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Abstract 

As a rate-limiting enzyme for the serine biosynthesis pathway (SSP) in the initial step, phosphoglycerate 
dehydrogenase (PHGDH) is overexpressed in many different tumors, and pharmacological or genetic 
inhibition of PHGDH promotes antitumor effects. In the present research, by analyzing several acute 
myeloid leukemia (AML) datasets in the Gene Expression Omnibus (GEO), we identified 
prognosis-related genes and constructed a multigene signature by univariate, multivariate Cox regression 
and LASSO regression. Subsequently, the multigene signature was confirmed through Cox, Kaplan–
Meier, and ROC analyses in the validation cohort. Moreover, PHGDH acted as a risk factor and was 
correlated with inferior overall survival. We further analysed other datasets and found that PHGDH was 
overexpressed in AML. Importantly, the expression of PHGDH was higher in drug-resistant AML 
compared to drug-sensitive ones. In vitro experiments showed that inhibition of PHGDH induced 
apoptosis and reduced proliferation in AML cells, and these antitumor effects could be related to the 
Bcl-2/Bax signaling pathway by the noncanonical or nonmetabolic functions of PHGDH. In summary, we 
constructed a twenty-gene signature that could predicate prognosis of AML patients and found that 
PHGDH may be a potential target for AML treatment. 

Keywords: Gene signature, Acute myeloid leukemia, Overall survival, PHGDH, Therapeutic target 

Introduction 
Acute myeloid leukemia (AML) is a hetero-

geneous haematopoietic malignancy arising from the 
malignant clonal expansion of undifferentiated 
myeloid precursors with complex molecular 
pathogenesis, which includes a series of cytogenetic 
or chromosomal aberrations [1]. Its pathological 
features are mainly manifested as the aberrant 
accumulation of undifferentiated myeloid progenitor 
cells in bone marrow with uncontrolled cell 
proliferation, obstruction of cell apoptosis, and 

arrested development. In addition, there is high 
heterogeneity both at the clinical level and prognosis: 
some patients might achieve long-term remission and 
survival, but others could become refractory or 
relapsed AML patients. These clinical heterogeneities 
of AML are related to several factors, of which age 
and cytogenetic and molecular alterations in tumour 
cells are particularly crucial [2]. While such potential 
mutations may contribute to leukemic development 
and progression, they may be potential therapeutic 
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targets that provide new insights for drug 
development [3]. 

Indeed, chromosomal aberrations and genetic 
mutations, including an increasing number of 
recurrent mutations, are considered drivers of AML 
and may significantly affect the prognosis of AML 
patients [4, 5]. It has been suggested that, based on 
increasingly advanced sequencing technology, 
transcriptomic analysis can even provide predictive 
models with more prognostic value than traditional 
clinical parameters or genomic biomarkers [6]. In 
recent years, many different studies have established 
survival-related multigene signatures [7-11]. These 
gene signatures usually contain a cluster of genes, 
which may be of great significance for further study to 
discover critical genes from them.  

 In this study, we constructed a multigene 
signature containing twenty genes based on public 
databases, which was highly consistent with the 
survival of AML patients. Further analysis found 
phosphoglycerate dehydrogenase (PHGDH) was 
overexpressed in AML and correlated with inferior 
overall survival of AML patients. In vitro experiments 
confirmed that inhibition of PHGDH could effectively 
induce apoptosis and inhibit proliferation of AML 
cells, indicating that PHGDH may be a potential 
therapeutic target for AML treatment. 

 

Materials and methods 
Dataset acquisition 

 All original gene expression profile datasets 
(GSE37642, GSE9476, GSE106291) were downloaded 
from the Gene Expression Omnibus (GEO) database. 
The GSE37642 dataset includes GPL570, GPL96, and 
GPL97 platforms, of which the dataset based on the 
GPL570 platform contains 140 AML adult patients, 
and the other two platforms contain the same 422 
AML adult patients. Here, we used only the data of 
the GPL570 and GPL96 platforms for analysis, with 
the data from the GPL96 platform as the training 
cohort and the GPL570 data as the validation cohort. 

Data screening and identification and 
validation of the prognostic gene signature 

 We filtered all data from the two platforms in 
the GSE37642 dataset, excluding the following data: 1. 
no survival status information; 2. overall survival (OS) 
less than 30 days; 3. uncertain diagnosis or not AML; 
4. FAB classification (French–American–British 
system) unknown or M3 AML; 5. severe comorbidity; 
6. presence of other malignancy; 7. prior anti-leukemic 
treatment. The inclusion criteria were:1. age starting 
from 18 years with no upper age limit; 2. newly 

diagnosed AML. First, in the training cohort, 
univariate Cox regression analysis was used to 
discover potential genes (p < 0.05) associated with 
survival. Then these genes were inputted into the 
LASSO Cox regression model analysis and the best 
penalty parameter lambda was tested using a 10-fold 
cross-validation [12, 13]. With the optimal lambda 
value, the most important survival-related genes in 
newly diagnosed AML were detected. Next, 
prognosis-related risk profiles were established by 
stepwise multivariate Cox regression analysis. Each 
patient’s risk score was calculated which was 
determined from the formula for the combination of 
the Cox coefficient and gene expression in this model 
[14]. By using a cut-off point, the median risk score, 
patients in both cohorts were split into two groups: 
low- and high-risk. Kaplan‒Meier survival curves and 
logarithmic rank tests were used to assess survival 
differences between two groups. Then, we used the 
"survivalROC" package to compute the area under the 
receiver operating characteristic (ROC) curve (AUC). 
The "pheatmap" package was utilized to make a risk 
map in R. The same formula was also applied to 
verify the prognostic value of the multigene signature 
in the validation cohort. Finally, we performed 
separate survival analyses of these genes in the model 
in two cohorts to identify genes that had prognostic 
implications in both cohorts. 

Cell culture and patient samples 
 Human HL60, THP1, MV4‒11, and MOLM13 

cells (all these four cell lines were purchased from 
ATCC) were cultured in RPMI 1640 medium (GIBCO, 
USA), with 10% foetal bovine serum and 100 units/ml 
penicillin and streptomycin and in a moistened 
environment of 5% CO2 at 37 °C. The PHGDH 
inhibitor NCT503 (S8619) was purchased from 
Selleck.  

 In this study, three healthy donors and three 
blood samples were acquired from newly diagnosed 
AML patients from our hospital in 2023. Before 
participation, written informed consent was obtained 
from all patients involved in this study. The research 
protocol was approved by the local ethics committee 
and conducted according to the ethical guidelines 
outlined by the World Medical Association 
Declaration of Helsinki. 

Cell viability assay 
 Cells were inoculated on 96-well tissue culture 

plates in triplicate at a density of 10,000 cells/wells 
and treated with different concentrations of NCT503 
for 72 h. Each well was then added with 10 μL of Cell 
Counting Kit-8 solution assay reagent (CCK-8, 
APExBIO, USA), and the cultures were incubated at 
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37 °C for 2 to 3 h. Then a microplate reader (Biotek 
Synergy H1, USA) was used to measure the 
absorbance at 450 nm. 

Measurement of cell apoptosis 
 The Annexin V-FITC/PI Apoptosis Kit 

(E-CK-A211, Elabscience, China) was used to detect 
apoptotic cells by flow cytometry. After treatments, 
cells were collected and centrifuged for 5 min at 1,000 
rpm and 4 °C. The supernatant was discarded and 
cells were resuspended in 150 μL mixture of 5 μL of 
annexin V-FITC and 145 μL 1× binding buffer, and 
incubated for 15 min at 37 ° in the dark. Then, 5 μL of 
propidium iodide (PI) solution and 145 μL 1× binding 
buffer were added for detection using flow cytometry. 
All experiments were repeated three times 
independently. 

Small interfering RNA (siRNA) and transient 
transfection 

 PHGDH siRNA was used to silence the PHGDH 
gene (PHGDH-si). A scrambled sequence siRNA 
(NC-si) was used as a negative control. The siRNA 
transfection was optimized using GP-transfectMate 
(Genepharma, Suzhou, China), according to the 
manufacturer’s instructions. 

Western blotting 
 RIPA lysate (P0013, Beyotime Biotechnology, 

China) was used to extract the total protein of cells 
according to the instructions. The protein was 
separated by 10% SDS/PAGE and transferred onto a 
PVDF membrane (Millipore, Temecula, CA, USA). 
After blocking in 10% BSA solution for 1 h, the 
membranes were incubated with the primary 
antibody at 4 °C overnight. Subsequently, the 
membranes were incubated with secondary 
antibodies at room temperature for 2 h. Protein 
expression was detected with ECL reagents (G2020, 

Servicebio, China) and quantified by densitometry 
using ImageJ. All antibodies were anti-PHGDH 
(Proteintech, 14719-1-AP), anti-Bcl-2 (Proteintech, 
12789-1-AP), anti-Bax (Proteintech, 50599-2-Ig) and 
anti-β-actin (Proteintech,81115-1-RR). 

Statistical analysis 
 In this study, statistical analyses were performed 

by GraphPad Prism 9.0. Numerical data is displayed 
as the mean ± SD. All experiments and analyses were 
performed in triplicate. The data were assessed for 
statistical significance by one-way ANOVA and 
two-tailed Student’s t-test according to the test. 
Statistical significance was defined as p <0.05 (*, p < 
0.05; **, p < 0.01; and ***, p < 0.001). 

Results 
The prognostic signature was constructed from 

the training cohort. 
 A total of 422 cases were in the GPL96 platform 

of GSE37642, and only 348 cases met the requirements 
and were retained after screening and exclusion. 
Univariate Cox regression analysis was conducted to 
ascertain whether gene expression profiles were 
pertinent to overall survival (OS), and 2160 genes 
associated with survival prognosis were obtained. 
Fig.1A plots the coefficients for each gene, and the 
model showed the prognostic characteristics that 
were optimal when containing 35 genes (Fig.1B), 
which can be referred to in more detailed information 
(Table S1). To further screen for more meaningful 
genes, we used stepwise multiple Cox regression 
analysis to finally construct a predictive model 
composed of 20 genes, and their corresponding 
coefficients were shown in Table 1, of which 8 genes 
were risk factors and the remaining 12 were protective 
factors. 

 

 
Figure 1. Construction of a prognostic multigene signature by LASSO regression analysis built on the training cohort. (A) Distribution of LASSO coefficient profiles of 35 genes. 
(B) Coefficient profile plot was created by using the log (lambda) sequence for selecting the best parameter (lambda).  
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Table 1. Genes in the prognostic multigene signature. Stepwise 
multiple Cox regression analysis was used to construct the 
prognostic multigene signature composed of 20 genes, and their 
corresponding coefficients. 

Gene symbol Official Full name Risk 
coefficient 

TRPC4AP Transient receptor potential cation channel 
subfamily C member 4 associated protein 

-0.58191 

STAR Steroidogenic acute regulatory protein -0.10973 
ST18 ST18 C2H2C-type zinc finger transcription 

factor 
-0.17558 

SPINT2 Serine peptidase inhibitor, Kunitz type 2 0.13071 
SOX1 SRY-box transcription factor 1 -0.95504 
SLITRK5 SLIT and NTRK like family member 5 0.3104 
SLC36A1 Solute carrier family 36 member 1 -0.33079 
SHANK1 SH3 and multiple ankyrin repeat domains 1 -0.6686 
PRSS2 serine protease 2 0.20974 
PHGDH Phosphoglycerate dehydrogenase 0.25727 
PCTP Phosphatidylcholine transfer protein -0.24132 
KDM3B Lysine demethylase 3B -0.47246 
ITPKA Inositol-trisphosphate 3-kinase A -0.63094 
FDXR Ferredoxin reductase -0.38926 
ENPP2 Ectonucleotide 

pyrophosphatase/phosphodiesterase 2 
0.14142 

ENAH ENAH actin regulator 0.22562 
CLU Clusterin 0.14254 
CENPBD1P1 CENPB DNA-binding domains containing 2, 

pseudogene 
-0.30834 

CALCOCO2 Calcium binding and coiled-coil domain 2 -0.28088 
ADCY2 Adenylate cyclase 2 0.25403 

 

Prognostic value of the multigene signature in 
the training and validation cohorts 

 The risk score of each case in both cohorts was 
calculated using the gene expression levels together 
with their corresponding regression coefficients, 
resulting in a median risk score of 2.02. Accordingly, 
patients were split into two groups: low- (risk score 
<2.02) and high-risk (risk score ≥2.02). The prognostic 
value of risk score was assessed through evaluating 
survival differences in the low- and high-risk groups. 
Fig.2 displays the distribution of risk scores (Fig.2A, 
B), survival status (Fig.2C, D), and gene profiles 
(Fig.2E, F) for this twenty-gene signature in the two 
cohorts. The high-risk groups possessed more 
incidents and shorter OS than the low-risk groups. In 
fact, the heatmap showed that SLITRK5, ENPP2, 
ADCY2, PRSS2, and PHGDH were overexpressed in 
high-risk groups, but ST18, STAR, and SLC36A1 were 
downregulated.  

 In the training cohort, Kaplan–Meier survival 
analysis displayed a poor prognosis trend for 
high-risk patients (p < 0.0001, Fig.2G). It was 
examined in the validation cohort in order to evaluate 
the effectiveness of this twenty-gene signature in 
predicting AML patients’ OS (p < 0.0001, Fig.2H). The 
OS in the high-risk group was noticeably inferior to 
the low-risk group, along with previous results. 

 We performed univariate and multivariate Cox 
analyses in both two cohorts, utilizing accessible 

variables provided in the dataset, including risk score, 
age, FAB classification, runx1_mutation, and 
runx1_runx1t1_fusion, to test the prognostic ability of 
this twenty-gene signature to clinical features. Both 
the two analyses of the training cohort found this 
twenty-gene signature to be a powerful predictor 
which was highly correlated with overall survival 
(HR = 1.311, 95% CI = 1.259–1.365, p < 0.001, Figures 
3A; HR = 1.307, 95% CI = 1.254–1.362, p < 0.001, 
Fig.3C). Consistent with the training cohort, the 
signature showed a significant capability to predict 
OS in the validation cohort (Fig.3B, D). These findings 
confirmed that this twenty-gene signature was a 
powerful and independent variable. Moreover, ROC 
analysis was conducted to assess the prognostic 
accuracy of the twenty-gene signature model. Due to 
the large heterogeneity, rapid progression, and 
generally worse OS of AML patients, we tested the 
AUCs of 1-year, 3-year, and 5-year survival in the 
training cohort, which were 0.86, 0.90 and 0.89, 
reflecting a strong predictive power of this model 
(Fig.3E). Correspondingly, the validation cohort also 
confirmed this finding (AUC=0.77, 0.78, and 0.81, 
Fig.3F). 

 In addition, upon comparing the two heatmaps 
in Fig.2E and F, we found that 5 genes that 
overexpressed considerably in the high-risk patients 
of both cohorts included SLITRK5, ENPP2, ADCY2, 
PRSS2, and PHGDH. Furthermore, we conducted 
Kaplan‒Meier survival analysis for each of these 
twenty genes in the training and validation cohorts 
(Supplementary PDF document), and only SLITRK5, 
PRSS2, and PHGDH were associated with poorer 
overall survival in both cohorts (Fig.4). SLITRK5, a 
transmembrane protein named SLIT and NTRK-like 
protein-5, was a negative controller of hedgehog 
signaling in osteoblasts and a therapeutic target to 
promote bone formation [15]. PRSS2, also known as 
serine protease 2, was reported to stimulate several 
solid tumor growth and progression [16, 17]. 
Compared with these two genes, we are more 
interested in PHGDH and its role in AML. Therefore, 
we performed further analysis of PHGDH, one of the 
partially metabolized enzymes known to be 
dysregulated in cancer. PHGDH is the first 
rate-limiting enzyme that catalyzes serine synthesis, 
and its high expression activates the serine synthesis 
pathway (SSP) and thus promotes tumour growth 
[18]. Since tumour cells have exceptional metabolic 
preferences to meet survival and proliferation needs, 
it may be a viable therapeutic strategy to treat 
tumours with PHGDH overexpression by targeting 
specific enzymes, such as PHGDH [19]. 
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Figure 2. The twenty-gene signature's characteristics in the training (A/C/E/G) and validation (B/D/F/H) cohorts. (A-B) The distribution of the risk score (the red dot represents 
high risk). (C-D) patient survival time (the red dot represents death). (E-F) Expressions of twenty genes in high- and low-risk groups for the training (G) and validation (H) 
cohorts.  
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Figure 3. Univariate and multivariate Cox analyses and ROC analysis of the twenty-gene signature. Univariate and multivariate analyses are separately on the basis of this 
multigene signature and clinical covariates in the training (A, C) and validation (B, D) cohorts. ROC analysis of the overall survival prediction's sensitivity and specificity by 1-, 
3-, and 5-year survival time in the training (E) and validation (F) cohorts. AUC stands for the area under the ROC curve.  

 
Figure 4. Kaplan‒Meier analyses of PHGDH in the training (A) and validation (B) cohorts. The two-sided log-rank test was used to identify differences between the two curves. 
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PHGDH expression in AML  
 In the predictive model, PHGDH was discovered 

to be overexpressed in high-risk AML patients. Thus, 
we further compared the expression of PHGDH 
between healthy donors and AML patients, 
drug-sensitive and -resistant AML in public datasets 
(Fig.5). Our analysis of the GSE9476 dataset, 
comprising 38 healthy donors and 26 AML patients, 
revealed a significant upregulation of PHGDH 
expression in AML patients compared to healthy 
donors (Fig.5A). Similarly, analysis of blood samples 
from 3 healthy donors and 3 AML patients confirmed 
these findings by detecting the protein expression 
level of PHGDH(Fig.5C). The dataset CSE106291 has 
235 patients, including drug-resistant and 
drug-sensitive patients, all of whom received 
induction therapy based on cytarabine and 
anthracycline (Fig.5B). In this dataset, we found that 
the PHGDH level was elevated in the drug-resistant 
group compared to the drug-sensitive group. These 
results imply that PHGDH may be a significant factor 
in AML and a potential therapeutic target. 

Effects of PHGDH inhibition in AML cells 
 To further validate the effects of inhibiting 

PHGDH in AML, AML cell lines (HL60 and THP1 for 
FLT3-ITDwt; MV4-11 and MOLM13 for FLT3-ITD+) 
were treated with different concentrations of the 
PHGDH inhibitor NCT503. Fig.6A showed that 
pharmacological inhibition of PHGDH notably 
inhibited AML cell viability, and the effect was more 
pronounced in FLT3-ITD+ cells. Therefore, we used 
MV4-11 and MOLM13 cells for following 
experiments. The apoptosis test on FLT3-ITD+ cells 
found that NCT503 induced apoptosis in a 

concentration-dependent manner (Fig.6B-C). Previous 
studies confirmed that depletion of PHGDH could 
induce apoptosis by interacting with the 
anti-apoptotic protein Bcl-2, reducing the expression 
and stability of Bcl-2[20-22]. It remained unclear 
whether similar alterations occurred in FLT3-ITD+ 
AML cells when PHGDH was inhibited. Under 
microscopy, it was evident that cells treated with 
NCT503 exhibited diverse levels of fragmentation, 
amorphous shapes, and multi-directional 
morphology (Fig.6D). Consequently, we examined 
changes in the expression levels of antiapoptotic 
protein Bcl-2 and proapoptotic protein Bax. The levels 
of Bcl-2 was also attenuated in a dose-dependent 
manner, whereas Bax was upregulated in the same 
manner (Fig.6E). And similar changes have been 
observed in the cells of different patients with AML 
(Fig.6F). The results suggested that inhibiting PHGDH 
pharmacologically could inhibit the proliferation of 
FLT3-ITD+ AML cells and induce apoptosis and 
potentially involves activation of the Bcl-2/Bax 
signaling pathway. 

 To investigate the involvement of PHGDH in 
activating the Bcl-2/Bax signaling pathway, we used 
siRNA to knock down the protein level of PHGDH in 
AML cells (Fig.6G). Western blot analysis revealed 
that PHGDH knockdown resulted in up-regulation of 
the pro-apoptotic protein Bax, while the level of the 
anti-apoptotic protein Bcl-2 was decreased, which was 
consistent with previous findings (Fig.6G). In 
summary, these findings enhanced our 
understanding of the potential therapeutic 
implications of targeting PHGDH in FLT3-ITD+ AML 
and the underlying mechanism may be related to the 
regulation of Bcl-2/Bax pathway by PHGDH. 

 
 

 
Figure 5. PHGDH expression in AML based on different public datasets. (A) In the GSE9476 dataset, the expression of PHGDH was considerably higher in AML patients than 
healthy individuals. (B) In the CSE106291 dataset, the drug-resistant group exhibited a higher level of PHGDH than the drug-sensitive group. (C) PHGDH protein expression 
levels in blood samples from 3 healthy donors and 3 AML patients. (*, p < 0.05; **, p < 0.01; ***, p < 0.001)  
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Figure 6. Effects of PHGDH inhibitor on growth inhibition and apoptosis induction in AML cells. (A) Cell viability after treatment with MOLM13 and MV-411 cells. (B-C) 
MOLM13 and MV-411 cells were treated with various concentrations of NCT-503 for 24 h. Subsequently, apoptosis levels were measured by flow cytometry. (D) Cell 
morphology changes after treatment with different concentrations of NCT503 for 24 hours(200X). The expression levels of Bcl-2 and Bax in AML cell lines (E) and patient 
samples (F) were evaluated after treatment with NCT503 for 24 hours. (G) the protein levels of PHGDH, Bcl-2, and Bax were detected following PHGDH knockdown by 
PHGDH siRNA. Data of three independent experiments were presented as the mean ± standard deviation (SD). (*, p < 0.05; **, p < 0.01)  
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Discussion 
 Through comprehensive analysis of GEO 

databases, we built a twenty-gene signature for the 
prognostic characteristics of AML. By utilizing this 
signature in the training and validation cohorts, AML 
patients in low- and high-risk groups showed 
statistical significance in Cox regression models, 
Kaplan-Meier analysis, and ROC curves. All of these 
results demonstrated the efficiency and applicability 
of the twenty-gene signature in predicting the 
prognosis of AML.  

 Additionally, to identify genes that could be 
more important for prognostic influence among the 
twenty genes in the signature, we separately 
compared their differential expression in both cohorts 
and the impact on patient prognosis. We found an 
important gene PHGDH to be expressed higher in 
patients of the high-risk group than that in low-risk 
group, and patients with higher levels of PHGDH 
were related to inferior prognosis. We further verified 
that PHGDH was overexpressed in AML patients by 
public databases and patients’ blood samples. 
Consistent with this, another study showed that 
PHGDH levels were significantly elevated in AML 
patients and that these patients tended to have a 
worse prognosis [9]. These results suggest that 
PHGDH may be abnormally expressed in AML cells 
and be pivotal to cell metabolism. 

 PHGDH, a crucial metabolic enzyme of the de 
novo serine synthesis pathway (SSP), converts 
glycolysis- or gluconeogenesis-derived 3-PG into 
serine through a chain of enzymatic reactions together 
with other rate-limiting enzymes downstream of 
PHGDH, including phosphoserine aminotransferase 1 
(PSAT1) and phosphoserine phosphatase (PSPH)[23, 
24]. Subsequently, serine generates glycine through 
catalysis by serine hydroxy methyltransferases 1/2 
(SHMT1/2). Both serine and glycine serve as raw 
materials for the synthesis of nucleotides, 
s-adenosylmethionine (SAM), and glutathione (GSH). 
While serine and glycine participate in nucleotide 
synthesis, enter one-carbon metabolism, and promote 
cancer cell proliferation, glutathione acts as a reactive 
oxygen species (ROS) scavenger to maintain redox 
balance in cells [25, 26]. This is a highly regulated 
pathway in response to multiple metabolic stresses, 
including glucose and glutamine depletion, and the 
intermediate products NADH and GSH can regulate 
intracellular redox coordination [27].  

 In the course of tumour development, metabolic 
materials, such as amino acids and glucose, usually 
display aberrant alterations in their metabolic 
processes to meet the need for uncontrolled 
proliferation or other demands [28]. One of the most 
important changes is the activation of SSP, thus 

increasing the synthesis of serine, which is utilized for 
protein and nucleotide synthesis, amino acid 
transport, and folate metabolism, regulating redox 
homeostasis and cell cycle progression, thus 
supporting tumour cell survival and proliferation 
[29-31]. Many studies have confirmed the dysregu-
lation of serine uptake or biosynthesis in tumour cells, 
as well as abnormal PHGDH expression, in different 
tumours, including lymphoma, multiple myeloma, 
glioma, hepatocellular carcinoma, melanoma, colon 
cancer, breast cancer, and others [32-38]. These studies 
generally argued that intervention with PHGDH 
could affect tumour cell growth, but the underlying 
mechanism was not fully understood. 

 It is known that metabolic enzymes regulated by 
key signaling pathways in cancer cells can meet 
cellular metabolism and growth requirements by 
performing classical metabolic functions, but a 
growing number of studies have found that these 
metabolic enzymes can also support the rapid growth 
of cancer cells through noncanonical or nonmetabolic 
functions [39, 40]. In addition to synthesizing serine, 
PHGDH may also promote tumour proliferation in 
noncanonical ways. Studies have shown that 
exogenous serine supplementation does not restore 
cell growth inhibition caused by PHGDH knockdown, 
suggesting that PHGDH may have important 
nonmetabolic functions in tumour development [35]. 
PHGDH also interacts with the translation initiation 
factors eIF4E and eIF4A1 to promote translation 
initiation in the cytoplasm, thereby accelerating 
tumour development [41]. PHGDH undergoes nuclear 
translocation after its phosphorylation, binds to c-Jun, 
and affects the transcription of target genes 
downstream of c-Jun related to cell growth regulation, 
thus promoting tumorigenesis [42]. Similarly, 
PHGDH can promote growth and proliferation of 
hepatoma cells by activating mitochondrial transla-
tion and respiratory metabolism through 
noncanonical functions [43]. In some other studies, 
PHGDH may perform noncanonical functions by the 
mitochondrial apoptotic pathway, facilitating the 
expression and stability of Bcl-2 and eventually 
repressing cell apoptosis [20, 22]. Our experiments 
also demonstrated that inhibition of PHGDH can 
induce apoptosis in AML cells, which may be related 
to the Bcl-2/Bax signaling pathway. 

 In addition, studies demonstrated PHGDH may 
be involved in cancer and tumour resistance to 
chemotherapy. Wei et al. found that PHGDH was a 
key driver of sorafenib resistance in hepatocellular 
carcinoma (HCC), and the synergistic effect of the 
PHGDH inhibitor NCT503 and sorafenib can 
effectively eliminate the growth of HCC in vivo [44]. In 
multiple myeloma (MM), the level of PHGDH 
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expression was considerably elevated and correlated 
with inferior survival, and the mechanism involved 
may be that high levels of PHGDH reduce ROS and 
DNA damage by increasing intracellular glutathione, 
promote the survival and proliferation of MM cells, 
and improve tumour cell resistance to bortezomib 
[45]. Through a similar mechanism, PHGDH causes 
triple-negative breast cancer cells to become resistant 
to doxorubicin treatment [46]. Based on the 
continuous discovery and improvement of PHGDH 
inhibitors, their effect in overcoming drug resistance 
or enhancing chemotherapy efficacy in tumour 
treatment may gradually become apparent. 

 These studies show that targeting PHGDH can 
not only directly intervene in tumour cell survival and 
proliferation through classical metabolic pathways or 
nonclassical pathways but also increase the sensitivity 
of cells to other drugs, indicating that it may be a 
promising therapeutic target in tumour treatment. To 
date, the antitumour effects of PHGDH in AML have 
been poorly studied. In recent years, researchers 
found that serine biosynthesis was a metabolic 
vulnerability of FLT3-ITD-driven AML. By inhibiting 
PHGDH, the proliferation of FLT3-ITD+ AML could 
be slowed [47]. Our preliminary experiments also 
confirmed that inhibition of PHGDH significantly 
inhibited cell proliferation and induced apoptosis in 
AML cells with or without FLT3-ITD+ mutations. At 
the same dose, AML cells with FLT3-ITD+ mutations 
were inhibited to a greater extent. However, further 
research on its antitumour mechanism needs to be 
performed. 

Conclusions 
 In summary, our study constructed a multigene 

signature in AML. The signature was associated with 
AML OS and strongly identified the prognostic risk 
factors of AML patients. Remarkably, by analyzing 
twenty genes in the signature, we discovered a vital 
metabolism enzyme gene, PHGDH, which is 
overexpressed in AML patients and is related to 
inferior prognosis. In this study, we mainly 
investigated the impact of the noncanonical or 
nonmetabolic functions of PHGDH on AML. We 
preliminarily found that pharmacological inhibition 
of PHGDH can significantly inhibit cell proliferation 
and induce apoptosis in AML, which the Bcl-2/Bax 
signaling pathway might be involved in. PHGDH may 
play a crucial role in development of AML, making 
PHGDH a potential target for AML therapy. 
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