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Abstract

Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) is a critical m6A reader. It encodes
proteins that contain several KH domains, which are important in RNA binding, RNA synthesis and
metabolism. Lots of researches have studied the malignant potential of m6A readers in tumors. However,
the biological functional analysis of IGF2BP3 in hepatocellular carcinoma (HCC) and pan-cancer is not
comprehensive. In this study, we used a bioinformatics approach to comprehensively analyze the
significance of IGF2BP3 in HCC through analyzing its expression, mutation, prognosis, protein-protein
interaction (PPI) network, functional enrichment, and the correlation with ferroptosis, stemness as well
as immune modulation in HCC. IGF2BP3 presented a negative correlation with the ferroptosis molecule
NFE2L2, and a positive correlation with the ferroptosis molecule SLCIAS as well as the immune
checkpoint HAVCR2. In addition, we also analyzed IGF2BP3 expression, prognosis and immune
modulation in pan-cancer, revealing the prognostic value of IGF2BP3 in a variety of tumors. Finally, we
verified the biological functions of IGF2BP3 in HCC through various experiments. The data showed that
IGF2BP3 may enhance the proliferation, colony formation and invasion capacities of HCC cells, and
IGF2BP3 is mainly positively correlated with the expression level of stemness marker SOX2. In
conclusion, IGF2BP3 had a potential to be a new perspective biomarker in forecasting the immune
response, ferroptosis, stemness and prognosis of HCC or even pan-cancer.

Keywords: IGF2BP3, expression features, prognosis, immune modulation, hepatocellular carcinoma (HCC), pan-cancer analysis.

Introduction

Cancers are the common cause of death and a  frequent primary liver cancer, accounting for about

significant obstacle to improving life expectancy in
countries worldwide [1]. Based on the global cancer
statistics 2020, primary liver cancer was the sixth
commonest cancer and the third most frequent cause
of mortality due to cancer worldwide. In addition,
hepatocellular carcinoma (HCC) was the utmost

75% to 85% of cases [2]. The current therapeutic
modes for HCC include drug therapy (such as
sorafenib, lenvatinib, and regorafenib), percutaneous
ablation, trans-arterial chemoembolization (TACE),
chimeric antigen receptor engineered T-cell
immunotherapy (CAR-T), HCC resection, and liver
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transplantation [3]. However, the mortality rate of
HCC patients remains high. Therefore, it is urgent to
find new therapeutic directions.

Cancer stem cells (CSCs) are a unique subset of
undifferentiated cells with stem cell-like properties
and have been considered to be the driving force for
tumor growth, metastasis and therapeutic resistance
[4]. Tumor stemness refers to the stem cell-like
phenotype of tumor cells, which plays an important
role in different aspects of HCC [5]. The stemness
characteristics of CSCs depend on a variety of
molecular targets, involving genetic and epigenetic
factors of various signaling pathways, tumor
microenvironment, apoptotic pathways, microRNA,
stem cell differentiation and drug resistance.
Inhibition of these stem cell molecular targets is one of
the effective treatment strategies to eliminate tumor
stemness [6].

N6-methyladenosine (m6A) modifications, as
prevalent modifications in RNA, are involved in the
regulation of RNA destiny, including the stability,
splicing, degradation, translation, as well as
exportation of RNA. M6A regulators include
“writers”, “readers”, and “erasers”, which increase,
recognize and remove m6A modifications on RNA
and thus play an important role in tumors [7]. The
aberrant m6A modification could alter the tumor
immune response in various cancers by regulating
immune cell infiltration, pro-tumor inflammation,
immune suppression, immune surveillance and
anti-tumor immune response [8, 9]. m6A
modifications were found to alters HCC progression
by affecting immune cell recruitment and pro-tumor
inflammation [10]. In addition, m6A modifications
altered the proliferation and metastasis of gastric
cancer by participating in the infiltration of immune
cells and activation of immune pathways [11].

Insulin like growth factor 2 mRNA binding
protein 3 (IGF2BP3) is a critical m6A “reader” and a
growing amount of research suggests that IGF2BP3
has an essential role in the development of tumors [12,
13]. IGF2BP3, as a protein coding gene, encodes
proteins that contain several KH domains, which are
important in RNA binding, RNA synthesis and
metabolism [14]. Although IGF2BP3 has been
discovered to exert cancer-promoting functions in
HCC [15, 16], comprehensive bioinformatics analysis
of IGF2BP3 in HCC and pan-cancer is scarce. The
purpose of this study is to provide more new ideas on
the pathogenic mechanisms and more therapeutic
possibilities for the treatment of HCC and pan-cancer.

In this paper, a comprehensive bioinformatics
analysis of IGF2BP3 in HCC was performed by using
the tumor and normal tissue data from TCGA and
GETx databases. The expression pattern, prognostic

value, mutation status, protein-protein interaction,
function enrichment analysis, and pertinent pathways
of IGF2BP3 in HCC were conducted. Moreover, the
correlation between IGF2BP3 and ferroptosis as well
as immune modulation in HCC were also dissected
and a series of potential targets for IGF2BP3 have been
identified, which might give some new possibilities
for a targeted treatment of HCC. We analyzed the
prognosis value of IGF2BP3 as well as the relationship
between IGF2BP3 and immune checkpoints, immune
cells, TMB, MSI, immunoinhibitors, immunostimu-
lators, and MHCs in pan-cancer. Finally, we verified
the differential expression and biological functions of

IGF2BP3 in HCC, and the association between
IGF2BP3 and HCC stemness through various
experiments.

Materials and methods

Data collection

RNAseq data as well as clinical information of
HCC patients were derived from The Cancer Genome
Atlas (TCGA) database [17] (https://portal.gdc.com)
and International Cancer Genome Consortium (ICGC)
database [18] (https:/ /dcc.icgc.org/releases/current/
Projects). The RNA-seq data of pan-cancer samples
including 33 kinds of cancer were also obtained from
TCGA dataset. 226 samples of normal tissues were
obtained from the GTEx database [19] (http://
commonfund.nih.gov/GTEx). The IGF2BP3 protein
expression level in HCC and normal tissue was
derived from the Human Protein Atlas (HPA)
database  [20]  (https://www.proteinatlas.org/).
Ferroptosis-related genes were obtained from
previous research by Ze-Xian Liu et al [21]. And the
mo6A-related genes were obtained from the research
by Juan Xu et al [22].

Gene expression analysis

Limma package of R software (version:3.40.2)
were used to get the differential mRNA expression
level. Adjusted P value < 0.05 and log2 (fold change) >
1 or log2 (fold change) < -1 was selected as mRNA
differential expression threshold. “ggplot2 package”
was applied to depict boxplot; and “pheatmap
package” was applied to depict heatmap.

Functional enrichment analysis

Functional enrichment analysis of differentially
expressed genes was performed to further confirm the
function of the target molecules. The ClusterProfiler
package (version: 3.18.0) in R was used to identify
promising mRNAs for GO and KEGG analysis.

Survival analysis

Log-rank test and univariate cox proportional
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hazards regression were used to calculate p-values
and hazard ratios (HR) with 95% confidence intervals
(CI) wusing the R packages “survivor” and
“survminer”. R software package “ggalluvial” was
used to draw Sankey diagram. In addition, the "pROC
package" was used for ROC analysis and the "ggplot2
package" was used for ROC visualization. P < 0.05
were regarded as statistical significance.

Univariate and multivariate cox regression
analyses were used in this study, and forest plots
were drawn by the "forestplot" package to show each
variable (P, HR and 95% CI). In addition, the
cBioPortal (https://www.cbioportal.org/) database
[23] was applied to acquire genomic alteration of
IGF2BP3 in LIHC from TCGA.

Protein-protein interaction analysis

The IGF2BP3 co-expression genes were
downloaded from cBioPortal. We used STRING
(https:/ /string-db.org/) database [24] to get
protein-protein interaction. Furthermore, we used
Cytoscape software (version 3.9.0) to integrate
co-expression genes of IGF2BP3 co-expression genes
that obtained from cBioPortal. The co-expression
genes all showed high spearman's correlation with
IGF2BP3 (>0.4). In addition, we selected hub genes
through cytoHubba plug.

Correlation analysis between genes and
pathways

We collected the gene sets in the relevant
pathways from the literature [25], and calculated the
enrichment scores for each sample on each pathway
according to the ssGSEA algorithm to obtain the
association between HCC samples and pathways.
Analysis was performed using the R software GSVA
package with the parameter selected as
method='ssgsea'. Correlations between gene and
pathway scores were analyzed by Spearman's
correlation method.

Pan-cancer correlation analysis of IGF2BP3
expression, prognosis, immune modulation,
TMB and MSI

TMB data obtained from previous research by
Vesteinn Thorsson et al. [26]; And MSI data obtained
from Russell Bonneville et al. [27]. We wused
immuneeconv R software package to assess the
immune score evaluation. TISIDB database (http://
cis.hku.hk/TISIDB/index.php) [28] was used to get
spearman correlations between the expression level of
IGF2BP3 and immunoinhibitors, immunostimulators,
immune subtypes as well as MHCs among human
cancers. We obtained the expression data of IGF2BP3
before and after cytokine treatment in various of

cancer cell lines through TISMO database (http://
tismo.cistrome.org/) [29]. Moreover, the distribution
of immune cells after immunotherapy and their
expression data of IGF2BP3 were obtained from the
TISCH2 database (http://tisch.comp-genomics.org/)
[30]. R software v4.0.3. were used for statistical
analyses.

Cell culture, lentiviral transduction, and
RT-PCR

PLC, Hep3B, HepG2 cell lines were cultured in
MEM with 10% FBS. THLE-3 and Huh-7 cell lines
were cultured in DMEM with 10% FBS. The materials
and methods are as before [31]. And primer sequences
were as follows:

IGF2BP3-F: 5-ACGAAATATCCCGCCTCATT
TAC-3,
IGF2BP3-R: 5'-GCAGTTTCCGAGTCAGTGT

TCA-3' (reverse);
SLC1A5-F: TCCTCTTCACCCGCAAAAACCC,
SLC1A5-R: CCACGCCATTATTCTCCTCCACG;
PDCD1-F: AGCCCCAGCAACCAGAC,
PDCD1-R: GCCCCACAGAGGTAGGTG;
ACSL4-F: GGAATGACAGGCCAGTGTGA,
ACSL4-R: TAGCACATGAGCCAAAGGCA;
HAVCR2-F: AGGAGCCTGTCCTGTGTTTG,
HAVCR2-R: GGACACATCTCCTTTGCGGA;
CD274-F: CTGGCATTTGCTGAACGCAT,
CD274-R: AGTGCAGCCAGGTCTAATTGT;
SLC7A11-F: TCCTGCTTTGGCTCCATGAACG,
SLC7A11-R: AGAGGAGTGTGCTTGCGGA

CAT;
NFE2L2-F:

TGG,
NFE2L2-R: GGAATGTCTGCGCCAAAAGCTG;
TFRC-F: GCTGCCAGCTTTACTGGAGA,
TFRC-R: CGTCACCAGAGAGGGCATTT.
SOX2-F: ACGCTCATGAAGAAGGATAAGT,
SOX2-R: GAGCTGGTCATGGAGTTGTAC;
Nanog-F: CCTATGCCTGTGATTTGTGG,
Nanog-R: GATCCATGGAGGAAGGAAGA;
Epcam-F: AATCGTCAATGCCAGTGTACTT,
Epcam-R: TCTCATCGCAGTCAGGATCATAA;
OCT4-F: GAGAAGGATGTGGTCCGAGT,
OCT4-R: GTGCATAGTCGCTGCTTGAT;
ALDH1A1-F: TAGCTGATGCCGACTTGGAC,
ALDH1A1-R: AACACTGTGGGCTGGACAAA;
The shRNA sequences are as follows:

CACATCCAGTCAGAAACCAG

shIGF2BP3#1: 5-GCAGGAATTGACGCTG
TAT-3,

shIGF2BP3#2: 5-TAATCCAGGAATTAAATG
TGC-3,

shNC: 5-TTCTCCGAACGTGTCACGT-3'.
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Western blotting

The total protein of cells was extracted with
RIPA lysate (Beyotime, China). The concentration was
determined by BSA standard protein and separated
by SDS-PAGE. anti-IGF2BP3(14642-1-AP), anti-a-
tublin (66031-1-Ig) and anti-SOX2 (66411-1-Ig) were
purchased from Proteintech (Wuhan, China).

Cell proliferation

Cell proliferation assay Cell Counting Kit-8 kit
was used and operated according to the instructions.
The cells were seeded in 96-well plates (3000 cells /
well) and cultured at 37 °C. The absorbance at 450 nm
was measured at 0,24,48 and 72h respectively.

Colony formation assay

1000 cells were inoculated into 6-well plates and
cultured for two weeks. The number of colonies with
> 50 cells was observed and counted under an optical
microscope.

Transwell invasion assay

A total of 100pl of Matrigel (Corning, USA) with
a concentration of 200pg/ml was evenly spread to the
bottom of the Transwell chamber. The chamber was
placed in a 24-well plate and incubated in a 37 °C
incubator for 1 hour to form a gel. The cells were
cultured to logarithmic growth phase, digested,
suspended in serum-free medium, counted, and
adjusted to a concentration of 2 x 105/ml. Add 800pl
complete medium containing 20% fetal bovine serum
to the lower chamber, and add 200pl cell suspension
to the upper chamber of the Transwell chamber. Put
them in the incubator for 40hrs. The cells were fixed
and stained, and observed under an optical
microscope. Five high-power fields (x20) were
selected and photographed.

Statistical analysis

Statistical differences between the two groups
were tested by Wilcox test. Spearman correlation
analysis was used to assess the correlation between
gene expression levels and checkpoint-associated
genes. Univariate as well as multivariate cox
regression analyses were applied to construct
nomograms. We used P < 0.05 as statistical
significance.

Results
Prognostic value of IGF2BP3 in HCC patients

In order to acquire a more comprehensive
understanding about the role of m6A methylation,
ferroptosis and immune modulation in HCC, we
selected an m6A “reader” called IGF2BP3 as an
example for the next study. First, we divided the

LIHC data in the TCGA database into IGF2BP3hish and
IGF2BP3low group according to the IGF2BP3 median
expression levels.

Then, we further evaluated the prognostic value
of IGF2BP3high expression group and IGF2BP3low
expression group in HCC. Patients with HCC
expressing higher IGF2BP3 showed worser overall
survival (OS) as well as disease-free survival (DFS)
than those expressing lower IGF2BP3 group (Figure
1A and Figure 1B). In addition, Sanberry plots
demonstrated that both the high and low IGF2BP3
expression groups were associated with TNM stage,
grade, and survival status of HCC patients (Figure
1C). Furthermore, we used ROC curves to assess the
prognostic value of IGF2BP3 in HCC. The area under
the ROC curve in this study was 0.813, which suggests
that IGF2BP3 could be a candidate factor for the
diagnosis of HCC patients (Figure 1D). Next, we
examined the correlation between IGF2BP3 and OS in
HCC by Cox analysis. Univariate analysis showed
that IGF2BP3 expression (HR = 1.29496, p = 0.00056),
pT-stage (HR = 1.67473, p < 0.0001) and TNM stage
(HR =1.37612, p=0.00066) were associated with OS in
HCC. However, age (HR = 1.01235, p=0.07752),
gender (HR = 0.81601, p=0.26043), and grade (HR =
1.12104, p=0.33867) seems no statistically relationship
with OS in HCC (Figure 1E). Multivariate analysis
demonstrated that IGF2BP3 expression was an
independent predictor of progression in HCC (HR =
1.22752, p = 0.00765 (Figure 1F).

Genetic alteration and protein-protein
interaction analysis of IGF2BP3 in HCC
patients

The cBioPortal database was applied to analyze
genetic alterations of IGF2BP3 in HCC. As is depicted
in Fig. 2A, IGF2BP3 was altered in 36 (10%) of HCC
samples, which include “missense mutation”,
“truncating mutation”, “amplification”, and “mRNA
high”. As is showed, “mRNA high” and “amplifi-
cation” were the most common types. Next, we
investigated the mutational profile of IGF2BP3 that
across protein domains in HCC and detected three
mutant sites which located between 0 and 579aa. In
addition, the protein post-translational modification
(PTM), including phosphorylation, acetylation,
ubiquitination, ~ methylation,  glutathionylation,
S-nitrosylation, and sumoylation sites were also
showed in Figure 2B.

To better understand the function of IGF2BP3,
we depicted a PPI network. The result showed that
IGF2BP3 has intricate interactions with multiple
proteins, including YBX1, IGF2BP1, STAUl,
HNRNPAB, HNRNPM, XRN2, DDX5, LIN2BA, IGF2,
and HMGA?2 (Figure 2C).
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Figure 1. The up-regulation of IGF2BP3 is correlated with poor clinical outcomes of HCC patients. (A) The Kaplan—Meier analysis on the overall survival of HCC
patients with high and low IGF2BP3 expression level in the TCGA cohort. (B) The Kaplan—Meier analysis on the progression free survival of HCC patients with high and low
IGF2BP3 expression level in the TCGA cohort. HR represents the risk ratio of the high expression group relative to the low expression group, and 95% Cl represents the HR
confidence interval. (C) The Sankey diagram showed the connection degree among the IGF2BP3 expression level and TNM stage, grade and the survival in HCC patients. (D)
ROC curves showed the predictive efficiency of the risk signature IGF2BP3 for HCC survival. (E) Univariate (left) and multivariate (right) Cox analysis of IGF2BP3 expression and
other factors in HCC patients.
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Figure 2. Mutation and protein-protein interaction analysis of the IGF2BP3 co-expression genes in HCC patients. (A) Mutation types and mutation frequency of
IGF2BP3 in HCC. (B) Mutation diagram of IGF2BP3 in HCC across protein domains, and the protein post-translational modification (PTM) sites. (C) Protein-protein interaction
(PPI) network that interacts with IGF2BP3 from cBioPortal database. (D) PPl network used co-expression genes of IGF2BP3 from cBioPortal database. The network was arranged
according to the degree of protein interactions, with the innermost circle being top 10 hub genes. Other three circles were arranged from the outermost circle: 0-50, middle
circle: 51-100, and inner circle: 101-150.
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Furthermore, we obtained the co-expression
molecules of IGF2BP3 gene through the cBioPortal
database. The network was arranged according to the
degree of protein interactions, with the innermost
circle being top 10 hub genes, including NCAPG,
CDK1, CCNB2, BUB1B, AURKB, CENPE, BUBI,
KIF11, CDC20, and DLGAP5. These data were
analyzed by cytoHubba plug in Cytoscape software.
Other three circles were arranged from the outermost
circle: 0-50, middle circle: 51-100, and inner circle:
101-150 (Figure 2D).

Expression and functional enrichment analysis
of IGF2BP3 in HCC patients

With the analysis of IGF2BP3 mRNA expression
level from TCGA LIHC data and GETx database,
IGF2BP3 was highly expressed in HCC tissues (Figure
3A). To wunderstand the protein expression of
IGF2BP3, we visualized the protein structure of
IGF2BP3 using the cBioportol database (Figure 3B). In
addition, the protein expression level of IGF2BP3 was
higher in HCC based on the UALCAN database
(Figure 3C).

To validate the role of IGF2BP3 involved in
HCC, we separated HCC patients into two
sub-groups based on the expression of IGF2BP3,
namely, the IGF2BP3high group and the IGF2BP3low
group. The differential expression analysis of these
two groups identified 148 up-regulated genes (e.g.
TOP2A, MYBL2, CDC20, TRNP1, AGR2, PEGIO,
BPP1, CTAG2, SPP1, COX7B2, CD24, AFP, S100P, and
SPINK1) and 34 down-regulated genes (e.g. CYP3A4,
HPD, ADHIC, SLC10A1, AQP9, ADHIB, and
CYP8B1). We used volcano plot (Figure 3D) and heat
maps (Figure 3E) for visualizing these results. Next,
GO and KEGG enrichment analysis of the differential
genes demonstrated that upregulated genes were
enriched in cell cycle related pathways. Furthermore,
they also enriched in organelle fission and nuclear
division function. However, downregulated genes
were enriched in the metabolism of xenobiotics by
cytochrome P450 related pathways. In addition, they
also enriched in fatty acid metabolic process (Figure
3F).

The correlation of IGF2BP3 with different
functional pathways (or functional gene sets) in
HCC

In addition, to further understand the pathways
of IGF2BP3 in HCC, we collected genes in 20 common
functional pathways (or functional gene sets) and
analyzed the correlation between IGF2BP3 and these
pathways. These functional pathways (or functional
gene sets) include tumor inflammation signature,
tumor proliferation signature, cellular response to

hypoxia, EMT markers, angiogenesis, apoptosis, ECM
related genes, DNA repair, inflammatory response,
G2M checkpoint, PI3K_AKT_mTOR_pathway, MYC
targets, P53_pathway, TGFp3, genes upregulated by
reactive oxygen species (ROS), IL-10 anti-inflam-
matory signaling pathway, DNA replication,
degradation of ECM, collagen formation, and
ferroptosis related pathways. The enrichment scores
of each sample on each pathway were calculated
sequentially according to the ssGSEA algorithm to
obtain the association between samples and
pathways. The results demonstrated that IGF2BP3
was involved in all signaling pathways except the
tumor inflammation signature, ECM related genes,
and angiogenesis related pathways. More
importantly, IGF2BP3 was closely associated with the
following five signaling pathways (r > 0.4), that were
tumor proliferation signature, G2M checkpoint,
PI3K_AKT_mTOR_pathway, MYC targets, and DNA
repair related pathways (Figure 4). Chen X et al.
found that in LUAD, overexpression of IGF2BP3 can
activate PI3K/AKT signal transduction, while
silencing IGF2BP3 reduces the activity of this
pathway [32]. IGF2BP3 promotes the stability and
storage of its target gene MYC mRNA in a
mo6A-dependent manner under normal and stress
conditions, thereby affecting gene expression output
and promoting the occurrence and development of
cancer, such as neuroblastoma and nasopharyngeal
carcinoma [33-35].

IGF2BP3 participated in ferroptosis and
immune modulation processes in HCC
patients

In recent years, ferroptosis and immune
modulation have been demonstrated a critical role in
tumorigenesis and progression. Ferroptosis took part
in chemoresistance in colorectal cancer (CRC), and
studies revealed that adipose-derived exosomes
promoted resistance to oxaliplatin by decreasing
susceptibility to ferroptosis [36]. Tu et al. analyzed the
therapeutic benefits of cancer immunotherapy for
personalized  therapies by studying cancer
immunotherapy and single cell resistance [37]. To
obtain a more comprehensive and complete
information, we analyzed 25 ferroptosis related genes
(including MT1G, GLS2, NFE2L2, CDKN1A, SATI,
GPX4, HSPA5, ACSL4, SLC7A11, TFRC, EMC2, RPLS,
HSPB1, FANCD2, CS, SLC1A5, CARS, ALOX15,
ATL1, FDFT1, LPCAT3, CISD1, ATPSMC3, NCOA4,
and DPP4) and the differential analysis showed that
except for NCOA4, all of these ferroptosis associated
genes were significantly differentially expressed in
HCC and normal tissues (Figure 5A).
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Figure 3. The differential expression analysis of IGF2BP3 and functional enrichment analysis in HCC and normal tissues. (A) The mRNA expression level of
IGF2BP3 in HCC and normal tissues. (B) The spatial structure of IGF2BP3 protein. (C) The protein expression level of IGF2BP3 in HCC and normal tissues. (D) Volcano plot of
differential genes in IGF2BP3hie" and IGF2BP3lew expression groups (divided by the medium expression of IGF2BP3). There are 148 differentially upregulated genes and 34
significantly downregulated genes. (E) Heat map of differential genes in IGF2BP3high and IGF2BP3low expression groups. The top 50 up-regulated genes and top 50 down-regulated
genes are displayed here separately. (F) The graphs show KEGG pathway enrichment results and GO term enrichment results for differentially up-regulated genes and

down-regulated genes, respectively.
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Figure 5. Differential expression of ferroptosis related molecules and immune checkpoints in HCC and normal tissues. (A) The heatmap of ferroptosis related
genes expression. The different colors represent the trend of gene expression in different samples. (B) The heatmap of immune checkpoints expression. The different colors
represent the trend of gene expression in different samples. Red for HCC tissue, blue for normal tissue. The statistical difference of two groups was compared through the
Wilcox test, significance difference of three groups was tested with Kruskal Wallis test. *P < 0.05, **P <0.01, ***P < 0.001.

In addition, we examined the differential
expression of immune checkpoints in HCC and
normal tissues with a total of eight immune
checkpoints (including SIGLEC15, HAVCR2, CD274,
PDCDILG2, PDCD1, LAG3, CTLA4, and TIGIT) and
the results displayed that all immune checkpoints,
except HAVCR2 and PDCD1, were differential
expressed in HCC and normal tissues (Figure 5B).

Recent researches pointed out that IGF2BP3
might participate in ferroptosis and immune

modulation processes. For instance, Lu Z et al
verified in vivo and in vitro experiments that IGF2BP3
knockdown can significantly enhance SF-induced
ferroptosis in HCC cells. IGF2BP3 can stabilize NRF2
mRNA by binding to the m6A site of NRF2 mRNA.
The final conclusion was that the IGF2BP3-NRF2 axis
could be used as an important mechanism for
regulating ferroptosis during SF treatment in HCC
[16]. CircARID1A acted as a scaffold to promote the
interplay of IGF2BP3 and SLC7A5 mRNA, which
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ultimately increased the stability of SLC7A5 mRNA
and thus promoted gastric cancer cell proliferation
[38]. In addition, METTL3 can promote PD-L1 mRNA
stabilization by upregulating PD-L1 expression at the
post-transcriptional level in an IGF2BP3-dependent
manner, which is important for new and effective
therapeutic strategies in tumor immunotherapy [39].
However, the bioinformation analysis between
IGF2BP3 and ferroptosis as well as immune
modulation molecules was absent. So, we analyzed
the expression level of ferroptosis molecules, immune
checkpoints, and immune cell infiltration in HCC
patients with high and low IGF2BP3 expression
groups. In detail, we found that 17 ferroptosis related
genes (HSPA5, SLC1A5 EMC2, NFE2L2, HSPBI,
FANCD2, SLC7A11, CISD1, FDPT1, TFRC, CARS],
NCOA4, LPCAT3, CS, ALOX15, ACSL4 and ATL1)
were highly expressed in the IGF2BP3high expression
group. In contrast, SAT1 expression was low in the
IGF2BP3hish  expression group. However, the
ferroptosis associated regulators, CDKN1A, MTI1G,
GPX4, RPL8, GLS2, DPP4, and ATP5MCS3, displayed
no statistically differences in the high and low
IGF2BP3 expression groups (Figure 6A). In addition,
we explored the TIMER database and discovered that
immune cell infiltration (e.g. B cell, CD4+ T cell, CD8+
T cell, Neutrophil, Myeloid dendritic cell and
Macrophage) was differentially expressed in the high
and low IGF2BP3 expression groups (Figure 6B). In
addition, we found that 7 immune checkpoints
(TIGIT, PDCDILG2, PDCD1, HAVCR2, CTLA4,
CD274) were highly expressed in HCC high IGF2BP3
expression group, while SIGLEC15 showed no
statistical difference (Figure 6C).

We further explored the relationship between
IGF2BP3 and immune modulation, and found that
IGF2BP3 was highly expressed in HCC immune
subtypes C1 (wound healing), and C2(IFN-gamma
dominant) via TISIDB (Figure 6D). Moreover, we
analyzed the distribution of immune cells after
immunotherapy (Figure 6E) and their expression of
IGF2BP3 (Figure 6F) through the TISCH2 database.
After PDL1-CTLA4 treatment, we found that IGF2BP3
was mainly expressed in HCC cells, while CD8T cells,
B cells, hepatocytes and plasma were also a little.

In addition, we found the target genes of
IGF2BP3  through the M6AREG  database
(http:/ /méareg.idrblab.net/). And interestingly, 6
important ferroptosis genes (CDKN1A, SLC7All,
GLS2, SLC1A5, NFE2L2, TFRC) and 3 immune
checkpoints (HAVCR2, PDCD1, CD274) were shown
to be targets of IGF2BP3, which further indicates that
IGF2BP3 was highly potential to perform important
functions in ferroptosis and immune modulation

(Supplementary Table 1). In addition, we also found
a number of novel potential targets of IGF2BP3
(Supplementary Table 2), which can provide us with
more help to study the function of IGF2BP3. Among
them, the most promising positive regulatory target of
IGF2BP3 is LRP6 and the most promising negative
regulatory target is MTAl. However, according to
Figure 6, we found that the expression of CDKNI1A
and GLS2 were not statistically different in the
IGF2BP3hish and IGF2BP3lev expression groups.
Moreover, through a Venn diagram, three immune
checkpoint (PDCD1, HAVCR?2, and CD274) and four
ferroptosis molecules (SLC7A11, SLC1A5, NFE2L2,
and TFRC), which are targets of IGF2BP3 and
differentially expressed in the high and low IGF2BP3
expression groups, were identified (Figure 7A). Next,
we examined the correlation between this four
ferroptosis molecules as well as three immune
checkpoints (that can serve as potential targets of
IGF2BP3) and IGF2BP3 by RT-PCR (Figure 7B-I). The
results showed that IGF2BP3 presented a negative
correlation with the ferroptosis molecule NFE2L.2, and
a positive correlation with the ferroptosis molecule
SLC1AS5 as well as the immune checkpoint HAVCR2.
However, in our data, no significant correlation has
been found between other ferroptosis molecules as
well as immune checkpoints and IGF2BP3, suggesting
that the regulatory relationship between IGF2BP3 and
ferroptosis as well as immune checkpoints may be
related to post-transcriptional levels.

Comprehensive analysis of IGF2BP3 in
pan-cancer

In this section, we wonder whether IGF2BP3
plays an important role in pan-cancer. Firstly, we
analyzed the expression level of IGF2BP3 in virous
types of tumors and normal tissues based on TCGA
and GTEx databases. In Figure 8, IGF2BP3 were
upregulated in 19 kinds of tumor, including BLCA,
CESE, DLBC, ESCA, CHOL, COAD, GBM, HNSC,
LIHC, KICH, KIRC, LUAD, LUSC, STAD, UCEC, OV,
PAAD, SKCM, and UCS. The expression level of
IGF2BP3 in adjacent tissues of LAML was higher.
Next, we evaluated the prognostic value of IGF2BP3
in pan-cancer. Take overall survival as an example,
the HR values of IGF2BP3 in 12 cancers (BLCA, KIRC,
LIHC, LUAD, KIRP, LAML, PAAD, SARC, LGG,
MESO, UCEC, and UVM) were all greater than 1,
implying that IGF2BP3 is a risk factor in these cancers
(Figure 9).

Subsequently, we investigated the role of
IGF2BP3 in the immune infiltration and immune
checkpoints of the tumor microenvironment in
pan-cancer.
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CIBERSORT algorithm was applied to determine
the correlation in IGF2BP3 and immune cells,
including T cell regulatory (Tregs), T cell CD4+
memory resting, T cell CD4+ memory activated, T cell
gamma delta, T cell CD8+, T cell CD4+ naive, T cell
follicular helper, Neutrophil, Myeloid dendritic cell
resting, Myeloid dendritic cell activated, NK cell
resting, NK cell activated, Monocyte, Macrophage

M2, Macrophage M1, Macrophage MO, Eosinophil,
Mast cell resting, Mast cell activated, B cell plasma, B
cell naive, and B cell memory. The results showed that
IGF2BP3 maintains a close relationship with these
immune cells in pan-cancer tissues, except for MESO.
In particular, IGF2BP3 was closely associated with
more than 10 immune cells in HNSN, LGG, LIHC,
LUAD, and THYM (Figure 10A). In addition, the
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correlation between IGF2BP3 and typical immune
checkpoints (including PDCD1, SIGLEC15, CD274,
TIGIT, CTLA4, LAG3, HAVCR2 and PDCD1LG2)
were explored. The results showed that IGF2BP3
expression levels in most tumors (except STAD,
DLBC,) were closely associated with immune
checkpoints, especially in TGCT, READ, PRAD,
LUAD, KIRP, BRCA and BLCAB (Figure 10B). By
reviewing the literature, we learned that inhibiting
IGF2BP3 in breast cancer cells can enhance anti-tumor
immunity through PD-L1-mediated T cell activation,
exhaustion, and infiltration [39]. In non-small cell
lung cancer, IGF2BP3 inhibits CD8 + T cell response

by promoting the deubiquitination of PD-L1, thereby
promoting tumor immune escape [40].

Furthermore, we found that IGF2BP3 was
positively correlated with microsatellite instability
(MSI) of ESCA, COAD, BLCA, UVM, TGCT, LUSC,
and negatively correlated with MSI of DLBC and
THCA (Figure 10C). Additionally, IGF2BP3 was
positively related to tumor mutational burden (TMB)
of LUAD, LGG, KIRC, HNSC, GBM, COAD, BRCA,
ACC, THYM, SKCM, SARC, PAAD, OV, and LUSC,
while negatively correlated with TMB of UVM
(Figure 10D).
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Figure 8. Pan-cancer analysis of IGF2BP3 expression. The mRNA expression le

vel of IGF2BP3 in 31 types of tumors. The mRNA levels of IGF2BP3 were found to be

upregulated in 20 different tumor tissues, including BLCA, CESE, CHOL, COAD, DLBC, ESCA, GBM, HNSC, KICH, KIRC, LAML, LIHC, LUAD, LUSC, OV, PAAD, SKCM,

STAD, UCEC, and UCS.

https://lwww.jcancer.org



Journal of Cancer 2024, Vol. 15

2859

Cancer  Pvalue Hazard Ratio(95% CI)
ACC 0.1867 1.67013(0.78005,3.57584)
BLCA 0.0265 1.4022(1.04021,1.89018)
BRCA 0.8784 1.02503(0.74689,1.40674)
CESC 0.876 0.96366(0.60524,1.53432)
CHOL 0.2859 0.59442(0.22865,1.54531)
COAD 0.2908 1.23338(0.83572,1.82026)
DLBC 0.2594  2.32252(0.53703,10.04432)
ESCA 0.9759 1.00756(0.61785,1.64306)
GBM 0.5989 1.10215(0.76707,1.58359)
HNSC 0.135 1.2288(0.93785,1.61001)
KICH 0.0871 3.94508(0.81909,19.00129)
KIRC <0.0001 2.06125(1.51234,2.80939)
KIRP <0.0001 5.43876(2.60565,11.35231)
LAML 0.008 1.79438(1.16448,2.76501)
LGG <0.0001 3.56353(2.39831,5.29485)
LIHC 0.0081 1.59824(1.12939,2.26173)
LUAD 0.0072 1.49385(1.11487,2.00168)
LUSC 0.1981 0.837(0.63831,1.09754)
MESO le—04 2.71485(1.64924,4.46898)
ov 0.7649 0.96131(0.74225,1.24502)
PAAD 0.0365 1.55228(1.02809,2.34374)
PCPG 0.6888 1.35934(0.30254,6.10755)
PRAD 0.2658 2.16539(0.55535,8.44313)
READ 0.7314 0.87031(0.39375,1.92369)
SARC 0.0079 1.72951(1.15455,2.5908)
SKCM 0.7512 1.04458(0.79769,1.3679)
STAD 0.3984 1.15223(0.82928,1.60093)
TGCT 0.4884 2.24956(0.22704,22.2888)
THCA 0.3666 1.59462(0.5791,4.39101)
THYM 0.4825 1.65787(0.40435,6.79739)
UCEC 0.021 1.64157(1.07766,2.50056)
ucs 0.3498 0.71937(0.36065,1.4349)
UVM 0.0113 3.33672(1.31302,8.47949)
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Figure 9. Prognostic analysis of IGF2BP3 in pan-cancer. Prognostic value of IGF2BP3 in pan-cancer on overall survival by forest plot. The p value, hazard ratio (HR) and
confidence interval were analyzed by univariate cox regression. IGF2BP3 is a risk factor in BLCA, KIRC, KIRP, LAML, LGG, LIHC, LUAD, MESO, PAAD, SARC, UCEC, and UVM.

Additionally, TISIDB database demonstrated
that spearman correlations between the expression
level of IGF2BP3 and immunoinhibitors,
immunostimulators, as well as MHCs among human
cancers. IGF2BP3 had a positively strong correlation
with immunoinhibitors in BLCA, BRCA, KIRC, and
UVM. However, they exhibited negatively strong
correlation in GBM, HNSN, and TGCT (Figure 11A).
Moreover, IGF2BP3 was closely and positively related
to immunostimulators in BLCA, BRCA, KIRC, and

UVM, while negatively in GBM, HNSN and TGCT
(Figure 11B). In addition, the correlations between
IGF2BP3 expression and MHC were also displayed.
They appeared obviously positive correlations in
BLCA, BRCA, LGG, and UVM, while obviously
negative correlations in HNSC, LUSC, and TGCT
(Figure 11C). We obtained the expression data of
IGF2BP3 before and after cytokine treatment in
various of cancer cell lines through TISMO database.
IGF2BP3 was differentially expressed before and after
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IFN-gamma treatment, especially in B16 cells, MOC2
cells and E0771 cells. It is also worth noting that in B16
cells, IGF2BP3 expression was significantly down
regulated after IFN-beta treatment (Fig. 11D). In
conclusion, IGF2BP3 participated in the immune
modulation of pan-cancer and may have potential to
be a new immunotherapeutic target in the tumor
therapy.

IGF2BP3 enhanced the proliferation, colony
formation and invasion abilities of HCC cells

The expressions of IGF2BP3 were up-regulated
in HCC cell lines (Fig. 12A and Fig. 12B). In order to
study the biological functions of IGF2BP3 in HCC, we
used the strategy of knockdown (KD) of IGF2BP3
gene. IGF2BP3-stable KD cell line was established in
Hep3B cells using lentiviral shRNA method and the
knockdown efficiency was detected by WB (Fig. 12C,
D). Compared with the negative control (NC) group,
the proliferation and colony formation rate of
IGF2BP3 KD Hep3B cells were slower. In addition, the
invasion rate of IGF2BP3 KD Hep3B cells was
significantly reduced (Fig. 12E-G). These results
suggested that IGF2BP3 enhanced the proliferation,
colony formation and invasion abilities of HCC cells.

The correlation between IGF2BP3 and HCC
stemness markers

In Figure 2D, the top 10 genes with the most
significant correlation with IGF2BP3 were NCAPG,
CDK1, CCNB2, BUB1B, AURKB, CENPE, BUBI,
KIF11, CDC20 and DLGAPS5. Through literature
search, we found that these key genes are considered
to be associated with HCC stemness [41, 42] . It was
found that NCAPG could promote the stemness and
glycolysis activity of LUAD cells. Further experiments
showed that 2-DG (glycolysis inhibitor) could reverse
the stimulation effect of NCAPG overexpression on
the stemness and glycolysis activity of LUAD cells
[43]. CDK1 can interact with the stemness marker
SOX2 protein and positively regulate the stemness of
lung cancer cells [44]. In order to further explore the
regulatory mechanism of IGF2BP3 on HCC stemness,
we detected the expressions of stemness markers in
IGF2BP3 KD cells, including SOX2, Nanog, Epcam,
OCT4, ALDH1A1, and so on. The results showed that
SOX2 was positively correlated with the expression of
IGF2BP3 (Fig. 12H-L). Next, we further verified the
correlation between IGF2BP3 and SOX2 at the protein
level by WB (Fig. 12M). The results showed that the
expression levels of IGF2BP3 and stemness marker
SOX2 were positively correlated.

Discussion

In this research, we mainly conducted a
comprehensive analysis of IGF2BP3 in HCC and
pan-cancer. Based on survival analysis, COX
regression analysis, and ROC curve analysis, we
concluded that IGF2BP3 was closely involved in the
bad prognosis in HCC patients and was an individual
risk element. More importantly, epigenetic regulation
was proved a fundamental biological process
involved in cancer [45]. In this paper, we found that
IGF2BP3 genetic and protein mutations were present
in HCC patients. And the gene mutations were
mainly in the form of gene amplification, while the
protein level mutations involved various protein
modification sites, including phosphorylation,
ubiquitination, acetylation, methylation, glutathiony-
lation, S-nitrosylation, and sumoylation sites. This
indicates that epigenetic modifications may also
conduct an important function in HCC. Subsequently,
we constructed a protein-protein interaction network
centered on IGF2BP3 protein, and analyzed it to
obtain the top 10 hub genes, including NCAPG,
CDK1, CCNB2, BUB1B, AURKB, CENPE, BUBI,
KIF11, CDC20, and DLGAPb5. Studies demonstrated
that these hub genes are thought to be associated with
cancer stemness [42, 46], and cancer immunity [47,
48]. Altogether, IGF2BP3 is an extremely important
molecule involved in a very complex tumorigenesis
process, which still has large research potential in the
future.

Ras-selective oncogenic small molecule, the
erastin, provokes a new form of iron-dependent
non-apoptotic cell death known as ferroptosis. The
erastin inhibits cyanine/glutamate antitoxicants
(System X(C) (-)) that inhibit cystine uptake, creating
gaps in the cell's antioxidant defenses and eventually
resulting in iron-dependent oxidative death. This kind
of non-apoptotic form of cell death might promote the
specific clearance of certain cancer cells, or become
activated in certain specific states of pathology [49].
Our results revealed that IGF2BP3 might participate
in ferroptosis processes through regulating
ferroptosis molecules (especially ACSL4, SLC1AD5).
This might be a novel way for IGF2BP3 to regulate
HCC, as ferroptosis has been shown to play an
important function in tumors. Research showed that
SHARPIN promoted cholangiocarcinoma cell prolife-
ration and inhibited ferroptosis via p53/SLC7A11/
GPX4 signaling [50]. In addition, ferroptosis related
elements was identified as potential predictive
markers for a variety of cancers, such as liver cancer
[51] and breast cancer [52, 53].
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Pan-cancer analysis of the correlation between IGF2BP3 expression and TMB as well as MSI. *P < 0.05, **P < 0.01, ***P <0.001.

https://lwww.jcancer.org



Journal of Cancer 2024, Vol. 15

2862

Spearman correlations between Expression (exp)
A of IGF2BP3 and immunoinhibitors

ADORA2A B
BTLA
€D160
cD244~
cD274
CD96
CSFIR™
CTLAg”
HAVCR2
1001’
o~
IL10RB |

|
| |
| |
KOR ™ [ | | |
KIR2DL1
K\RZDLS} | I
LAG3
LGALS9
PDCD1
PDCDILG2
PVRL2 ™
TGFB1

TGFBR1 | |
TGIT |

VTCN1

T
& @o*wgg%&@

g
PRV

C CaR (Ol Co
FREERREREES

@
(N WORF HR

R R v
LR R PIR TP HN
R RIS BRI

Spearman correlations between Expression (exp)
of IGF2BP3 and MHCs

B2M
HLA-A”
HLA-B |

HLA-C

D 4T1_GSE110912(n=6)

Spearman correlations between Expression (exp)

of IGF2BP3 and immunostimulators
Clogrtsa” -

q
S
8
o858
S5
FEENE NN

x
5
55
i |

VR

VRIS

195~
IGD2 -

TNFRSF138

e
=
28
BEH
o
I'm B
|

TNFSF138 7
TNFSF14 -~ B

R e P R QGaR® (20O ccOR 100010 10 a0 (A Pea (D
SRR BN IR SRR RR QAR

IGF2BP3 expression between pre- and post-cytokine
treatment

4T1 XW33589424(n=15)1 & .

4T1_RTM28723893(n=12) ‘=

] B16_GSE149824(n=8)- i
HLA-DMA
1 B16_SSG33589424(n=16] R,
HLA-DMB - nsis
Ha-0oa B16_GSE110708(n=6) pr—
HLA-DOB N B16_GSE107670(n=6) &
HLA-DPAY | . B16_GSE106390(n=6) pu
HLA-DPB1 :
4 B16_GSE85535(n=7) S Baseline
HLA-DQA1 = IFNb
J =8} SN = IFN
HIA-DQAZ B16_RTM28723893(n=8) = o
HLA-DQBT I CT26_RTM28723893(n=12) - —— TNFa
HLA-DRA 1y E0771_XW33589424(n=4) -_
HLA-DRB1 IFNb vs. Baseline
J EMT6_XW33589424(n=6)| * IFNg vs. Baseline
HLAE TGFb1 vs. Baseline
. KPC_RTM28723893(n=12) L TNFa vs. Baseline
1 Underscored if left side is larger
HLA-G LLC_RTM28723893(n=44) { ey
TAP1 MC38_GSE112251(n=12)
Tag2]) MC38_RTM28723893(n=48) e
TAPBP
P (P e e (e D DR 0D D D X Prcnrd MocL | _LZ5733(n=18) B—— ————— >
SRRSO R EPTIR o8 AR
R S RTINS MOC2_RU31562203(n=7) -
MOC22_RU31562203(n=4) { "=
Panc02_RTM28723893(n=12){ |
Renca_RTM28723893(n=11) v 3

2
1gf2bp3 log(TPM)

Figure 11. Pan-cancer correlation analysis of IGF2BP3 and immunoinhibitors, immunostimulators, MHCs, and cytokines. (A) IGF2BP3 had a positively strong
correlation with immunoinhibitors in BLCA, BRCA, KIRC, and UVM. However, they exhibited negatively strong correlation in GBM, HNSN, and TGCT. (B) IGF2BP3 was closely
and positively related to immunostimulators in BLCA, BRCA, KIRC, and UVM, while negatively in GBM, HNSN and TGCT. (C) The correlations between IGF2BP3 expression
and MHC appeared obviously positive in BLCA, BRCA, LGG, and UVM, while obviously negative in HNSC, LUSC, and TGCT. (D) IGF2BP3 was differentially expressed before
and after IFN-gamma treatment, especially in B16 cells, MOC2 cells and E0771 cells. In B16 cells, IGF2BP3 expression was significantly down regulated after IFN-beta treatment.

Immunotherapies are now targeting more than
just the CTLA-4 or PD-1 related pathways. A lot of
other immunomodulators, including both irritants
and inhibitors, have also been explored for cancer
immunotherapy as possible targets, and these
immunotherapies may become important changes in
the treatment of cancer [54]. For instance, discoidin
domain receptor 1 (DDR1) is a passive immune
modulator of colorectal cancer. It participates in CD4+
and CD8+ T cell hypo-infiltration through inhibiting
the synthesis of IL-18, thereby promoting colorectal
tumor growth in vivo [55]. In addition, the study
found that CD8 score might be a potential index to
identify immune checkpoint inhibitors. And that HCC

patients with high CD8 scores exhibit better tumor
prognosis, which may be associated with
immune-mediated tumor cell attack [56]. Importantly,
this study declaimed that IGF2BP3 might participate
in immune modulation processes, by interacting with
immune infiltration (especially myeloid dendritic cell)
and immune checkpoints (PDCD1 and HAVCR?2) in
HCC patients. We also revealed the distribution of
IGF2BP3 in the tumor microenvironment, some of
IGF2BP3 existed in CD8Tex cells, which provided
some new evidence for immune modulation.
Altogether, our study provided integrated potential
mechanisms of IGF2BP3 in the immune regulation of
HCC, which is worthy of further exploration.
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Figure 12. IGF2BP3 was correlated with cell proliferation, colony formation, invasion and cancer stemness of HCC. (A) The mRNA expression levels of
IGF2BP3 were up-regulated in HCC cell lines. (B) The protein expression levels of IGF2BP3 were up-regulated in HCC cell lines. (C) The knockdown efficiency of IGF2BP3 in
Hep3B was detected by RT-PCR. (D) The knockdown efficiency of IGF2BP3 in Hep3B was detected by WB. (E) The colony formation assay of IGF2BP3 KD and NC group in
Hep3B cells. (F) The cell invasion assay of IGF2BP3 KD and NC group in Hep3B cells. (G) The cell proliferation assay of IGF2BP3 KD and NC group in Hep3B cells. (H-L) The
expression levels of stemness markers including SOX2, Nanog, Epcam, OCT4, and ALDHIAT1 in IGF2BP3 KD Hep3B cells were detected by RT-PCR. (M) The expression levels
of SOX2 in IGF2BP3 KD Hep3B cells were detected by WB.
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In addition, we validated the correlation of
IGF2BP3 with ferroptosis molecules (NFE2L2,
SLC1A5) and immune checkpoint (HAVCR?2) through
experiments. However, more extensive experiments
are needed to validate the findings of this study.

Conclusions

In conclusion, we wused a bioinformatics
approach to comprehensively analyze the significance
of IGF2BP3 in HCC through analyzing its expression,
mutation, prognosis, functional enrichment, and the
correlation with ferroptosis, stemness as well as
immune modulation in HCC. This helps us to explain
the occurrence and progression of HCC from multiple
perspectives and thus find more effective therapeutic
approaches. In addition, we also analyzed IGF2BP3
expression, prognosis and immune modulation in
pan-cancer, revealing the prognostic value of IGF2BP3
in a variety of tumors. Finally, we verified the
biological functions of IGF2BP3 in HCC through
various experiments. According to our results,
IGF2BP3 can be used as a biomarker for clinical
detection of HCC, which is of positive significance for
the treatment and prognosis of HCC patients.
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