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Abstract 

Background: Copper and copper-binding proteins are key components of tumour progression as they play an 
important role in tumour invasion and migration, and abnormal accumulation of copper (Cu) may be intimately 
linked to with lung adenocarcinoma (LUAD). 
Methods: Data on lung adenocarcinoma were sourced from the Cancer Genome Atlas (TCGA) database and 
the National Centre for Biotechnology Information (GEO). 10x scRNA sequencing, which is from Bischoff P et 
al, was used for down-sequencing clustering and subgroup identification using TSNE. The genes for 
Copper-binding proteins (CBP) were acquired from the MSigDB database. LASSO-Cox analysis was 
subsequently used to construct a model for copper-binding proteins (CBPRS), which was then compared to 
lung adenocarcinoma models developed by others. External validation was carried out in the GSE31210 and 
GSE50081 cohorts. The effectiveness of immunotherapy was evaluated using the TIDE algorithm and the 
IMvigor210, GSE78220, and TCIA cohorts. Furthermore, differences in mutational profiles and the immune 
microenvironment between different risk groups were investigated. The CBPRS's key regulatory genes were 
screened using ROC diagnostic and KM survival curves. The differential expression of these genes was then 
verified by RT-qPCR. 
Results: The six CBP genes were identified as highly predictive of LUAD prognosis and significantly correlated 
with it. Multivariate analysis showed that patients in the low-risk group had a higher overall survival rate than 
those in the high-risk group, indicating that the model was an independent predictor of LUAD. The CBPRS 
demonstrated superior predictive ability compared to 11 previously published models. We constructed a 
column-line graph that includes CBPRS and clinical characteristics, which exhibits high predictive performance. 
Additionally, we observed significant differences in biological functions, mutational landscapes, and immune cell 
infiltration in the tumour microenvironment between the high-risk and low-risk groups. It is noteworthy that 
immunotherapy was also significant in both the high- and low-risk groups. These results suggest that the model 
has good predictive efficacy. 
Conclusions: The CBP model demonstrated good predictive performance, revealing characteristics of the 
tumour microenvironment. This provides a new method for assessing the efficacy of pre-immunisation and 
offers a potential strategy for future treatment of lung adenocarcinoma. 
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Introduction 
Globally, lung cancer has been the leading cause 

of cancer deaths [1]. Of these, lung adenocarcinoma 
(LUAD) is the most common histological subtype [2, 
3]. Lung adenocarcinoma (LUAD) is the most 
common pathological subtype of lung cancer, 
accounting for approximately 40% of all lung cancer 
cases [4]. LUAD is the most common pathological 
subtype of lung cancer, accounting for approximately 
40% of all lung cancer cases. Despite significant 
advances in combination treatment strategies for 
LUAD, the average 5-year survival rate for LUAD is 
approximately 15% [5]. This calls for the discovery of 
new therapeutic targets and effective combination 
therapy strategies for LUAD. 

Copper is an indispensable metal ion for the 
human body and plays a vital role in various 
physiological activities by acting as a cofactor for key 
enzymes involved in biological functions [6]. 
However, tumours are also particularly dependent on 
the metal, as angiogenesis can be promoted [7]. 
Elevated serum copper levels in cancer patients, as 
well as elevated copper levels in tumour tissues, 
support the possibility that cancer cells have an 
increased need for copper [8]. A growing body of 
evidence reveals an important role for copper in the 
malignant phenotype of cancer. Copper has been 
reported to regulate the migratory capacity of cancer 
cells by activating metabolic and proliferative 
enzymes [8]. In addition, copper has been reported to 
regulate the angiogenic process by increasing the 
expression of angiogenic factors, an important 
hallmark of cancer [9]. In addition, copper may serve 
as a new target for cancer therapy [8, 10]. Clinical 
studies have revealed the anti-cancer efficacy of 
several copper chelators [11]. For example, tetrathio-
molybdate, a copper chelator used in the treatment of 
Wilson's disease, a hereditary copper overload 
disorder, significantly inhibits angiogenesis and 
metastasis by targeting NF-κB signalling in breast 
cancer [12]. 

Copper-binding proteins play significant roles in 
tumours. However, their role in lung adenocarcinoma 
has not been studied yet. These proteins are crucial 
regulators of copper homeostasis and downstream 
effectors of copper. It is reasonable to speculate that 
copper-binding proteins may play important roles in 
copper-mediated tumour progression. We conducted 
a systematic analysis of the role of copper-binding 
proteins in lung adenocarcinomas. We explored their 
expression patterns, prognostic value, and immune 
microenvironmental regulation in lung adenocarci-
nomas. Our bioinformatic analyses generated a novel 
copper-binding protein-based column-line graphical 

model for predicting the prognosis of LUAD patients. 
This contributes to our understanding of the 
therapeutic applications of copper-binding proteins in 
the treatment of LUAD. 

Materials and Methods 
Copper binding protein gene set 

The copper-binding protein gene set was 
obtained from five gene sets in MSigDB (https:// 
www.gsea-msigdb.org/gsea/msigdb) [13]. In 
addition, based on previous studies [14], several other 
copper-binding proteins were added. Ultimately, after 
removing overlapping genes, a total of genes were 
identified and are listed in Supplement Table S1. 

Data collection and processing 
Clinical information regarding LUAD patients, 

along with extensive RNA sequencing results, as well 
as data on copy number variants (CNVs) and single 
nucleotide variants (SNVs), were obtained from the 
TCGA website [15]. The GEO database 
(https://www.ncbi.nlm.nih.gov/) was also 
consulted. Raw count data were first normalised 
using the transcripts per million (TPM) method and 
then log2 transformed. Our study utilised three 
independent cohorts. The TCGA-LUAD cohort was 
used as the training dataset, while the GSE31210 
(n=226) and GSE50081 (n=128) cohorts were used as 
the validation dataset. The TCGA-LUAD cohort was 
used as the training dataset, while the GSE31210 
(n=226) and GSE50081 (n=128) cohorts were used as 
the validation dataset. The TCGA-LUAD cohort was 
used as the training dataset, while the GSE31210 
(n=226) and GSE50081 (n=128) cohorts were used as 
the validation dataset. Relevant prognostic features 
were constructed using 500 LUAD cases from the 
TCGA database. The sample inclusion criteria for 
TCGA were 01A (Primary Tumor) type samples 
containing complete survival information (see 
Supplement table S2). CNV data were processed 
using the maftools R package [16]. The GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) was used to 
obtain external data for GSE31210 and GSE50081. 

Processing of single-cell data 
The scRNA-seq dataset for lung adenocarcinoma 

was obtained from the article 'Single-cell RNA 
sequencing reverses distinct tumor micro-
environmental patterns in lung adenocarcinoma' by 
Philip Bischoff et al. [17]. Initially, we utilized the 
'Seurat' R package to transform the 10× scRNA-seq 
data into Seurat objects. We then excluded cells of 
substandard quality and performed quality control 
(QC) by calculating the percentage of mitochondrial 
or ribosomal genes [18]. Highly variable genes were 
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identified for subsequent analysis. Batch effects were 
removed using the 'Harmony' tool. Cell clusters were 
constructed using the 'FindClusters' and 
'FindNeighbors' functions and visualised using the 
't-SNE' method. Cellular annotation was performed 
based on marker genes of different cell types. 

Construction and validation of a risk 
prediction model for copper-binding proteins 

The training set data underwent LASSO 
regression analysis using the R package 'glmnet' to 
achieve optimal results. We identified 6 CBP-related 
genes through multiple regression Cox analysis and 
calculated the risk score for each patient using the 
following formula: riskscore = 0.233*FKBP4 + 
0.12*GPC1 + 0.245*LOXL2 + 0.152*MUC2+ - 
0.476*SNAI3 + 0.324*SOD1. Using the median value of 
the risk scores, we categorized the patients in the 
training group into high-risk and low-risk groups. We 
performed Kaplan-Meier survival analyses and 
constructed subject work characteristic curves (ROC). 
To validate the predictive power of the model, we 
evaluated its prognosis, sensitivity, and specificity in 
the test group. We then validated it in the GSE31210 
and GSE50081 cohorts using the risk score formula. 

Independent prognostic analysis and column 
chart construction 

Univariate and multivariate Cox regression 
analyses were conducted to investigate whether CBP 
characteristics could act as independent predictors of 
LUAD patients. Nomogram were generated using the 
'rms' R package to forecast 1-, 3-, and 5-year OS in 
clinical patients based on age, grade, gender, stage, 
T-stage, and risk score. The calibration study results 
provide additional evidence of the accuracy of the 
column chart predictions. 

Functional enrichment analysis 

In order to elucidate the potential biological 
pathways associated with CBPRS, the HALLMARK 
and KEGG pathways were analysed in this study 
using the "ClusterProfiler" [19] R package in MSigDB. 
The "c2.cp.kegg.v7.4.symbols.gmt" and "h.all.v2023 
.2.Hs.symbols" were analysed by GSVA and GSEA 
algorithms using MSigDB [20] and GSEA algorithms 
to obtain the differences in enrichment pathways 
between different risk groups. 

Analysis of genomic variation among CBPRS 
risk subgroups 

Mutations in built-in tumours (MATH) is a 
method to quantify intra-tumour heterogeneity (ITH) 
based on the distribution of mutant alleles. The 

prognostic significance of MATH has been 
investigated in a variety of tumours, including head 
and neck, colorectal and breast cancers [21-24]. The 
MATH score was calculated for each LUAD patient 
using the previously described method. Survival 
analyses were then performed based on their MATH 
scores. To investigate somatic mutations associated 
with CBPRS, the R package 'maftools' was used to 
generate waterfall plots displaying mutations in 
LUAD patients in both high- and low-risk groups. 
Furthermore, we computed the tumour mutational 
load (TMB) score for each patient with lung 
adenocarcinoma (LUAD) and investigated the 
correlation between high and low risk groups, TMB, 
and survival rates. 

Correlation analysis of CBP models with the 
immune microenvironment 

In order to estimate the immunity score, stroma 
score and 22 different types of immune infiltrating 
cells, the R packages "ESTIMATE" and "CIBERSORT" 
were used [25]. and "CIBERSORT" [26] R packages 
"ESTIMATE" and "CIBERSORT" were used. Single 
sample immune cell infiltration scores were also 
quantified using single sample gene set enrichment 
analysis (ssGSEA) based on the R package GSVA. 
Finally we compared the mRNA expression levels of 
immune checkpoint inhibitory molecules. TIDE was 
used to predict tumour immunotherapy effect [27], 
TIDE score data were obtained from the TIDE website 
(http://tide.dfci.harvard.edu/). 

Immunotherapy prediction and chemotherapy 
sensitivity analysis 

We used a GEO immunotherapy cohort 
(GSE78220[28]) and the IMvigor210 cohort to study 
the correlation between CBP characteristics and 
immunotherapy. We used the 
"IMvigor210CoreBiologies" R package from the 
IMvigor210 cohort to process the data [29]. The 
'IMvigor210CoreBiologies' R package from the 
IMvigor210 cohort was utilised to process data. 
Furthermore, to determine immunogenicity based on 
immunomodulators, immunosuppressive cells, MHC 
molecules, and effector cells, the Immunophenoscore 
(IPS) algorithm was employed. The IPS score is 
calculated based on the unbiased gene expression of a 
representative cell type using a machine-learning 
methodology. Higher IPS scores indicate a better 
response to immunotherapy. The IPS scores of 
TCGA-LUAD patient samples were obtained from 
The Cancer Immunome Atlas (TCIA) database 
available at https://tcia.at/home. 
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Cell line culture and RT-qPCR 
The cells were cultured at 37 °C in an incubator 

with a 5% CO2 atmosphere. The normal human lung 
cell line 2B and the lung adenocarcinoma cells H1299 
and A549 were obtained from the Chinese Academy 
of Sciences (Shanghai, China). Thermo Fisher 
Scientific (Invitrogen, USA) and Corning Inc. 
provided the cell culture media, plates, and dishes. 
The 2B, H1299, and A549 cells were detached and 
inoculated into 60 mm dishes overnight at an initial 
density of 1×106 cells/well. SYBR Green qPCR mix 
(Vazyme, China) was subsequently used to synthesize 
cDNA for real-time PCR. The results were analysed 
using the comparative Ct method and the Ct values of 
each gene were normalized by the Ct reads of the 
corresponding GAPDH. All data are expressed as the 
mean ± standard deviation (SD) of three independent 
experiments. The primer sequences are shown in 
Supplementary Table 3.  

Statistical analysis 
Statistical analyses were conducted using R 

software (version 4.2.2). The Wilcoxon test was used 
to compare differences between groups, while the 
log-rank test was used to compare Kaplan-Meier 
survival curves. Univariate and multivariate Cox 
analyses were performed to establish independent 
prognostic factors. All P values were two-sided, and a 
significance level of less than 0.05 was used.  

Results 
Genetic variation and expression of 
prognosis-related CBPRGs in LUAD 

Figure 1 shows the workflow of our study. We 
collected 85 copper-binding protein genes from 
literature and databases. Subsequently, we screened 
14 genes using univariate cox analysis, as shown in 
Figure 2A. We then performed copper-binding 
protein-related modelling (CBPRS) on these 14 genes 
and compared them with published article models. 
Our results indicate that CBPRS has good prognostic 
efficacy. The study examined the survival rates of 
CBPRS patients with various clinical factors. The 
results showed that patients with high CBPRS had a 
significantly lower prognosis than those with low 
CBPRS. Additionally, pathway enrichment analysis 
revealed that the high CBPRS group had more 
oncogenic pathways enriched, while the low-risk 
group had more immune pathways enriched. Based 
on the immune infiltration profile, the results indicate 
that the immune scores were higher in the low CBPRS 
group, with more immune cell infiltration. 
Additionally, we explored the mutational landscape 
in the different CBPRS groups and found a higher 
mutation rate in the high CBPRS group. The low 
CBPRS group showed better immunotherapy efficacy, 
as analysed by immunotherapy. Finally, two genes 
were screened using the ROC diagnostic curve and 
validated by RT-qPCR. 

 
 

 
Figure 1. Workflow diagram of this study.    
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Figure 2. Genetic variation and expression of CBPRGs in LUAD. (A) Forest plot of one-way regression analysis of LUAD patients in the TCGA-LUAD dataset. (B) 
Distribution and mutation frequency of 14 CBPRGs in the TCGA-LUAD cohort. (C) CNV alteration frequencies of CBPRGs in LUAD, with the height of the bar representing 
the mutation frequency. (D) Location of CNV alterations in CBPRGs on chromosomes. (E) Expression of 14 CBPRGs genes in LUAD tumours and normal tissues ns represents 
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. CBPRGs, copper bonding-related genes; LUAD, lung adenocarcinomas; TCGA, Cancer Genome mapping; 
CNV, copy number variation. 

 
This study analysed 85 copper-binding protein- 

related genes (CBPRGs). Univariate cox regression 
analysis identified 14 prognostic genes associated 
with OS in lung adenocarcinoma patients, which are 
presented in Figure 2A. Mutations in CBP genes were 
found in 16.72% (103/616) of LUAD patients. F8 had 
the highest mutation rate, followed by MUC2 and 
AOC3 (Figure 2B). Somatic copy number variation 
(CNV) in CBPRGs was examined, revealing 14 

prevalent copy number alterations in CBP. Among 
these, F8, SNCB, and COA6 showed extensive CNV 
amplification, while CNV depletion was present in 
some CBP genes (Fig. 2C). The location of CNV 
alterations in copper-binding protein-related genes on 
the chromosome is demonstrated in Figure 2D. The 
differential expression of copper-binding protein- 
related genes was also explored. Through a 
comparison of expression levels between LUAD 
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tumours and normal tissues, we investigated the 
expression of several CBPRGs in the tumours. 
Notably, AOC3, F8, and IL1A were found to be highly 
expressed in the normal group, while COA6, FKBP4, 
and LOXL2 were highly expressed in the tumours 
(Figure 2E). It is important to note that the language 
used is clear, objective, and value-neutral, with a 
formal register and precise word choice. The sentence 
structure is simple and the logical flow of information 
is maintained. The technical term abbreviations are 
explained when first used, and the grammar, spelling, 
and punctuation are correct. No changes in content 
have been made to the original text. 

 

Table 1. TCGA-LUAD Clinical characteristics. 

Characteristics High (N=250) Low (N=250) P-value 
Age    
<65 134 (53.6%) 103 (41.2%) 0.009 
>=65 112 (44.8%) 141 (56.4%)  
Unknown 4 (1.6%) 6 (2.4%)  
Gender    
Male 128 (51.2%) 102 (40.8%) 0.025 
Female 122 (48.8%) 148 (59.2%)  
Stage    
I 108 (43.2%) 160 (64.0%) 2.7e-05 
Ii 71 (28.4%)  48 (19.2%)  
Iii 51 (20.4%) 29 (11.6%)  
Iv 17 (6.8%) 8 (3.2%)  
Unknown 3 (1.2%) 5 (2.0%)  
T stage    
T1 70 (28.0%) 97 (38.8%) 0.003 
T2 136 (54.4%) 131 (52.4%)  
T3 29 (11.6%) 16 (6.4%)  
T4 14 (5.6%) 4 (1.6%)  
Tx 1 (0.4%) 2 (0.8%)  
N stage    
N0 144 (57.6%) 180 (72.0%) 0.001 
N1 59 (23.6%) 35 (14.0%)  
N2 43 (17.2%) 26 (10.4%)  
N3 2 (0.8%) 0 (0%)  
Nx 8 (2.0%) 2 (2.0%)  
Unknown 2 (0.8%) 9 (3.6%)  
M stage    
M0 163 (65.2%) 169 (67.6%) 0.065 
M1 17 (6.8%) 7 (2.8%)  
Unknown 70 (28.0%) 74 (29.6%)  

 

Construction and validation of CBP-related 
prognostic features 

To avoid overfitting and exclude co-expressed 
CBPRGs, we used lasso regression analysis to 
construct predictive prognostic models consisting of 
six CBPRGs: FKBP4, GPC1, LOXL2, MUC2, SNAI3, 
and SOD1 (Figure 3A, B). We developed a linear 
prediction model based on the weighted regression 
coefficients of these six prognostically relevant 
CBPRGs. The riskscore was calculated as follows: 
riskscore = (0.233*FKBP4+0.12*GPC1+0.245*LOXL2+ 
0.152*MUC2+-0.476*SNAI3+0.324*SOD1) (Figure 3C). 
To demonstrate the stability and reliable generali-
sation of our model, we used the TCGA-LUAD cohort 
as the internal training set, and the GSE31210 and 

GSE50081 cohorts as the external validation cohorts. 
Using the same risk formula, we calculated risk scores 
for each sample in the TCGA training cohort and the 
GEO validation cohort. We found that when the risk 
of LUAD patients was elevated in both cohorts, 
patients exhibited a survival disadvantage with 
reduced overall survival and increased mortality (see 
Figure 3F, I, L). Patients were classified into two 
subgroups, high-risk and low-risk, based on their 
median risk score. The prognostic differences between 
the two groups were explored using Kaplan-Meier 
curves. The curves showed significant differences in 
prognosis between high-risk and low-risk patients in 
both cohorts. Patients in the low-risk group 
experienced a more pronounced survival advantage 
(see Figure 3D, G, J). The ROC curves were used to 
predict the patient's 1-year, 3-year, and 5-year 
survival times. The AUCs for the TCGA-LUAD cohort 
were 0.69, 0.70, and 0.67, for the GSE31210 cohort 
were 0.61, 0.63, and 0.68, and for the GSE50081 cohort 
were 0.69, 0.71, and 0.73 (Figure 3E, H, K), 
respectively. These results suggest that the model has 
a good predictive effect. The clinical trilinear table can 
be found in Table 1. 

Creation of nomogram based on CBP models 
combined with clinical features 

We integrated risk scores and their clinical 
metrics to construct a nomogram as a predictor of 1-, 
3-, and 5-year prognostic probability of survival 
(Figure 4A). TimeROC analyses in the TCGA cohort 
confirmed that the AUC of the column charts and 
riskscores exceeded that of other metrics (Figure 4B). 
Calibration curve analysis showed that patients' 1-, 3-, 
and 5-year OS prediction curves were highly similar 
to the ideal 45-degree calibration line, suggesting 
excellent stability of the column line graph (Figure 
4C). Decision curve analysis (DCA) showed better 
predictive efficacy of nomogram and riskscore 
compared to other clinical characteristics (Figure 4D). 
In addition, to validate the reliability and clinical 
value of biometric traits constructed based on CBP as 
prognostic predictors, we compared the risk score of 
each LUAD patient with two common clinical 
indicators and observed the correlation of each factor 
with patient prognosis in successive univariate and 
post-prediction. Multivariate Cox analysis. Based on 
the analysis of the results, it was clear that staging, 
T-staging, and riskscore (P < 0.001) were all 
prognostic factors significantly associated with 
patient prognosis in the univariate cox analysis 
(Figure 4E). However, after multivariate cox analysis, 
only riskscore (P < 0.001) was significant (Figure 4F). 
These results suggest that our CBP model is more 
practical and impactful for clinical decision-making, 
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and is more suitable as a clinical decision-making tool 
to predict the prognosis of patients with LUAD in 

clinical settings. 
 

 

 
Figure 3. Construction and validation of CBP-related prognostic features. (A) Trajectories of each independent variable with lambda. (B) Plot of coefficient 
distributions generated by the logarithmic (lambda) series used for parameter selection (lambda). (C) Multivariate Cox coefficients for each gene in the risk profile. (D-F) 
Distributions of km curves in the TCGA-LUAD cohort, ROC curves for the CBPRS predicted risk of death at 1, 3, and 5 years, and risk scores and survival status. (G-I) km 
curves in the GSE31210 cohort, ROC curves for CBPRS-predicted risk of death at 1, 3, and 5 years, and distributions of risk scores and survival status. (J-L) km curves, ROC 
curves for CBPRS-predicted risk of death at 1, 3, and 5 years, and distribution of risk scores and survival status in the GSE50081 cohort. 
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Comparing the predictive effectiveness of 
CBPRS with existing features 

To compare the prognostic efficacy of CBPRS 
with existing LUAD models, we integrated 11 
previous studies that used different biologically 
significant features, such as arginine-substituted 
succinate [30], copper death [31], necrotic apoptosis 
[32], immune activation [33], ubiquitin proteasome 

[34] and autophagy [35]. Notably, CBPRS exhibited 
better C-index performance than almost all models in 
the TCGA-LUAD, GSE31210 and GSE50081 datasets 
(Figure 5A-C). In addition, Figure 5D-I, demonstrates 
the clinical phenotypic differences between high and 
low CBPRS risk models. In conclusion, these findings 
confirm the idea that CBPRS is a more effective 
prognostic model for LUAD. 

 
 

 
Figure 4. Creation of a column chart based on the CBP model combined with clinical characteristics. (A) nomogram plot combining Age, Gender, N-stage, Stage, 
and CBPRS. (B) Time-dependent ROC curve analysis. (C) Calibration curves constructed for 1-, 3-, and 5-year survival column plots. (D) DCA decision curve analysis. (E) 
Univariate and (F) multivariate COX regression analysis of characteristics and different clinical features. 
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Figure 5. Comparing the predictive effectiveness of CBPRS with existing features. (A-C) Comparison between CBPRS and 10 other published models in the 
TCGA-LUAD, GSE31210 and GSE50081 cohorts. (D-I) Clinical phenotypic differences in CBPRS risk models. (D) Age (E) M.Stage (F) Gender (G) N.Stage (H) T.Stage (I) Stage 

 

Clinical relevance and survival analysis of 
CBPRS in patients with LUAD 

To explore and compare the differences in 
individual clinical characteristics of OS between the 
high and low CBPRS groups, LUAD patients were 
categorised into five subgroups based on age, 
pathological stage (I-II and III-IV), gender (female and 
male), pathological M-stage (M0-1), N-stage (N0-N1) 
and T-stage (T1-2 and T3-4). Significantly, patients in 
the low-CBPRS group had a longer survival time 
compared to those in the high-CBPRS group in all 
subgroups (Figure 6A-G, Supplementary Figure 2A, 
B). These results reinforce the reliability of the CBP 
model as a clinical prediction tool. 

Gene set enrichment analysis 
GSEA was used to identify KEGG gene sets 

enriched in both CBPRS groups. The gene set in the 
low CBPRS group was enriched for immune-related 
pathways such as the T Cell Receptor Signaling 
Pathway and the Intestinal Immune Network for IGA 
Production. In contrast, the gene set in the high 
CBPRS group was enriched for cell cycle- and 
cancer-related pathways (see Fig. 7B, C). GSVA was 
used to analyze the differentially enriched 
HALLMARK pathways between the two groups (see 
Figure 7A). The study found that the high-risk group 
was mainly associated with oncogenic pathways, 
while the low-risk group was mainly associated with 
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immune-related pathways. Differential analyses were 
conducted on both the high-risk and low-risk groups, 
and the differential genes were analysed for Gene 
Ontology (GO) enrichment (refer to Figure 7D). 
Correlation analyses between CBPRS and hallmarks 
pathway scores supported these findings (see Figure 
7E), indicating that CBPRS is closely linked to 
cancer-related biological processes and metabolic 
pathways. 

Genomic variation and intra-tumour 
heterogeneity in different CBPRS subgroups 

Intra-tumor heterogeneity (ITH) is a well-known 
genomic feature caused by mutation [36] 
accumulation resulting in cancer. ITH has been shown 
to be associated with malignancy and increased 
resistance to chemotherapy [37]. The mutant allele 

tumour heterogeneity (MATH) algorithm was used in 
this study to measure intratumour heterogeneity 
(ITH) in LUAD patients. Higher MATH scores were 
found to be associated with higher ITH. The high-risk 
group of LUAD patients had a higher MATH score 
(Figure 8A). The combination of ITH and CBPRS was 
further analysed, revealing that patients in the 'high 
risk + high MATH' group had a significantly worse 
prognosis than those in the 'low risk + low MATH' 
group (log-rank test, p < 0.001). This suggests that the 
combination of these two metrics could be a better 
indicator of LUAD prognosis. Figure 8B illustrates 
how the combination of these two metrics could better 
assess the prognosis of LUAD patients. Furthermore, 
the TMB analyses of the high and low CBPRS groups 
indicated significant differences. Specifically, the high 
CBPRS group exhibited higher TMB (Figure 8C). 

 

 
Figure 6. Clinical relevance and survival analysis of CBP in LUAD patients. (A) Age. (B) Gender. (C) Pathological M.stage. (D) N-stage. (E) T-stage (T1-2). (F) 
Stage (I-II). (G) Stage (III-IV). 
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Additionally, the combination of TMB and CBPRS 
demonstrated that patients in the 'high risk + high 
TMB' group had a significantly worse prognosis than 
those in the 'low risk + low TMB' group (p < 0). The 
group with low TMB (log-rank test, p < 0.001) showed 
a better prognosis, indicating that the combination of 
these two metrics could be more effective in assessing 
the prognosis of LUAD patients (Figure 8D). It is 

widely accepted that genetic mutation is a 
prerequisite for tumourigenesis. In the TCGA 
database, we visualised and correlated somatic 
mutation data based on CBP signatures combined 
with high and low CBPRS groups. In the high CBPRS 
group, TP53 (57%), TTN (51%), and MUC16 (44%) had 
the highest mutation frequencies (Figure 8E, F). 

 
 

 
Figure 7. Gene set enrichment analysis. (A) Differences in HALLMARK pathway activity between high and low risk groups for GSVA scores. (B) KEGG gene set enriched 
in the high CBPRS group. (C) KEGG gene set enriched in the low CBPRS group. (D) Circle diagram demonstrating differential gene enrichment of the GO pathway between the 
two groups. (E) Correlation between risk scores and marker pathway activity for GSAV scores. 
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Figure 8. Genomic variants and intra-tumour heterogeneity in different CBPRS subgroups. (A) Violin plots showing the difference in mutant allele tumour 
heterogeneity (MATH) scores between high and low risk groups. (B) Kaplan-Meier curves for OS were analysed by combining the MATH score and CBPRS risk score. (C) Violin 
plot demonstrating the difference in TMB between high and low risk groups. (D) Kaplan-Meier curves of OS analysed by combining TMB score and CBPRS risk score. (E) 
Mutation analysis of the high-risk group. (F) Mutation analysis of the low-risk group. 

 

CBP risk score predicts tumour 
microenvironment and immune cell 
infiltration 

It has been established that interactions between 
cancer cells and TME are critical for tumour 
progression and spreading [38]. To assess the immune 
infiltration status of the LUAD samples in this study, 
we used the ESTIMATE algorithm to calculate the 
stromal score, immune score, ESTIMATE score, and 
tumour purity for the CBPRS risk subgroup. The 
low-risk group had significantly higher immunity and 
ESTIMATE scores, while the high-risk group had 
higher tumour purity (Figure 9A). To analyse the 
differences in specific immune cell infiltration 
between the high- and low-risk groups, we quantified 

the abundance of immune cell infiltration in each 
sample using the CIBERSORT algorithm (Figure 9B). 
We then used the CIBERSORT results to screen for 
immune cell types significantly associated with 
CBPRS by Spearman's correlation analysis (Figure 
9E). Similar results were obtained by applying the 
ssGSEA algorithm for validation (Figure 9C). 
Furthermore, using the ssGSEA algorithm, we 
obtained scores for immune-related pathways. It was 
observed that the low-risk group exhibited higher 
activity levels in these pathways (Figure 9D). 

Predicting and validating the efficacy of 
immunotherapy 

The TIDE results showed higher scores in the 
high-risk group, indicating that the high-risk group 
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may have stronger immune escape (Figure 10A). To 
validate our results, we analysed the IPS scores 
obtained from the TCIA database. Higher IPS scores 
predicted a better response to ICI treatments, 
including PD-1 inhibitor and CTLA4 inhibitor 
treatments, in four categories: ips_ctla4_pos_pd1_pos, 
ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos, and 
ips_ctla4_neg_pd1_neg. The study results indicate 
that all four categories were significantly elevated in 

the low-risk group. This suggests that patients in the 
low-risk group responded better to anti-CTLA4 
therapy and the combination of anti-PD-1 and 
anti-CTLA4 therapy than patients in the high-risk 
group (Figure 10B). Previous studies have reported 
that high expression of immune checkpoints High 
expression of immune checkpoints is associated with 
better response to immune checkpoint inhibitor (ICI) 
therapy [39-41].  

 

 
Figure 9. CBP risk score predicts tumour microenvironment and immune cell infiltration. (A) Stroma score, immunity score, ESTIMATE score and tumour purity 
were used to quantify different immune statuses between high and low risk groups. (B) Abundance of each TME-infiltrating cell type was quantified by the CIBESORT algorithm 
and the ssGSEA algorithm (C) between high and low risk groups. (D) The activity of immune-related pathways was significantly different between the high- and low-risk groups. 
(E) Correlation analysis of TME-infiltrating cells with CBPRS. 
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Figure 10. Predicting and validating the efficacy of immunotherapy. (A) TIDE assessment of immunotherapy escape in the high- and low-risk groups. (B) IPS scores in 
the high- and low-risk groups. (C) Differential expression of various immune checkpoints in the high- and low-risk groups. (D) Differential expression of HLA molecules in the 
high- and low-risk groups. (E) Boxplots depicting the difference in risk scores between CR/PR patients and SD/PD patients and the proportion of CR/PR or SD/PD patients 
receiving immunotherapy in the IMvigor210 cohort. (F) Proportion of CR/PR or SD/PD patients receiving immunotherapy in the high and low risk groups of the GSE78220 
cohort. (G) Proportion of patients with R or NR who received immunotherapy in the high and low risk groups of the TCGA-LUAD cohort. 

 
Therefore, we analysed the differences in 

immune checkpoints on the basis of risk scores, and 
found that the expression was higher in the low-risk 
group (Figure 10C) [42]. The molecular differences in 
HLA between the different groups were compared 
(see Figure 10D). To test the potential of risk scores in 
predicting immunotherapy in a real cohort, we 
selected two groups of patients receiving 
immunotherapy (IMvigor210 and GSE78220). The 
proportion of complete response/partial response 
(CR/PR) was significantly higher in the low-risk 

group (Figure 10C), as was the proportion of 
responders to immunotherapy. The number of 
responders to immunotherapy was also higher in the 
low-risk group compared to the high-risk group 
(Figure 10E-G). These results suggest that the low-risk 
group had a better response to immunotherapy. 

Correlation of CBPRS with single-cell 
characteristics 

We used single-cell data from Philip Bischoff et 
al. and downscaled them using the "RunPCA" 
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function to obtain 18 clusters (Figure 11A), which 
were subsequently annotated according to cell marker 
genes (Figure 11B). To investigate the role of CBPRS in 
the tumour microenvironment (TME) at the single-cell 
transcriptome level, we analysed the expression 
patterns of SOD1, MUC2, FKBP4, LOXL2, GPC1 and 
SNAI3 in different cell types (Figure 11C). The results 
showed that SOD1 was expressed in most immune 
cells, FKBP4 was more expressed in macrophages and 
CD8T cells, and the other genes were less expressed, 
and the violin plots mirrored these results (Figure 
11D). 

Identification of key regulatory genes in the 
CBP model 

To identify key regulators in the CBP risk 

subgroups, first we analysed the survival curves of 
these six genes and found that only SOD1 was not 
significant (P > 0.05) (Figure 12A, B, Supplementary 
Figure 2A-D). In addition, we used ROC diagnostic 
curves to screen for key regulators, and we found that 
the only ones with ROC > 0.80 were FKBP4 and 
LOXL2, and thus we considered these two genes to be 
key regulatory genes for CBPRS (Figure 12C, D, 
Supplementary Figure 3A-D). Finally, we assessed 
the expression of the two core genes in CBPRS in three 
cell lines, including one normal cell line (2B) and two 
lung adenocarcinoma cell lines (A549 and H1299) 
(Figure 12E, F). The results showed that FKBP4 and 
LOXL2 expression was significantly upregulated in 
the tumour cell lines. 

 

 
Figure 11. Correlation of CBPRS with single-cell characteristics. (A) Cells were divided into 18 independent clusters. (B) Cells were clustered into seven types by the 
tSNE dimensionality reduction algorithm, with each colour representing the phenotype of each cluster. (C) Feature plots showing the distri-bution of six CBP genes in various 
celltypes. (D) Violin plots showing the distri-bution of six CBP genes in various celltypes. 
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Figure 12. Identification of key regulatory genes in the CBP model. (A) KM curve of FKBP4. (B) KM curve of LOXL2. (C) ROC diagnostic curve of FKBP4. (D) ROC 
diagnostic curve of LOXL2. (E,F) RTq-PCR demonstrating mRNA expression levels of (E) FKBP4. (F) LOXL2. 

 

Discussion 
Despite significant efforts to develop 

comprehensive treatment strategies, the prognosis for 
patients with LUAD remains poor, with a 5-year 
survival rate of 15 per cent [5]. Exploring potential 
mechanisms and prognostic biomarkers may help 
precision medicine for cancer patients. Further 
discovery of potential mechanisms of tumour 
progression could lead to the development of new 
therapeutic strategies for lung adenocarcinoma. 

Cu, as a trace element, is involved in a wide 
range of biological activities and plays a vital role in 
living matter. Cu is also associated with a variety of 

cellular processes, including mitochondrial respira-
tion, antioxidant defence, redox signalling, kinase 
signalling, autophagy and protein quality control [43]. 
However, disruption of copper homeostasis can lead 
to accumulation of reactive oxygen species and 
proteasome inhibition, which can cause cytotoxicity 
[44]. Abnormally elevated systemic copper levels 
within tumours of cancer patients promote 
tumourigenesis, angiogenesis, tumour metastasis and 
recurrence of many cancers [45]. Recent studies have 
identified copper death as a key regulator of cancer 
progression [46] and that the profile of copper death is 
strongly associated with the prognosis of patients 
with a variety of cancers [47]. The characteristics of 
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copper death are closely related to the prognosis of 
patients with a variety of cancers. As important 
transport proteins and downstream effectors of 
copper, copper-binding proteins have also been 
reported to be key regulators of various tumours and 
are strongly associated with the prognosis of cancer 
patients [48]. However, little is known about the role 
of copper-binding proteins in LUAD. 

This study presents a bioinformatics analysis of 
copper-binding proteins in LUAD using data from the 
TCGA and GEO cohorts. The analysis reveals a profile 
of copper-binding protein-related genes and TME 
features in LUAD, demonstrating the genetic and 
transcriptional variation of CBPRGs in LUAD.  

Additionally, a new prognostic model was 
created by screening six modelled genes using Lasso 
regression analysis and one-way COX risk regression 
analysis. Significant prognostic differences were 
found between the two groups, demonstrating the 
independent predictive value of the CBP traits created 
for LUAD. ROC curve and calibration curve analyses 
showed the superior predictive efficacy of the CBP 
traits for patient prognosis. Additionally, the 
column-line plots demonstrate the superiority of the 
CBP model compared to other clinically used 
indications. We compared our CBPRS model with 11 
previously published models. The results 
demonstrate its good predictive efficacy. 

Then, to gain more insight into the 
immunological properties of CBPRS, we examined 
mutations in different CBPRS populations. As 
previously reported, missense variants were the most 
prevalent, followed by nonsense variants and shift 
deletions [49]. TP53 mutations were more common in 
the high CBPRS group than in the low CBPRS group 
(57% vs. 40%), with the largest difference in mutation 
frequency between the groups. TP53 mutations are 
not only commonly inherited in cancer, but also lead 
to aggressive malignancies and a poorer prognosis for 
patients [50, 51]. Through the p53/TGF-b signalling 
pathway, TP53 can influence the cancer cell cycle. 
Finally, a better understanding of TME may help in 
the development of new therapies for LUAD or in 
repairing TME to improve the effectiveness of 
immunotherapy. The composition of some immune 
cells differs between the two CBPRS groups; M0 and 
M1 macrophages are more common in the high 
CBPRS group, while cytotoxic CD8 T cells are more 
abundant in the low CBPRS group. Numerous studies 
have shown that a dense infiltration of T cells, 
especially cytotoxic CD8 T cells, is a marker of good 
prognosis [52-54]. In addition, based on pathway 
enrichment, we found that the low CBPRS group had 
stronger immune pathways, whereas the high CBPRS 
group contained more immunosuppressive cells and 

oncogenic signals, as well as tumour and 
metastasis-associated signals, suggesting that the high 
CBPRS group exhibited immunosuppression and 
active tumour progression. 

IPS data downloaded from TCIA can provide a 
predictive score for assessing a patient's response to 
immunotherapy [55, 56]. The study suggests that 
patients with low CBPRS may have a more favourable 
response to ICI therapy, as indicated by the higher IPS 
in the low CBPRS group. Additionally, the study 
found that CBPRS, which has not been previously 
detected in LUAD, may strongly correlate with 
immune infiltration in LUAD, indicating the potential 
relevance of CBPRS in assessing response to 
immunotherapy. For patients diagnosed with 
early-stage LUAD, surgical treatment, ablation, or 
liver transplantation are effective therapeutic options 
that can significantly improve patient survival time. 
In contrast, for patients with advanced LUAD, 
systemic therapy is the only viable option to improve 
survival. In addition to immunotherapy-related 
drugs, we also use certain chemotherapeutic drugs. 
Generally, the low-CBPRS group responds better to 
treatment than the high-CBPRS group, resulting in 
improved survival time for patients with LUAD. This 
is supported by the TIDE results. 

Based on these findings, we conclude that 
CBPRS is a good model for predicting survival time in 
LUAD patients and is closely related to the immune 
microenvironment. An in-depth study of CBPRS will 
be beneficial for treating patients with lung 
adenocarcinoma, thus improving the efficacy of 
immunotherapy. Next, six genes comprise CBPRS: 
FKBP4, SOD1, MUC2, LOXL2, GPC1, and SNAI3. We 
screened the key CBPRS regulatory genes FKBP4 
(FKBP Prolyl Isomerase 4) and LOXL2 (Lysyl Oxidase 
Like 2) by ROC curve. FKBP4 has a potential role in 
tumourigenesis and is considered a possible 
biomarker. FKBP4 is expressed in most tissues, with 
the lowest expression in breast, bladder and testis [57, 
58]. FKBP4 expression is elevated in several cell lines 
of hormone-dependent cancers, including breast 
cancer cell lines [59, 60] and prostate cancer cell lines 
[61] FKBP4 expression is elevated in several 
hormone-dependent cancer cell lines, including breast 
and prostate cancer cell lines. Moreover, FKBP4 
expression was higher in breast cancer tissue and 
pre-invasive breast cancer than in normal breast tissue 
[60, 62]. In prostate biopsy tissues [63] and liver cancer 
tissues [64] similar observations were made, 
suggesting that FKBP4 may be a potential biomarker 
for tumours. Up-regulation of LOXL2 leads to 
metastasis in the tumour microenvironment, which 
results in invasive migration [65]. Although some 
genes have been studied for their regulatory role in 
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cancer, few researchers have systematically evaluated 
their prognostic value in LUAD. Copper-binding 
proteins have been less studied in lung 
adenocarcinoma, so we hope that the establishment of 
CBPRS will be used to improve the clinical 
management of lung adenocarcinoma patients. 

Although the CBP model we constructed is 
excellent in identifying the immune status of patients 
and predicting their prognosis, it is important to 
acknowledge some limitations in our follow-up study 
and address them appropriately. Firstly, the 
TCGA-LUAD dataset we included was based on 
public database data, which may introduce bias 
between the predictions and the actual situation. 
Although efforts have been made to prevent it, more 
data from LUAD patients is required to validate the 
model's utility and the accuracy of immunotherapy 
predictions. 

Conclusion 
As demonstrated for the first time, the CBP 

model is a novel predictive biomarker and a possible 
therapeutic target for LUAD patients. It has better 
predictive efficacy compared to other published 
articles. Additionally, the CBP model can characterise 
the immune environment of LUAD patients and 
estimate the prognosis of LUAD patients, providing 
physicians with a new approach to treating lung 
adenocarcinoma patients. 
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