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Abstract 

This study has used machine learning algorithms to develop a predictive model for differentiating between 
dermoscopic images of basal cell carcinoma (BCC) and actinic keratosis (AK). We compiled a total of 904 
dermoscopic images from two sources — the public dataset (HAM10000) and our proprietary dataset 
from the First Affiliated Hospital of Dalian Medical University (DAYISET 1) — and subsequently 
categorised these images into four distinct cohorts. The study developed a deep learning model for 
quantitative analysis of image features and integrated 15 machine learning algorithms, generating 207 
algorithmic combinations through random combinations and cross-validation. The final predictive model, 
formed by integrating XGBoost with Lasso regression, exhibited effective performance in the differential 
diagnosis of BCC and AK. The model demonstrated high sensitivity in the training set and maintained 
stable performance in three validation sets. The area under the curve (AUC) value reached 1.000 in the 
training set and an average of 0.695 in the validation sets. The study concludes that the constructed 
discriminative diagnostic model based on machine learning algorithms has excellent predictive capabilities 
that could enhance clinical decision-making efficiency, reduce unnecessary biopsies, and provide valuable 
guidance for further treatment. 
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1. Introduction 
Basal cell carcinoma (BCC) is one of the most 

common types of malignant skin tumours, and its 
incidence is increasing annually (1). Diagnosed cases 
of BCC were approximately 3.6 million in 2022 (2). As 
this type of skin cancer is more common in 
individuals over 50 with fair skin, population aging is 
one of the main risk factors (3), and exposure to 
ultraviolet radiation is one of the common etiological 
factors (4). In the United States, more than two million 
people are affected annually, solidifying BCC’s 
position as one of the most widespread cancers 

among Caucasians (5, 6). In the United States, the 
annual growth rate of treatment costs for 
non-melanoma skin cancers, including BCC, has 
exceeded that of all other cancers. This has resulted in 
a significant burden on healthcare economics (7, 8).  

Although BCC is known for its relatively low 
malignancy, its local invasiveness has the potential to 
disrupt surrounding tissues and organs. High-risk 
BCC may even pose a threat to a patient’s life. 
Consequently, early intervention and treatment are 
essential (9, 10). Currently, due to the absence of 
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specific molecular markers for diagnosis, the primary 
method for screening BCC involves clinical 
observation by dermatologists combined with 
dermoscopic examination. This approach offers the 
advantages of non-invasiveness and cost-effectiveness 
(11). However, for patients with BCC exhibiting 
atypical skin dermoscopic images, clinical challenges 
often arise, potentially resulting in underdiagnosis or 
misdiagnosis. Consequently, there is a risk of missing 
the optimal period for early intervention and 
treatment, presenting a significant diagnostic and 
therapeutic challenge (12). In the treatment guidelines 
for BCC, surgery stands out as the foremost approach 
for all types of BCC. Patients who receive early 
treatment typically also receive a more favourable 
prognosis, with a significantly reduced likelihood of 
complications occurring (13). It is noteworthy that the 
dermoscopic features of BCC closely correlate with its 
histological phenotype. For example, blue-grey ovoid 
nests are less common in superficial BCC compared 
with other subtypes (14). The presence of 
maple-leaf-like areas with branching vessels and 
ulcers often predicts a tendency toward the superficial 
subtype of BCC (15, 16). Moreover, studies have 
indicated that dermoscopic examination exhibits 
lower sensitivity and specificity in diagnosing non- 
pigmented BCC compared with pigmented BCC (17). 
Atypical dermoscopic features of BCC significantly 
overlap those of benign skin tumours, posing a 
challenge in the differential diagnosis between BCC 
and benign tumours (18). Unfortunately, typical 
dermoscopic features are observed in only a fraction 
of all BCC patients. The rest often necessitate a skin 
biopsy to confirm the diagnosis (19). To prevent 
unnecessary biopsies and surgeries, it is crucial to 
develop a discriminative diagnostic model with 
image-processing capabilities. 

In routine dermatological practice, actinic 
keratosis (AK) is a condition often confused with BCC 
because some of AK’s morphological features closely 
resemble BCC. Research suggests that differential 
diagnostic methods are crucial in diagnosing BCC 
involving entities such as AK and inflammatory skin 
diseases (14). In recent years, the incidence rate of AK 
has been steadily increasing in the population, 
making it a significant component in the differential 
diagnosis of BCC (20). AK is a prevalent 
intraepithelial tumour originating from keratinocytes, 
and it stands as one of the most frequently diagnosed 
diseases by dermatologists. Both BCC and AK are 
associated with prolonged exposure to ultraviolet 
radiation, and they tend to occur most frequently in 
sun-exposed areas of the face (21). Current research 
has confirmed that early interventions for AK can 
slow its progression, reduce the occurrence of 

complications, and lower the likelihood of 
transformation into invasive squamous cell 
carcinoma. In contrast to BCC, which is preferably 
treated surgically, the treatment for AK typically 
involves topical medication and physical therapies 
(22). Due to the highly similar affected sites of BCC 
and AK but markedly different treatment approaches, 
distinguishing between them in atypical presentations 
or early stages is challenging yet necessary (23, 24). 

Dermoscopy, as an auxiliary diagnostic tool, has 
increased the accuracy of diagnosing various skin 
conditions. The availability of dermoscopy equipment 
in most hospitals has made dermoscopic images 
easily accessible in dermatological diagnosis and 
treatment (25). The current method of relying on a 
limited number of dermatologists to manually screen 
dermoscopic images for disease diagnosis is 
time-consuming, labour-intensive, and vulnerable to 
the subjective influence of doctors. Unfortunately, the 
rapid popularisation of dermoscopy as an auxiliary 
diagnostic tool has led to a relative shortage of doctors 
with rich dermoscopic experience. In summary, the 
accuracy of dermoscopic diagnosis faces significant 
challenges. 

Deep learning (DL) neural networks exemplify 
the successful integration of artificial intelligence’s 
automated processing into clinical practice, show-
casing outstanding performance in tasks like image 
processing and classification, including applications 
in ultrasound and CT (computerised tomography) 
(26–28). Research indicates that the classification 
ability of deep neural networks for dermoscopic 
images can rival that of dermatologists (29). In recent 
years, machine learning has been extensively applied 
to structured data in genomics — particularly cancer 
genomics, where it is employed to identify and 
analyse pathogenic mutations. (28, 30, 31). Machine 
learning algorithms, with the aid of automated 
computer analysis, can learn from input data and 
optimise algorithmic combinations along with their 
parameters. This method is frequently employed in 
constructing prognosis and diagnostic models. In the 
realm of dermoscopic image classification, the 
application of this method has yielded substantial 
results (32). However, the successful implementation 
of these methods necessitates a substantial number of 
dermoscopic images for training. To overcome this 
challenge, this study integrated a significant amount 
of dermoscopic data from public and hospital 
databases to construct a highly discriminative 
diagnostic model for BCC and AK. We conducted 
comprehensive validation of the model. Currently, 
research on the classification of dermoscopic images 
based on DL models is primarily concentrated on the 
discrimination and diagnosis of melanoma, with 
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limited application to the discrimination and 
diagnosis of BCC. 

This study aimed to develop and evaluate a 
machine-learning-based model for the automatic 
discernment of BCC and AK from skin images. We 
believed that by combining advanced image- 
processing techniques with various machine learning 
algorithms, we could build a faster and more accurate 
discriminative diagnostic model for clinicians, with 
the potential to play a proactive role in managing 
early skin cancers. 

2. Materials and Methods 
2.1 Data Collection and Processing 

We began by gathering and organising skin 
dermoscopic images from two datasets for 
subsequent analysis: the International Skin Imaging 
Collaboration (ISIC) dataset, a publicly accessible 
dataset used for skin disease diagnosis and research, 
and a dataset from the First Affiliated Hospital of 
Dalian Medical University.  

From the ISIC open database, we selected the 
HAM10000 dataset, comprising 10,015 skin 
dermoscopic images and widely used in academic 
research. We downloaded and curated 514 BCC and 
327 AK cases of skin dermoscopic images from this 
dataset, all diagnosed through histopathology.  

For this retrospective study, skin dermoscopic 
images from the First Affiliated Hospital of Dalian 
Medical University were collected from February 2021 
to October 2023. Our study was approved by the 
university’s Ethics Committee and adhered to the 
principles of the Helsinki Declaration (approval no. 
PJ-KS-KY-2024-94). We obtained written informed 
consent for the dermoscopic images. After excluding 
images of low quality or with artifacts, we had 32 skin 
dermoscopic images of BCC and 31 of AK 
(DAYISET 1). All BCC cases underwent diagnosis 
through histopathology. For AK patients, diagnosis 
was conducted by two dermatologists with over ten 
years of dermoscopy experience in considering 
clinical symptoms. Images with a consensus diagnosis 
were included in the study. DAYISET 1 utilised the 
FotoFinder dermoscope. Subsequently, we performed 
a statistical analysis of the clinical data, including age, 
gender, and affected areas for each patient. 

2.2 Data Segmentation 
Similar to previous approaches (33), we used the 

“caret” package in R for random grouping to assess 
the performance of our developed diagnostic model. 
This package divides the data into approximately a 
1:1 ratio, allocating 50% of HAM10000 as the training 
set (Dataset A) (n=422) and the remaining as internal 
test set 1 (Dataset B) (n=419), with all images serving 

as internal test set 2 (Dataset C) (n=841). To validate 
the model’s accuracy and enhance clinical 
applicability, we conducted validation on our 
predictive model using DAYIDET 1. Dermoscopic 
images from DAYISET 1 were employed as an 
external validation set (Dataset D) (n=63). 

2.3 Image Pre-processing and Deep Learning 
Feature Extraction 

We pre-processed the images by resizing the 
pixel dimensions to 600×450. Leveraging transfer 
learning techniques, we then applied the resnet50 
model for pre-training on our images. We fine-tuned 
the learning parameters based on the optimal model 
output from the pre-training results. Subsequently, 
we retrained the model and extracted deep-learning 
features with dimensions of 2048 through the average 
pooling layer. The obtained feature values were 
normalised to the range of 0–1 for subsequent transfer 
learning. Due to the limited interpretability of DL 
models, we applied Gradient-weighted Class 
Activation Mapping (Grad-CAM) for the visualisation 
of our input images and to gain further insights into 
the decision-making process of our developed model. 
This method highlights the input image regions 
crucial to the model’s decision and presents them 
through a heatmap. 

2.4 Feature Selection 
To improve the efficiency of subsequent analysis 

and avoid overfitting, we utilised the Limma package 
in R to perform differential analysis on DL features. 
We selected the top 30 differentially expressed 
features with the smallest p-values between groups 
for further modelling analysis. The p-values for the 
features selected for subsequent modelling were all 
less than 0.05, indicating significant statistical 
differences. 

2.5 Constructing a Predictive Model through 
Machine Learning Algorithms 

Machine learning algorithms, through 
leveraging large datasets and advanced algorithms, 
possess powerful data analysis capabilities. They are 
increasingly being applied to the field of medicine, 
demonstrating excellent performance in many studies 
(34–36). To enhance the accuracy and stability of our 
newly developed diagnostic model, and to expedite 
the efficiency of image automation in personalised 
medicine, we chose the best model through machine 
learning algorithms to achieve optimal diagnostic 
performance. Firstly, these machine learning 
algorithms encompass 15 different types of classical 
algorithms, specifically including neural networks, 
logistic regression, linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), 
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K-nearest neighbours (KNN), decision tree, random 
forest (RF), XGBoost, ridge regression, least absolute 
shrinkage and selection operator (LASSO), elastic net 
regression, support vector machine (SVM), gradient 
boosting machine (GBM), stepwise logistic regression, 
and naive Bayes. We combined hyperparameter 
tuning, custom parameter combinations, Lasso 
feature selection, and cross-validation using the caret 
package, resulting in a total of 207 unique machine 
learning models. For different models, we compared 
the performance of various classifiers by calculating 
the receiver operating characteristic (ROC) curve to 
assess the diagnostic efficacy of the models. We 
employed three commonly used machine learning 
metrics — F-score, accuracy (ACC), and recall — to 
evaluate model performance. By considering these 
statistical indicators collectively, we selected the 
optimal model and its parameters. Currently, there is 
limited research on machine learning for binary 
classification problems in the dermatoscopic field. We 
have pioneered the development of a composite 
model obtained through machine learning algorithms 
and used cross-validation for model training and 
evaluation. 

2.6 Validation of the Diagnostic Model 
Based on the outcomes of our prior data 

segmentation and the optimal parameters derived 
from machine learning algorithms, we generated ROC 
curves and calibration curves for distinct datasets, 
including Dataset A, Dataset B, Dataset C, and 
Dataset D. Moreover, we computed the area under the 
curve (AUC) values to assess and compare the 
diagnostic accuracy of the models across these diverse 
datasets. 

To further validate the efficacy of our developed 
machine learning model for binary classification, we 
scrutinised the actual diagnostic outcomes against the 
model’s predictions using a confusion matrix. The 
visualisation of this matrix was accomplished using 
the Matplotlib and Seaborn packages in Python. 
Matplotlib was employed to construct the graphical 
interface, while Seaborn contributed to enhancing the 
visual appeal of the graphics and streamlining the 
plotting of the confusion matrix. Additionally, the 
confusion-matrix function from the Sklearn package 
was used to compute the confusion matrix, a widely 
used tool for evaluating the predictive performance of 
classification models. 

2.7 Statistical Analysis 
Our study utilised Python (version 3.9) and R 

language (version 4.3.0) for image processing, data 
analysis, and visualisation operations. For the 
evaluation of binary classification model 
performance, we employed confusion matrices and 

ROC curves to quantify the model’s classification 
accuracy and performance. For the statistical analysis 
of baseline data, we used SPSS 26.0 software. 
P-value<0.05 was considered statistically significant. 

3. Results 
3.1 Workflow of the Study 

Firstly, our study included patients from the 
HAM10000 and DAYISET 1 databases, divided into 
four cohorts using a random grouping method. 
Dermoscopic images of their lesion sites were 
collected using a dermatoscope. Similar to previous 
studies, the significance threshold for differential 
analysis was set at 0.05, with a fold change of 1 (37). 
The results of the differential analysis were visualised 
using a volcano plot (Supplementary Figure S1).  

Next, leveraging a machine learning framework, 
we integrated 15 machine learning algorithms and 
conducted model training and parameter 
optimisation through cross-validation and threshold 
adjustment for the binary classification model. 
Subsequently, we computed and ranked the AUC 
values, accuracy, and F-score of different combined 
models in each cohort, resulting in a consistently 
performing machine learning model. To validate the 
predictive capacity of this model, we visualised its 
calibration curve and confusion matrix. The research 
workflow is depicted in Figure 1. The flowchart 
provides detailed information on inclusion/exclusion 
criteria and grouping methods for our dermoscopic 
images (Figure 2). 

3.2 Patients and Clinical Features 
Table 1 summarises the demographic data and 

lesion locations for the two cohorts. A total of 904 
patients were included in the training and testing sets, 
originating from HAM10000 (with BCC accounting 
for 61.1%, 514/841) and DAYISET 1 (with BCC 
accounting for 50.8%, 32/63). There were 546 patients 
with BCC, with an age of 66.83±13.66 years in the 
HAM10000 dataset and 69.84±10.18 years in the 
DAYISET 1 dataset. The male proportion was 61.7% 
in HAM10000 and 40.6% in DAYISET 1. Additionally, 
there were 358 patients with AK, with an age of 
66.53±11.48 years in HAM10000 and 70.06±11.98 years 
in DAYISET 1. The male proportion was 67.5% in 
HAM10000 and 38.7% in DAYISET 1. The 
predominant affected areas for both diseases were the 
head and face, accounting for 162/546 in BCC patients 
and 171/358 in AK patients. 

3.3 Visualisation Results of Grad-CAM 
To enhance the interpretability of our advanced 

DL model and illuminate the decision-making 
process, we used the Grad-CAM technique. This 
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method generates heatmaps to accentuate the input 
image regions pivotal to the model’s decision. 
Figure 3 A–D shows the original images during 
prediction, whereas Figure 3 E–H illustrates the 

heatmaps created using Grad-CAM. In these 
heatmaps, the red region indicates the area most 
prioritised by the model in recognition, succeeded by 
yellow, green, and blue areas. 

 
 

 
Figure 1. The workflow of our machine learning prediction model development.  
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Figure 2. Flowchart of study inclusion. 

 
Figure 3. Grad-CAM visualisation for BCC and AK classification model. The top row is the original dermatoscope image, and the bottom row is the Grad-CAM result image. 

 
Table 1. Patient demographics and lesion location distributions of 
patients in different datasets 

Characteristics HAM10000 DAYISET 1 
BCC AK p 

Value 
BCC AK p 

Value (n=514) (n=327) (n=32) (n=31) 
Age, mean±SD, 
year 

66.83±13.6
6 

66.53±11.4
8 

0.742 69.84±10.1
8 

70.06±11.9
8 

0.937 

Gender, n (%)   0.082   0.877 
Male 317 (61.7) 221 (67.5)  13 (40.6) 12 (38.7)  
Female 197 (38.3) 106 (32.4)  19 (59.4) 19 (61.3)  
Location, n (%)   <0.001   0.234 
Head and neck 134 (25.9) 140 (42.6)  28 (87.5) 31 (100)  
Face 101 (19.6) 113 (34.5)  24 (75.0) 30 (96.7)  
Scalp 19 (3.6) 14 (4.2)  4 (12.5) 1 (3.3)  
Ear 0 (0) 3 (0.9)  0 (0) 0 (0)  

Characteristics HAM10000 DAYISET 1 
BCC AK p 

Value 
BCC AK p 

Value (n=514) (n=327) (n=32) (n=31) 
Neck 14 (2.7) 10 (3.0)  0 (0) 0 (0)  
Upper extremity 49 (9.5) 62 (18.9)  2 (6.2) 0 (0)  
Hand 2 (0.3) 13 (3.9)  0 (0) 0 (0)  
Lower extremity 58 (11.9) 65 (19.8)  1 (3.1) 0 (0)  
Foot 4 (0.7) 0 (0)  0 (0) 0 (0)  
Back 186 (36.1) 29 (8.8)  1 (3.1) 0 (0)  
Trunk and 
abdomen 

76 (14.7) 18 (5.4)  0 (0) 0 (0)  

Abdomen 18 (3.5) 5 (1.5)  0 (0) 0 (0)  
Chest 47 (9.1) 12 (3.6)  0 (0) 0 (0)  
Trunk 11 (2.1) 1 (0.3)  0 (0) 0 (0)  
Others 5 (0.9) 0 (0)  0 (0) 0 (0)  
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3.4 Development of Machine Learning 
Prediction Model 

Through transfer learning, we inputted the top 
30 differentially significant deep learning features 
(obtained through differential analysis) into machine 
learning algorithms for training. Using 207 machine 
learning algorithms, we fine-tuned and trained the 
models on the training set, calculated the mean AUC 
values across the three validation sets, and ranked the 
models to evaluate their predictive capabilities 
(Figure 4 A). The rankings of AUC, diagnostic 
accuracy, and F-score calculations for our model are 

found in the supplementary materials (Figure S3). 
Based on the training results, we established a 
consensus model, which was built on the default 
configuration of XGBoost combined with Lasso 
regression. This model underwent training through 
10-fold cross-validation, with a threshold set at 0.5 for 
the binary classification task. Subsequently, we 
plotted the ROC curves of this model in different 
datasets and calculated the AUC values, which were 
1.000 in the training set, 0.634 in DATASET 2, 0.818 in 
DATASET 3, and 0.634 in DATASET 4. 

 

 
Figure 4. Construction and validation of a consensus machine learning diagnosis model. The top 10 among 207 machine learning prediction models are developed through 
ten-fold cross-validation based on 15 classical algorithms, and the AUC values of each model are calculated. (B) ROC curve of the predictive model in the training set cohort. (C) 
ROC curve of the predictive model in the internal validation set 1 cohort. (D) ROC curve of the predictive model in the internal validation set 2 cohort. (E) ROC curve of the 
predictive model in the external validation set cohort.  
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Figure 5. Comparison of the performance of machine learning prediction models in different data sets and calculation of the mean in the test set. (A) Calculation of diagnostic 
accuracy of models in different datasets. (B) Calculation of F-score of models in different datasets. 

 
Figure 6. Using confusion matrix and calibration curve, the predicted results of this consensus diagnostic model compared with the actual results. (A–D) Calibration curves of 
training set, internal verification set 1, internal verification set 2 and external verification set. (E–H) Confusion matrix of training set, internal verification set 1, internal verification 
set 2 and external verification set. 

 

3.5 Validation and Performance Assessment of 
the Predictive Model 

To assess the performance of our developed 
classification model, we computed common binary 
classification metrics, including accuracy (Figure 5 A), 
F-score (Figure 5 B), and recall (Figure S2). In the 
training set, the model achieved perfect values for 
accuracy, F-score, and recall, all equal to 1.000. In the 

validation set, the mean values were 0.708 for 
accuracy, 0.768 for F-score, and 1.000 for recall. To 
illustrate the extent of probability drift in our model, 
we plotted calibration curves for different datasets 
(Figure 6 A–D). The horizontal axis of the calibration 
curve represents the predicted probabilities, and the 
vertical axis represents the actual probabilities. In the 
training set, our calibration curve perfectly 
overlapped with the ideal calibration curve. In the test 
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sets, the calibration curve for test set 2 showed the 
smallest deviation angle. 

Next, we illustrated the model’s classification 
results more clearly by plotting confusion matrices. 
The confusion matrices are depicted in Figure 6 E–H, 
where rows represent the actual categories, and 
columns represent the model’s predicted categories. 
Using the confusion matrices, we computed the 
sensitivity for diagnosing BCC in different datasets. 
The sensitivity for DATASET 1 was 1.0, DATASET 2 
was 0.746, DATASET 3 was 0.874, and DATASET 4 
was 0.688. 

4. Discussion 
BCC is a common non-melanoma skin tumour, 

and its specific manifestations in appearance vary 
depending on the degree of infiltration. Therefore, 
some skin lesions can also exhibit dermoscopic 
features similar to BCC. This characteristic leads to 
difficulty in distinguishing skin lesions, requiring 
confirmation through biopsy after histopathological 
examination. For example, certain squamous cell 
carcinomas can present a basaloid appearance (38), 
and the abnormal dermoscopic pattern of BCC is like 
that of melanoma (39). The mainstay of treatment for 
BCC is surgical excision. However, in the case of 
diseases that can be misidentified as BCC, such as AK, 
surgical intervention is often the non-preferred 
option. The precision and effectiveness of non- 
invasive dermoscopic examinations for preoperative 
BCC diagnosis, particularly in cases lacking typical 
dermoscopic features, still fall short. Hence, 
enhancing the preoperative dermoscopic detection 
rate of BCC is of paramount importance. With the 
advent of artificial intelligence and big data, an 
increasing number of image-recognition assessment 
models tailored to medical imaging data are being 
applied to clinical tasks that challenge discernment. 
Radiomics has demonstrated excellent performance in 
recognition and classification tasks involving medical 
images, encompassing ultrasound, CT scans, 
endoscopy, and dermatoscopy (40–43). In the field of 
dermatoscopy, there is a growing body of research on 
constructing classification models based on deep 
learning. However, most studies analyse dermato-
scopic images from publicly available datasets. Our 
research integrates imaging data from public 
databases as a training set, establishes an internal 
validation set through data partitioning, and uses 
dermatoscopic images from our hospital as an 
external validation set. The classification model, 
validated through multiple datasets, exhibits 
enhanced diagnostic performance and stability across 
validation sets. 

Artificial intelligence often demonstrates 

excellent processing capabilities in image processing 
and can simulate the human learning process through 
computer algorithms. In the medical field, artificial 
intelligence can be utilised for the analysis and 
diagnosis of medical images, such as detecting 
tumours and identifying signs of disease (44–46). In 
the field of skin disease diagnosis, a recent study has 
utilised reflectance confocal microscopy for the 
differential diagnosis of skin diseases, and it has 
shown promising performance. In a recent study, this 
approach was employed to develop a diagnostic 
model for BCC (47). In practical applications, this 
imaging acquisition method is less commonly used 
compared with dermoscopy devices, leading to 
greater difficulty in image acquisition and a lack of 
validation through extensive publicly available data. 
However, the performance of machine learning 
models depends heavily on the quality and quantity 
of their training data. Machine learning models have 
numerous parameters, and with a substantial number 
of samples, the model can better adjust these 
parameters to accommodate the complexity of the 
training data. This helps the model capture abstract 
features in the input data more effectively and 
mitigates overfitting, making the model more 
generalisable (48). Our study enhances the 
universality and stability of the classification model 
through extensive computer training using a large 
volume of dermoscopic images. 

Recently, significant progress has been made in 
the identification of molecular biomarkers and the 
construction of prognostic models using machine 
learning models. For instance, in the study conducted 
by Zhang et al. (49), a combination model trained 
through machine learning can more precisely identify 
glioma patients who may benefit from immuno-
therapy, thereby enabling personalised medical 
treatment for these patients. In current research, the 
combinations of machine learning model algorithms 
are often generated by randomly combining common 
algorithms, typically around ten in number (30). In 
our study, however, we employed a random 
combination and parameter tuning process with 15 
classical algorithms, resulting in a total of 207 
algorithmic models. With the increase in the number 
of trained models, the computational workload for the 
computer learning tasks has significantly increased. 
Instead of a simple permutation and combination of 
algorithms, we applied methods like cross-validation 
to compute the machine learning with different 
parameters, obtaining optimal model parameters. In 
the field of dermoscopy DL models, many studies 
construct models using classical single algorithms, 
such as Lasso and GBM (50–52). Contrary to previous 
research methods, our study introduced innovation in 
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model construction by leveraging machine learning 
algorithms. The resultant models demonstrate a 
notable superiority over traditional counterparts, 
effectively addressing the limitations of conventional 
modelling approaches. 

In conclusion, we’ve created a composite 
algorithmic model that incorporates deep transfer 
learning (DTL) features using machine learning to 
differentiate between BCC and AK, validated across 
various cohorts. This composite model consistently 
surpasses the performance of individual classical 
models. Moreover, the constructed DTL model 
demonstrates notable specificity and sensitivity, 
assisting physicians of diverse experience levels in 
improving diagnostic accuracy and efficiency. 

In this retrospective study, we utilised both 
public databases and dermoscopic images from our 
medical centre to construct and validate a novel 
predictive model for distinguishing between BCC and 
AK. The DL model employed a pre-training approach 
combined with machine learning modelling, using 
high-throughput automated feature extraction 
algorithms to extract features from images and 
transform them into quantitative features (53). In this 
research, we employed a pre-trained DL model to 
process images, extracting features that were then 
transformed into quantitative data for subsequent 
analysis. The DTL technique facilitated the transfer of 
features between domains through feature 
transformation, aiming to minimise the feature gap 
between the source and target domains. Developed on 
DL algorithms, this technique is designed to improve 
the model’s generalisation (54). DTL automates the 
processing of input images, conducts target 
segmentation through weak supervision, and extracts 
DTL features. Employing computer-based machine 
learning model training, the model generated by 
combining the default configuration of XGBoost with 
Lasso regression showed superior predictive 
performance in both training and testing datasets 
compared with other models. The average AUC 
across the four datasets was 0.695, with a training set 
AUC value of 1.0. Furthermore, our model exhibited 
substantial sensitivity and specificity. In detail, when 
comparing the model’s predictions to the actual 
outcomes, the sensitivity was 1.0 in the training set 
and 0.746, 0.874, and 0.688 in the remaining three 
validation sets.  

In summary, our model exhibits consistent 
predictive performance, providing a non-invasive 
approach for preoperative patient assessment. 
Additionally, we transformed the extracted quanti-
tative feature values into heatmaps using Grad-CAM. 
Upon reviewing these heatmaps, we observed that, 
for dermoscopic images where the lesion area was not 

explicitly outlined, our model autonomously 
identified and extracted the lesion area, effectively 
delineating the boundary between the tumour and 
normal skin tissue. This approach serves to confirm 
the robustness of our model in image recognition. 

Conclusively, dermoscopy stands out as a 
straightforward tool for distinguishing between BCC 
and AK, boasting the benefits of non-invasiveness and 
cost-effectiveness. Improving the discriminative 
performance and efficiency of this supplemental 
examination in skin disease diagnosis holds 
considerable clinical significance and has the potential 
for broad integration into standard dermatological 
practices. The machine learning model we devised 
showcased outstanding predictive abilities across 
various validations. This decision support system has 
the potential to function as a supplementary 
diagnostic tool in clinical environments and serve as a 
valuable learning aid for less experienced 
dermatologists and dermatology trainees.  

However, our study has certain limitations, 
outlined as follows: (1) Our model was developed 
through a retrospective analysis of selected data, 
necessitating further prospective studies to validate 
the stability of our diagnostic model. (2) Due to the 
absence of subtype annotations for the lesions in our 
original data, our classification model cannot predict 
subtypes for BCC and AK. (3) Our research is based 
on the analysis and modelling of dermoscopic images 
from a public database and a single medical centre, 
and so lacks validation from large-scale, multicentre 
datasets. 

5. Conclusion 
In summary, our study is based on a 

combination model developed from 207 machine 
learning models, integrating XGBoost with Lasso 
regression. This model, utilising the automated 
processing of dermoscopic images, demonstrates 
exceptionally high accuracy in the discrimination and 
diagnosis of BCC and AK. The classification 
diagnostic model can assist less experienced 
dermatologists in distinguishing lesions, aiding in the 
selection of appropriate treatment strategies for 
patients and mitigating the need for biopsies. 
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