Figure 7D-F). 
QRT-PCR analysis showed that the mRNA expression 
of MMP-3, MMP-12 and MMP-13 in EC tissue was 
significantly greater than the normal group (P = 
0.0074, P < 0.001, and P = 0.001, respectively). mRNA 
expression levels of MMP-10, MMP-11, and MMP-19 
in the normal endometrial tissue was greater than the 
EC group (P = 0.0113, P = 0.0095, P = 0.0001, 
respectively) (Figure 7G-L). These results showed 
there were changes in expression levels of MMPs 
during the process from normal to cancerous, which 
further verified that MMPs can act as cancer-related 
genes to regulate the occurrence and development of 
EC. 

4. Discussion 
Currently, 23 MMPs are identified in humans. 

Based on the specificity of substrate and structure, 
MMPs can be classified into collagenases, gelatinases, 
stromelysins, matrilysins, metalloelastases, enamely-
sins, membrane-types, and so on [27]. They can break 
down the basement membrane, bind to the surface of 
cancer cell, facilitate ECM remodelling and release 
membrane-bound growth factors in TME, which 
above eventually ultimately lead the invasion and 
metastasis of tumours [28, 29]. Among them, MMP-9 
is the most extensively researched. Li et al. pointed out 
that MMP-9, as a gelatinase, could degrade gelatin, 
collagen and elastin through proteolytic cleavage to 
promote ECM remodeling, therefore, its 
overexpression might be a useful predictor of poor 
prognosis of EC [30]. MMP-7 can predict a more 
aggressive phenotype of colon cancer and is inversely 
correlated with patient survival [31].  
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Figure 6. (A) The t-SNE plot demonstrating main cell types in normal and EC samples. (B) Expression patterns of canonical specific markers in each cell type. Each dot represents 
a gene, of which the colour saturation indicates the average expression level, and the size indicates the percentage of cells expressing the gene. (C-E) The t-SNE plot shows the 
expression levels of MMP-14, MMP-7, MMP-2 in normal and EC samples, respectively. (F) Percentage of MMPs gene in each cell type. (G) The distribution of up- and 
down-regulated genes of DEG in each cell type. (H) Correlations between MMP score and the classical biological gene signatures in EC using Spearman analysis. The negative 
correlation was marked with blue and positive correlation with red. (I) Correlation between the MMP-14 and epithelial cells proliferation (r=0.29, P < 0.001, Spearman 
correlation analysis). (J) Correlation between the MMP-2 and WNT signalling pathway (r = 0.29, P < 0.001, Spearman correlation analysis). (K) Correlation between the MMP-7 
and P53 mediated pathway (r = 0.42, P < 0.001, Spearman correlation analysis). t-SNE, t-distributed stochastic neighbour embedding. 
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Figure 7. (A-F) Hematoxylin and eosin (H&E) staining was performed to observe pathological changes of endometrial tissue in normal and EC group. (A, B, C, normal tissue; D, 
E, F, EC tissue; magnification: 100x, scale bar = 10µm). (G-L) Expression levels of mRNA of MMPs in EC and control. The mRNA expression levels of MMP-3, MMP-10, MMP-11, 
MMP-12, MMP-13, and MMP-19 in patients with EC or controls were measured by RT-qPCR. GAPDH were used as a loading control. Data are based on the mean ± SD of 
triplicate independent experiments. P values were obtained using Student’s t test. (EC, n = 3; Controls, n = 3; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, nonsignificant). 

 
MMP-11 is a potential tumour marker and 

therapeutic target for advanced prostate cancer [32]. 
Levels of MMP-7 positively correlate with GC 
invasion, lymph node metastasis, peritoneal 
dissemination, and patient survival [33-35]. An 
increasing evidence show that the expression of 

MMPs is related to the progression of gynaecological 
malignancies [36-38]. Luis et al. found that tumour 
budding count, which is connected to tumour 
migration in the context of EMT, was regulated by 
MMPs in breast cancer patients [39]. However, the 
influence for the MMP regulators has not been 
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studied on EC diagnosis and prognosis, and the 
mechanism underlying the role of MMPs in EC 
warrants further investigation.  

Accumulating evidence indicates that the 
expression profile plays an indispensable role in 
inflammation, immunity, and inhibition of tumour 
progression [7], especially in the development and 
progression of digestive tract tumours [9, 40, 41]; 
however, there are no related studies on EC. 
Furthermore, most studies have focused on a single 
TME cell type or single protease, but the overall TME 
infiltration characteristics mediated by the combined 
effects of multiple MMPs have not been 
comprehensively recognized [4]. In this study, we 
analysed the clinical information and transcriptome 
data of EC patients from TCGA, and identified three 
distinct MMP expression patterns which displayed 
differences in immune cell infiltration and different 
disease prognosis. In addition, GSVA enrichment 
analysis revealed multiple tumour-associated 
signalling pathways enriched in MMP cluster B. To 
quantify the MMP expression pattern in individual 
EC patients, we established a scoring system based on 
the expression of MMP regulatory factors, and EC 
patients were divided into high and low MMP score 
groups. High MMP scores had a better prognosis, 
along with more abundant immune cell infiltration 
and stronger antitumour immunity. Although low 
MMP score had a worse prognosis than high, they 
responded better to immunotherapy. Our work 
indicated that MMP score could be a potential tool to 
evaluate MMP expression patterns, immune cell 
infiltration, response to pharmacotherapy, clinico-
pathological features, and survival outcomes in EC, 
and has the potential to provide novel areas for the 
study of epigenetics in EC. Stroma can be confined to 
the tumour envelope or penetrate the tumour itself, 
making immune cells appear truly inside the tumour. 
More importantly, we found that MMP cluster A 
exhibited a distinct stromal activation status, 
combined with TME cell infiltration features in each 
cluster, and patient prognosis was the opposite of 
what we expected; therefore, we speculated that 
stromal activation in MMP cluster A inhibited the 
antitumour effect of immune cells. Significant 
prognostic differences were observed between the 
two clusters, confirming the reliability of our 
immunophenotypic classification of different MMP 
expression patterns. Therefore, by fully exploring the 
characterisation of TME cellular infiltration induced 
by different MMP expression patterns, it was 
demonstrated that MMP cluster A could further lead 
to a poor prognosis through the function of 
suppressed immune cells. In addition, the results 
showed that the genetic and expression alterations of 

MMPs between EC tissue and normal tissue had a 
certain heterogeneity, indicating that MMP 
expression imbalance may play an important role in 
the accuracy and progression of EC. Our seminal 
exploration of the role of the overall MMP expression 
pattern in the infiltration of TME cells will contribute 
to a deeper understanding of the mechanism of the 
TME antitumour immune response and a more 
effective strategy for guiding immunotherapy.  

In this study, similar to the clustering results for 
MMPs expression, three genomic subtypes were 
identified that were significantly associated with 
matrix activation and immune responses. This again 
demonstrated that MMP expression had important 
implications in shaping different TME. Therefore, a 
comprehensive evaluation of MMP expression 
patterns would enhance our understanding of TME 
cellular infiltration. However, previous analyses were 
mainly based on patient populations and could not 
accurately predict the expression pattern in individual 
patients; therefore, considering the individual 
heterogeneity of MMP expression, its pattern must be 
urgently quantified in single tumours. In this study, 
this deficiency was compensated by constructing an 
MMP scoring system, evaluating MMP expression 
patterns and visualising property changes in 
individual patients. The expression pattern, which 
was dominated by the MMP cluster B expression 
signature, exhibited a high MMP score, suggesting 
that the MMP score is a reliable and powerful tool to 
comprehensively assess the expression pattern of 
MMPs in individual tumours and can be used to 
further determine the TME infiltration pattern, 
namely, the tumour immunophenotype. More 
importantly, the MMP score showed good assessment 
ability in terms of patient clinical characteristics, 
including the tumour differentiation level, mutation 
burden, pathological stage, age, and clinical 
prognosis, and could guide clinical treatment. A 
comprehensive analysis showed that the MMP score 
is an effective indicator of biological prognosis in 
endometrial cancer. Our MMP score showed excellent 
predictive power for precision endometrial cancer 
immunotherapy, utilizing the features of immune 
escape.  

Our data revealed a significant correlation 
between the MMP score and TMB, which was patients 
with a combination of high MMP score and high TMB 
showed a great survival advantage. Consistent with 
previous studies, the increased release of MMPs, as 
well as their cell membrane expression, would lead to 
a breakdown of the ECM and favour infiltration [42, 
43]. Moreover, our study found that MMP expression 
was associated with shaping different stromal and 
carcinogenic activation pathways, such as TGF-β 
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pathway components and Wnt pathway. Previous 
studies confirmed that the TGF-β signalling can bind 
TGF-β and TGFBR2 to inhibit EC migration through 
the phosphorylation [44]. Wnt pathway is well-known 
to play a vital role in multiple cellular functions, such 
as embryonic development, cell proliferation, adult 
tissue homeostasis, and so on. In particular, aberrant 
activation of Wnt/β-catenin pathway correlates with 
tumourigenesis of EC, including accelerating 
proliferation of EC cells [45]. In this work, we showed 
MMP genes played a non-negligible role in shaping 
different stromal and immune TME landscape, 
implying MMPs could affect the therapeutic efficacy 
of ICB. The MMP gene signature with integrated 
various biomarkers including TMB, TIDE, CAF and 
CD274, could be the more effective predictive strategy 
for immunotherapy. In addition, the correlation 
between MMP score, tumour stage, and prognosis 
analysis showed a significant effect for all grades. The 
correlation of the MMP score with patient fustat and 
age factors, and its predictive effect on survival were 
also obvious.  

Pan-cancer analysis has shown that MMPs have 
a prognostic value only in clear-cell renal cancer 
[46-48]. This study elucidated the role of MMPs in 
cancer by developing an MMP scoring system that 
may serve as an independent marker for predicting 
patient survival and prognosis and provide new 
insights into ECs immunotherapy. These new ideas 
may target MMP-related genes, reverse unfavourable 
TME cell infiltration, and help develop novel drug 
combination strategies or immunotherapeutic agents 
in the future. We further investigated the relationship 
between MMP score and pharmacotherapy response. 
MMP score was significantly correlated with 
predictors of the immune response, such as the TIDE 
score, indicating that MMP expression affects the 
therapeutic effect of immunotherapy and can be used 
to improve the personalised treatment of EC patients. 
Additionally, a higher MMP score was significantly 
related to higher TIDE and immune dysfunction 
scores. Patients with a higher TIDE score tended to 
have a stronger immune dysfunction score and a 
decreased ability to kill cancer cells, which could 
explain why they had a worse response rate to ICB. 
Conversely, although patients with low MMP scores 
had lower TIDE scores and worse prognoses, they 
were more likely to benefit from ICB treatment. 
Therefore, patients with low MMP scores may have 
prolonged survival after ICB therapy. Moreover, the 
MMP score can predict response to pharmacotherapy. 
These results suggest that the MMP score can be used 
to develop individualised treatment plans for patients 
with EC. Overall, we provide new ideas for 
improving patient clinical responses to immuno-

therapy, identifying distinct tumour immune 
phenotypes, and promoting personalised EC 
immunotherapy in the future.  

5. Conclusions 
In summary, this study demonstrated a broad 

regulatory mechanism of the EC TME via the MMP 
expression landscape. Differences in the MMP 
expression patterns are non-negligible factors that 
contribute to the heterogeneity and complexity of 
individual TME. The MMP score can be used in 
clinical practice to comprehensively evaluate the 
MMP expression patterns of individual patients and 
their corresponding TME cell infiltration 
characteristics, further determine the tumour immune 
phenotype, and guide more effective clinical practice. 
Moreover, the MMP score exhibited a strong 
predictive function in EC patient survival analysis, 
which could provide guidance for clinical workup. A 
comprehensive assessment of the MMP expression 
patterns in individual tumours will enhance our 
understanding of the characteristics of cellular 
infiltration into the TME. The correlation between 
MMP score, immune checkpoints, and immune cells 
may provide strategies and directions for subsequent 
immunotherapy research.  

Abbreviations 
MMPs: Matrix metalloproteinases; EC: Endo-

metrial cancer; TME: Tumour microenvironment; 
PCA: Principal component analysis; ROC: Receiver 
operating characteristic; scRNA-seq: single-cell RNA 
sequencing; GO: Gene Ontology; DEGs: Differentially 
expressed genes; ICB: Immunological checkpoint 
blockade; PMB: Postmenopausal bleeding; CAF: 
Cancer-associated fibroblast; ECM: Extracellular 
matrix; TCGA: The Cancer Genome Atlas; ICGC: 
International Cancer Genome Consortium; TCGA- 
UCEC: The Cancer Genome Atlas-Uterine Corpus 
Endometrial Carcinoma; UCEC-US: Uterine Corpus 
Endometrial Carcinoma- TCGA, US; GSVA: Geneset 
variation analysis; KEGG: Kyoto Encyclopedia of 
Genes and Genomes; ssGSEA: Single-sample gene set 
enrichment analysis; TIDE: Tumor Immune Dysfunc-
tion and Exclusion; MSS: Microsatellite-stable; MSI-L: 
Microsatellite instability-low; MSI-H: Microsatellite 
instability-high; TMB: tumour mutational burden; 
qRT-PCR: Quantitative real-time polymerase chain 
reaction; HR: Hazard ratios; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; HLA: Human 
leukocyte antigen. 

Supplementary Material 
Supplementary figures and table.  
https://www.jcancer.org/v15p4020s1.pdf 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4038 

Acknowledgments 
We acknowledge the TCGA and ICGC databases 

for providing their platforms and the contributors for 
updating meaningful datasets. We would also like to 
thank The Natural Science Foundation of Shanxi 
Province, China (202103021224394). 

Funding  
China Postdoctoral Science Foundation (2021M6 

91995 to Z.W.), The Natural Science Foundation of 
Shanxi Province, China (202103021224394 to Z.W.). 
The Shanxi Provincial Key Research and 
Development Project (201803D31111 to SY.Z.). 

Ethics approval and consent to participate 
The study was conducted in accordance with the 

declaration of Helsinki, and approved by the Ethics 
Committee of the First Hospital of Shanxi Medical 
University with Ethics Number: (2021-K-K221). 
Written informed consent was obtained from each 
study participant. 

Data availability  
All data used in this study can be acquired from 

the TCGA website (https://portal.gdc.cancer.gov/ 
projects/TCGA-UCEC) and ICGC portal 
(https://dcc.icgc.org/projects/UCEC-US). 

Author contributions  
Huancheng Su, Yutong Yang, Chu Li, Jinpeng Li, 

Huihui Lv, Xiaoyao Jia and Zhe Wang, Sanyuan 
Zhang conceived the project, supervised, and 
designed all research. Huancheng Su, Yutong Yang, 
Chu Li, Jinpeng Li, Huihui Lv, and Xiaoyao Jia wrote 
the manuscript. Huancheng Su, Yutong Yang, Chu Li, 
Huihui Lv, Xiaoyao Jia, Jing Lei, and Hongrui Guo 
designed and conducted the bioinformatic analysis. 
Huancheng Su, Huihui Lv, and Xiaoyao Jia performed 
the experimental work. Yutong Yang, Chu Li, Jinpeng 
Li, Jiaolin Yang, Jing Lei, Xia Li, Hongrui Guo and 
Zhe Wang, Sanyuan Zhang revised the manuscript. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Besso M, Montivero L, Lacunza E, Argibay M, Abba M, Furlong L, et al. 

Identification of early stage recurrence endometrial cancer biomarkers using 
bioinformatics tools. Oncology Reports. 2020; 44: 873-86. 

2. van Hanegem N, Breijer MC, Khan KS, Clark TJ, Burger MP, Mol BW, et al. 
Diagnostic evaluation of the endometrium in postmenopausal bleeding: an 
evidence-based approach. Maturitas. 2011; 68: 155-64. 

3. Michalczyk K, Cymbaluk-Płoska A. Metalloproteinases in Endometrial 
Cancer-Are They Worth Measuring? Int J Mol Sci. 2021; 22: 12472. 

4. Cheng P, Ma J, Zheng X, Zhou C, Chen X. Bioinformatic profiling identifies 
prognosis-related genes in the immune microenvironment of endometrial 
carcinoma. Sci Rep. 2021; 11: 12608. 

5. Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. 
Nature. 2016; 529: 298-306. 

6. Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical 
microenvironment on tumor progression and metastasis. Curr Opin 
Biotechnol. 2016; 40: 41-8. 

7. Liu J, Cui G, Shen S, Gao F, Zhu H, Xu Y. Establishing a Prognostic Signature 
Based on Epithelial-Mesenchymal Transition-Related Genes for Endometrial 
Cancer Patients. Front Immunol. 2021; 12: 805883. 

8. Kapoor C, Vaidya S, Wadhwan V, Kaur G, Pathak A. Seesaw of matrix 
metalloproteinases (MMPs). J Cancer Res Ther. 2016; 12: 28-35. 

9. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix 
Metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147: 1-73. 

10. Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K. 
Structural properties of matrix metalloproteinases. Cell Mol Life Sci. 1999; 55: 
639-52. 

11. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases 
in a mouse model of intracerebral haemorrhage. Brain. 2005; 128: 1622-33. 

12. Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S, Tull D, et al. 
Synergy between the KEAP1/NRF2 and PI3K Pathways Drives 
Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment. 
Cell Metab. 2018; 27: 935-43 e4. 

13. Spranger S, Gajewski TF. Tumor-intrinsic oncogene pathways mediating 
immune avoidance. Oncoimmunology. 2016; 5: e1086862. 

14. Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough 
Target for Targeted Therapy for Cancer. Cancers (Basel). 2022; 14: 1847. 

15. Wang T, Zhang Y, Bai J, Xue Y, Peng Q. MMP1 and MMP9 are potential 
prognostic biomarkers and targets for uveal melanoma. BMC Cancer. 2021; 21: 
1068. 

16. Hernandez-Perez M, El-hajahmad M, Massaro J, Mahalingam M. Expression 
of gelatinases (MMP-2, MMP-9) and gelatinase activator (MMP-14) in actinic 
keratosis and in in situ and invasive squamous cell carcinoma. Am J 
Dermatopathol. 2012; 34: 723-8. 

17. Lederle W, Hartenstein B, Meides A, Kunzelmann H, Werb Z, Angel P, et al. 
MMP13 as a stromal mediator in controlling persistent angiogenesis in skin 
carcinoma. Carcinogenesis. 2010; 31: 1175-84. 

18. Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. Matrix 
metalloproteinases in human melanoma. J Invest Dermatol. 2000; 115: 337-44. 

19. Chuang HC, Su CY, Huang HY, Huang CC, Chien CY, Du YY, et al. Active 
matrix metalloproteinase-7 is associated with invasion in buccal squamous cell 
carcinoma. Mod Pathol. 2008; 21: 1444-50. 

20. Roh MR, Zheng Z, Kim HS, Kwon JE, Jeung HC, Rha SY, et al. Differential 
expression patterns of MMPs and their role in the invasion of epithelial 
premalignant tumors and invasive cutaneous squamous cell carcinoma. Exp 
Mol Pathol. 2012; 92: 236-42. 

21. Zhang H, Wang Y, Chen T, Zhang Y, Xu R, Wang W, et al. Aberrant Activation 
Of Hedgehog Signalling Promotes Cell Migration And Invasion Via Matrix 
Metalloproteinase-7 In Ovarian Cancer Cells. J Cancer. 2019; 10: 990-1003. 

22. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new 
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 
2017; 45: D353-D61. 

23. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et 
al. Pan-cancer Immunogenomic Analyses Reveal 
Genotype-Immunophenotype Relationships and Predictors of Response to 
Checkpoint Blockade. Cell Rep. 2017; 18: 248-62. 

24. Zhang B, Wu Q, Li B, Wang D, Wang L, Zhou YL. m(6)A regulator-mediated 
methylation modification patterns and tumor microenvironment infiltration 
characterization in gastric cancer. Mol Cancer. 2020; 19: 53. 

25. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. 
Massively parallel digital transcriptional profiling of single cells. Nature 
Communications. 2017; 8: 14049. 

26. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of 
single-cell gene expression data. Nature Biotechnology. 2015; 33: 495-502. 

27. Polakova K, Bandzuchova E. Comparison of HLA-G and MMP transcription 
in human tumor cell lines. Neoplasma. 2018; 65: 943-51. 

28. Wen Y, Zhang X, Li X, Tian L, Shen S, Ma J, et al. Histone deacetylase (HDAC) 
11 inhibits matrix metalloproteinase (MMP) 3 expression to suppress 
colorectal cancer metastasis. Journal of Cancer. 2022; 13: 1923-32. 

29. Assaf MI, Abd El-Aal W, Mohamed SS, Yassen NN, Mohamed EA. Role of 
Morphometry and Matrix Metalloproteinase-9 Expression in Differentiating 
between Atypical Endometrial Hyperplasia and Low Grade Endometrial 
Adenocarcinoma. Asian Pac J Cancer Prev. 2018; 19: 2291-7. 

30. Li X, Zha L, Li B, Sun R, Liu J, Zeng H. Clinical significance of MMP-9 
overexpression in endometrial cancer: A PRISMA-compliant meta-analysis. 
Frontiers in Oncology. 2022; 12: 925424. 

31. Nikolaev AA, Babkina IV, Gershtein ES, Alferov AA, Delektorskaya VV, 
Mamedli ZZ, et al. Prognostic significance of the TNM system criteria, levels of 
serum insulin-like growth factors and their transport proteins, VEGF and 
MMP-7 in colorectal cancer. Klin Lab Diagn. 2021; 66: 459-64. 

32. Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali S, et 
al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, 
MMP-9) markers of prostate cancer. Urol Res. 2005; 33: 44-50. 

33. Yoshikawa T, Yanoma S, Tsuburaya A, Kobayashi O, Sairenji M, Motohashi H, 
et al. Expression of MMP-7 and MT1-MMP in peritoneal dissemination of 
gastric cancer. Hepatogastroenterology. 2006; 53: 964-7. 

34. Yamashita K, Azumano I, Mai M, Okada Y. Expression and tissue localization 
of matrix metalloproteinase 7 (matrilysin) in human gastric carcinomas. 
Implications for vessel invasion and metastasis. Int J Cancer. 1998; 79: 187-94. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4039 

35. Lee KH, Shin SJ, Kim KO, Kim MK, Hyun MS, Kim TN, et al. Relationship 
between E-cadherin, matrix metalloproteinase-7 gene expression and 
clinicopathological features in gastric carcinoma. Oncol Rep. 2006; 16: 823-30. 

36. Schropfer A, Kammerer U, Kapp M, Dietl J, Feix S, Anacker J. Expression 
pattern of matrix metalloproteinases in human gynecological cancer cell lines. 
BMC Cancer. 2010; 10: 553. 

37. Tunuguntla R, Ripley D, Sang QX, Chegini N. Expression of matrix 
metalloproteinase-26 and tissue inhibitors of metalloproteinases TIMP-3 and 
-4 in benign endometrium and endometrial cancer. Gynecol Oncol. 2003; 89: 
453-9. 

38. Shiomi T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of 
human cancers. Cancer Metastasis Rev. 2003; 22: 145-52. 

39. González LO, Eiro N, Fraile M, Sánchez R, Andicoechea A, Fernández-Francos 
S, et al. Joint Tumor Bud–MMP/TIMP Count at the Invasive Front Improves 
the Prognostic Evaluation of Invasive Breast Carcinoma. Biomedicines. 2021; 9: 
2196. 

40. Sharma KL, Misra S, Kumar A, Mittal B. Higher risk of matrix 
metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase 
(TIMP-2) genetic variants to gallbladder cancer. Liver Int. 2012; 32: 1278-86. 

41. Bae S, Lim JW, Kim H. β-Carotene Inhibits Expression of Matrix 
Metalloproteinase-10 and Invasion in Helicobacter pylori-Infected Gastric 
Epithelial Cells. Molecules. 2021; 26: 1567. 

42. Al Ameri W, Ahmed I, Al-Dasim FM, Ali Mohamoud Y, Al-Azwani IK, Malek 
JA, et al. Cell Type-Specific TGF-beta Mediated EMT in 3D and 2D Models and 
Its Reversal by TGF-beta Receptor Kinase Inhibitor in Ovarian Cancer Cell 
Lines. Int J Mol Sci. 2019; 20: 3568. 

43. Chung J, Kim KH, Yu N, An SH, Lee S, Kwon K. Fluid Shear Stress Regulates 
the Landscape of microRNAs in Endothelial Cell-Derived Small Extracellular 
Vesicles and Modulates the Function of Endothelial Cells. Int J Mol Sci. 2022; 
23: 1314. 

44. Belt H, Koponen JK, Kekarainen T, Puttonen KA, Makinen PI, Niskanen H, et 
al. Temporal Dynamics of Gene Expression During Endothelial Cell 
Differentiation From Human iPS Cells: A Comparison Study of Signalling 
Factors and Small Molecules. Front Cardiovasc Med. 2018; 5: 16. 

45. Xie W, Liu N, Wang X, Wei L, Xie W, Sheng X. Wilms’ Tumor 1-Associated 
Protein Contributes to Chemo-Resistance to Cisplatin Through the 
Wnt/β-Catenin Pathway in Endometrial Cancer. Frontiers in Oncology. 2021; 
11: 598344. 

46. Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ross JS. 
Increased expression of matrix metalloproteinases 2 and 9 and tissue 
inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic 
variables in renal cell carcinoma. Clin Cancer Res. 2001; 7: 3113-9. 

47. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, et al. 
Expression levels of genes that regulate metastasis and angiogenesis correlate 
with advanced pathological stage of renal cell carcinoma. Am J Pathol. 2001; 
158: 735-43. 

48. Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix 
metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von 
Hippel-Lindau renal cell carcinoma. Oncogene. 2005; 24: 1043-52. 

 


