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Abstract 

Background: Ground-glass opacity (GGO)-associated cancers are increasingly prevalent, exhibiting unique 
clinical and molecular features that suggest the need for a distinct treatment strategy. However, the metabolic 
characteristics and vulnerabilities of GGO-associated lung cancers remain unexplored. 
Methods: We conducted metabolomic and transcriptomic analyses on 40 pairs of GGO-associated lung 
cancer tissues and adjacent normal tissues. By integrating data from TCGA database and single-cell RNA 
sequencing, we aimed to identify aberrant metabolic pathways, establish a metabolite-associated gene 
signature, and pinpoint key metabolic genes. The physiological effect of key genes was detected in vitro and vivo 
assays. 
Results: We identified a 30-gene metabolite-associated signature and discovered aberrant metabolic pathways 
for GGO-associated lung cancer at both metabolic and transcriptional levels. Patients with this signature 
displayed specific prognostic and molecular features. Cox regression analysis, based on the Cancer Genome 
Atlas Program (TCGA) data, further narrowed down the metabolite-related gene signature, resulting in a 
5-gene signature. Confirmed by single-cell RNA sequencing (GSE203360), the 5-gene signature was mainly 
expressed in cancer cells of GGO tissue. Real-time quantitative PCR (RT-qPCR) further validated the 
differential expression of these genes between GGO and adjacent normal tissue obtained from pulmonary 
surgery. Finally, our integrative analysis unveiled aberrant histidine metabolism at both the multi-omics and 
single-cell levels. Moreover, we identified MAOB as a key metabolic gene, demonstrating its ability to suppress 
cell proliferation, migration, and invasion in LUAD cell lines, both in vitro and in vivo. 
Conclusions: We identified a specific metabolite-associated gene signature and identified aberrant histidine 
metabolism in GGO-associated lung cancer from multiple perspectives. Notably, MAOB, a crucial component 
in histidine metabolism, demonstrated a significant inhibitory effect on the proliferation and metastasis of 
LUAD, indicating its potential significance in pathogenesis and therapeutic interventions. 
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Introduction 
Ground-glass opacity (GGO) is characterized by 

an irregular or round-like shadow with increased 
density in computed tomography (CT) images. The 
prevalence of low-dose CT for lung cancer screening 
has led to an increased detection of non-solid 
pulmonary nodules containing GGO components [1]. 
The Early Lung Cancer Action Program (ELCAP) 
reported a GGO detection rate of 4.4% and 
approximately 20% of lung adenocarcinoma (LUAD) 
manifested as GGO [2]. Moreover, a multi-center 

study from a Chinese hospital revealed 95.5% of lung 
cancer patients presented as GGO, calling for further 
attention to GGO-associated lung cancer [3]. 

GGO-associated lung cancers exhibit unique 
clinical and molecular features in comparison to 
solid-nodule lung cancers. Typically, GGO-associated 
lung cancers are generally lung adenocarcinoma and 
relatively indolent, characterized by a non-invasive 
pathology type and a favorable prognosis [4, 5]. 
Segmentectomy, rather than lobectomy, has been 
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shown to achieve nearly 100% 5-year relapse-free 
survival for GGO patients [6]. Numerous studies have 
uncovered unique genetic and immune features of 
GGO-associated lung cancers, indicating a less active 
immune microenvironment and lower tumor mutant 
burden than solid-nodule lung cancers [7-9]. 
However, the metabolic characteristics of 
GGO-associated lung cancer are not well-understood. 
Additionally, existing treatment strategies are 
primarily based on clinical features, lacking an 
understanding of these unique molecular 
characteristics.  

Metabolic reprogramming has emerged as a 
hallmark of cancer [10]. Cancer cells adaptively alter 
their metabolism, including glycolysis, lipid 
metabolism, to sustain growth in a nutrient-deficient 
environment [11-13]. In the context of lung cancer, 
metabolomic was initially employed to detect 
differential metabolites in serum and urine for 
disguising healthy individuals and those with cancer 
[13, 14]. However, these studies sorely reflected the 
altered metabolic phenomena, rather than underlying 
mechanism of carcinogenesis and progression. The 
integration of metabolomic and transcriptomics could 
reveal consistent metabolic alterations at both the 
metabolites and mRNA levels, providing insight into 
molecular mechanisms and targeted therapies of lung 
cancer. Current integrative studies have identified 
metabolite-related gene signatures and key metabolic 
pathways aberrantly regulated in lung adenocarci-
noma and squamous cell carcinoma [15]. 
Nevertheless, none of these studies have focused on 
GGO-associated lung cancer. 

In this study, we integrated metabolic profile 
and gene expression of GGO-associated lung cancer 
through metabolomic and transcriptomic analyses, to 
identify metabolite-associated gene signature and 
aberrant metabolic pathway. The metabolite- 
associated genes were further refined by assessing 
their prognostic and physiological significance using 
data from TCGA database and single-cell RNA 
sequencing, to identify metabolic genes crucial for 
carcinogenesis and progression of lung cancer. 
Ultimately, we demonstrated aberrant histidine 
metabolism at both multi-omics integrative analysis 
and single-cell level, and identified the critical role of 
MAOB in LUAD carcinogenesis and progression, 
substantiated through vitro and vivo assays.  

Materials and Methods 
Biological sample collection  

We conducted assessments on patients who 
underwent pulmonary resection surgery at the 
Second Xiangya Hospital from March 2019 to June 

2020. The inclusive consisted:1) preoperative CT 
confirmed pulmonary lesions as GGO, which refers to 
a homogeneous increase in density in the lung field 
that does not completely obscure the bronchiolo-
vascular structures [16]; 2) intraoperative biopsy 
confirming LUAD as the pathology of the target 
lesion. Exclusion criteria included: 1) multiple 
primary pulmonary nodules with malignancy 
potential; 2) preoperative examinations indicating 
positive lymph nodal or distant metastases; 3) 
patients with a history of malignancy. Additionally, 
we specifically selected GGO-associated nodules 
within a10mm diameter, indicative of the early stage 
of lung cancer. Each eligible patient provided a pair of 
specimens from resected lesions, including GGO and 
adjacent normal tissue. Eventually, 40 pairs of 
samples were collected for subsequent analysis, with 
15 pairs used for metabolomic analysis and 25 pairs 
used for transcriptomics analysis. The fresh 
specimens underwent a process including washing by 
saline, transfer into clean tubes, and rapid freezing in 
liquid nitrogen until analysis.  

Untargeted Metabolomics analysis of GGO 
An Untargeted metabolomics, aiming to capture 

all measurable mass spectral signals, was performed 
by XploreMET platform (Metabo-profile, Shanghai, 
China). Each sample was assigned a specific barcode 
for identification and logged into an administration 
system for traceability. The metabolites extraction, 
purification, and derivatization were performed in a 
streamlines processing. Chromatographic peaks of 
metabolites were measured using a time-of-flight 
mass spectrometer with gas chromatography 
(GC-TOF/MS). Peak filtering was performed to 
eliminate interfering signals, and the remaining 
signals were matched with a standard library (JiaLib 
TM) to specific metabolites identification. Missing 
value was replaced with half of the minimum positive 
value and raw data underwent normalization through 
log transformation and auto scaling. 

Identification and pathway enrichment of 
differentially expressed metabolites 

The orthogonal partial least 
squares-discriminant analysis (OPLS-DA) was 
performed to identify differentially expressed 
metabolites (DEMs). Metabolites with variable 
importance in projection (VIP) value greater than 1.0 
were considered significant in the OPLS-DA model. 
Overfitting effect was assessed through permutation 
testing and a well-behaved model is favored by the 
results that R2 and Q2 values exceeded 0.5. 
Significance analysis of microarrays (SAM) was 
conducted, and DEMs with a false discovery rate 
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(FDR) value less than 0.01were selected. Additionally, 
a volcano plot, using t-tests and fold change analysis, 
was generated, with statistical significance defined as 
a fold change (FC) exceeding 1.25X and an FDR value 
less than 0.25. DEMs were finally identified as the 
common metabolites in the three algorithms above. 
Quantitative enrichment analysis was performed to 
reflect the metabolic alteration based on the DEMs. 
All the algorithms above were performed by 
MetaboAnalyst 5.0. 

Transcriptomics analysis of GGO 
25 pairs of samples underwent high-throughput 

transcriptome sequencing using BBGISEQ platform 
(BGI Tech, Beijing, China). Expression profiling was 
quantified in each sample and compared against a 
reference genome deriving from NCBI (version. 
GCF_000001405.38_GRCh38.p12). The Wilcoxon 
signed-rank test was conducted to select the 
differentially expressed genes (DEGs) between GGO 
and paired normal tissue. A volcano plot was 
generated with a threshold of log2(FC) exceeding 
0.75X and P value less than 0.01. Principal component 
analysis (PCA) was utilized to confirm the data 
clustering. All these analyses were conducted using R 
studio. 

Integrated metabolomics and transcriptomics 
analysis 

We determined genes associated with DEMs 
using the Human Metabolome Database (HMDB, 
RRID:SCR_007712). A multi-omics gene signature 
was identified as the overlapped part between 
metabolites-associated genes (MAGs) and DEGs. A 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of MAGs was performed by 
Omicshare. By using MetaboAnalyst and Cytoscape 
(Version 3.9.1), joint network analysis including 
DEMs and MAGs was performed and revealed the 
alteration in metabolomics and transcriptomics, 
synchronously. 

Identification of multi-omics associated 
subtypes based on TCGA data 

We utilized R-package “ConsensusClusterPlus” 
to identify the subtypes based on the multi-omics 
gene signature. K-means consensus clustering 
algorithm was iterated multiple times to enhanfe 
clustering stability. The scores of tumor-associated 
metabolic physiological pathways were calculated in 
Cancer Genome Atlas Program (TCGA) LUAD 
samples of two different subtypes, by using ssGESA 
algorithm in R-package “GSVA”. Survival association 
between different subtypes was assessed by using 
R-package “survminer” and the log-rank test. 

Screening for metabolite-associated genes 
with prognostic value 

For further screening for metabolite-associated 
genes with prognostic value, we initially conducted a 
univariate analysis, considering significance at P 
value < 0.05. The identified candidate genes then 
underwent multivariate cox regression analysis. 
Metabolite-related risk genes were determined using 
a stepwise regression method, selecting genes when 
the Akaike information criterion (AIC) value reached 
its minimum [17]. The risk score of TCGA sample was 
calculated based on gene expression, and Kaplan–
Meier analysis was performed between high and 
low-risk groups by using R-package “survminer”. The 
receiver operating characteristic (ROC) curve of risk 
type and clinical features was generated using R 
package ‘timeROC’. A Nomogram, including 
independent prognostic factors, was constructed 
using the R package “RMS”. A heatmap displaying 
the distribution of clinical features and multi-omics 
subtypes in different risk groups was created using R 
package “ComplexHeatmap”. 

Single-cell RNA sequencing reveals the 
distribution of metabolite-associated gene 
signature at the cellular level  

We downloaded GGO Sc-RNA sequencing data 
from GSE203360. The data processing, including 
filtering, normalization and selection of highly 
variable genes, was performed by R package “Seurat”. 
Then, uniform manifold approximation and project-
ion analysis (UMAP) was applied for dimension 
reduction and clustering. The 'FindAllMarkers' 
function was utilized to identify markers between 
different UMAP clusters, with the criteria set as | 
Log2FC | value < 0.25, P-adjusted value < 0.05 and 
‘min.pct’ equal to 0.3. Based on differentially 
expressed genes, cell clusters were annotated based 
on R package “SingleR” and gene markers from the 
CellMaker database. The R package “AUCell” was 
employed to select metabolite-associated gene 
signature enriched cells. GSEA analysis was 
processed to reveal the alternative pathways of the 
metabolite-associated gene signature enriched cells. 

Quantitative Real-time PCR (RT-qPCR) 
Fresh GGO tissue obtained from pulmonary 

resection surgery underwent total RNA extraction 
using RNAiso (Takara, 9109). The reverse 
transcription of total RNA was performed by cDNA 
Synthesis SuperMix Kit (Yeasen, 11141ES60). The 
real-time quantitative PCR (RT-qPCR) experiment 
was executed by SYBR Green Master Mix Kit reagents 
(Yeasen, 11203ES08) on a StepOnePlus instrument. 
The methods for using these reagents were consistent 
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with the instructions provided by the manufacturers. 
The primers of detected genes for RT-qPCR are listed 
in Table 1.  

 

Table 1. Primers set for RT-qPCR analysis of the 5-gene signature 

Primer Primer sequence 
CYP3A5-F ACCTACCTATGATGCCGTGG 
CYP3A5-R TTTGGGTCATGGTGAAGAGC 
SULT2B1-F TGAGCTCCCATCTTCCCATC 
SULT2B1-R GAAGCCAGCCCTTAATGTGG 
PLD4-F TCACTTCAACCGTTTCCAGC 
PLD4-R ATAGATGAACTCCTGGGCGC 
NT5E-F GCTCTTCACCAAGGTTCAGC 
NT5E-R TCGATCAGTCCTTCCACACC 
MAOB-F AGAAGAAGCTCCAGTTGCCT 
MAOB-R TGCTCCTCACACCAGTTCTT 

 

Collection, analysis and processing of data 
from public databases 

Kaplan-Meier curves of the 5-gene signature 
were generated using “lung cancer” module of 
Kaplan-Meier Plotter, which includes data from 
TCGA and GEO databases. The gene list of histidine 
metabolism was downloaded from the KEGG 
database. Protein-protein interaction networks for 
histidine metabolism was constructed using STRING 
database and Cytoscape (Version 3.9.1). Protein 
expression of MAOB in clinical samples was acquired 
from proteomics module of UALCAN. Immuno-
histochemistry stain of lung cancer sample was 
acquired from The Human Protein Atlas, and the 
following criteria were applied: 0 (no staining), 3 
(weak staining), 6 (moderate staining), and 9 (strong 
staining). 

Cell culture and antibodies 
293FT cells, normal human bronchial epithelial 

cells (16HBE) and human LUAD cells (A549, H1299, 
PC9 and H1975) were provided by the Cancer 
Research Institution of Central South University. 
Short tandem repeat analysis verified the viability of 
these cells prior to the experiment and cells were 
cultured in RPMI 1640 (Gibco) and DMEM (Gibco) 
medium with 10% fetal bovine serum (FBS) 
(164210-50, Procell), 1% penicillin–streptomycin 
(C100C5, NCM). 

The establishment of MAOB overexpression 
cell lines 

 The coding sequence of MAOB was cloned into 
Ubi-MCS-3FLAG-CBh-gcGFP-IRES-puromycin and 
packaged as lentiviruses in 293FT cells (Genechem, 
Shanghai, China). The target and corresponding 
vector virus were transfected into A549 and PC9 cell 
lines and were removed at 24 h after transfection. 
Puromycin was employed to select positive cells 
using a concentration series, and the efficacy of 

transfection was assessed by western blot assay. 

Immunohistochemistry (IHC)  
We also collected GGO samples and tumor 

tissues from nude mice for IHC. Tissue slides 
underwent deparaffinization, rehydration through 
turpentine and alcohol series, followed by antigen 
retrieval using sodium citrate buffer. The slides were 
treated with 3% H2O2 and blocked with 5% goat 
serum for 30 min at room temperature. GGO sections 
were then incubated by primary antibodies MAOB 
(12602-1-AP, Proteintech), Ki67 (28074-1-AP, 
Proteintech), PCNA (60097-1-Ig, Proteintech), 
Vimentin (10366-1-AP, Proteintech), E-cadherin 
(20874-1-AP, Proteintech) and N-cadherin 
(22018-1-AP, Proteintech) overnight at 4°C and 
secondary antibody 30 min at 37°C. The final stain 
was performed by using DAB.  

Western blot assay 
Cells in a 60-mm2 were lysed in 200 µL strong 

RIPA buffer (P0013B, Beyotime), which contained 
protease inhibitor cocktail (20124ES03, Yeasen). The 
protein concentration was determined using the BCA 
protein assay kit (P0011, Beyotime). Proteins were 
separated on a 4%-20% preformed gel (ET12420Gel, 
ACE) and transferred to PVDF membranes 
(Millipore). The membranes were blocked with 5% 
skim milk in TBST at room temperature for 2h, 
followed by incubation with the MAOB primary 
antibody (1:2000) (12602-1-AP, Proteintech) at 4°C 
overnight. After washing 3 times with TBST, the 
membrane was incubated with the secondary 
antibody (1:8000) (SA00001-2, Proteintech). Finally, 
the target proteins were visualized using a 
hypersensitive ECL kit (P0018S, Beyotime). 

Cell proliferation experiments 
Cell proliferation ability was assessed by CCK-8 

and colony formation assays. For the CCK-8 assay, 
2000 cells were cultured in each well of 96-well plate, 
and the cell counting kit-8 regent (C0005, Topscience) 
was added at the appropriate time points following 
the instructions. The OD 450 values of each well were 
measured 2h after the addition. For the colony 
formation assay, 1000 cells were plated in each well of 
6-well plate and cultured for 10 days. Then the cells 
were fixed with 4% paraformaldehyde and stained 
with 0.2% crystal violet for imaging. 

Migration and invasion assays in a transwell 
system 

The transwell system with 8.0-μm pores 
(Corning) was employed to measure the migration 
and invasion ability of detected cells. For assessing 
migration ability, 1×104 PC9 cells per well or 2×104 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1852 

A549 cells per well in 150μL 1640 medium without 
FBS were placed in the upper chamber, and 600µL 
1640 medium with 10% FBS was added to the bottom 
chamber. In addition, Matigel (3556234, Corning) was 
added to the upper chamber in advance for detecting 
cell invasion according to the reagent instructions. 
After 24 h of culture, cells on the upper chamber were 
washed by PBS, fixed with ethanol and stained with 
0.2% crystal violet. 

Nude mice and study approval 
A total of 5 × 106 cells with MAOB 

overexpression were injected subcutaneously into 
5-week-old female nude mice (SJA Laboratory 
Animal, Changsha China). When the tumors reached 
the maximum diameter according to ethical criteria of 
our institution, all the mice were humanely 
euthanized by cervical dislocation, and the tumors 
were weighed after removal. All experimental 
procedures for animal study were approved by the 
Institutional Animal Care and Use Committee of 
Central South University and strictly complied with 
the legal mandates and national guidelines for the 
care and maintenance of laboratory animals. 

Results  
Study population and sample collection 

From March 2019 to June 2020, samples from 40 
patients who underwent pulmonary resection surgery 
in second Xiangya Hospital were analyzed through 
metabolomics and transcriptomic. Each patient was 
identified as having a GGO component by 
preoperative CT scans and confirmed with lung 
cancer through postoperative pathology. Of note, all 
GGO-associated lung cancers in this study were 
diagnosed as lung adenocarcinoma (LUAD). 15 out of 
40 samples were subjected to metabolomics while 25 
samples were subjected to transcriptomics using 
simple randomization. The clinical and pathological 
characteristics of the study population showed no 
differences between metabolomic group and 
transcriptomic group (Table 2). Among the 40 
patients, 24 had pure GGO nodules, and 16 had mixed 
GGO nodules, consisting of GGO and a solid 
component. GGO nodules were relevant to the early 
stage of lung cancer in pathology, with 22 patients 
having in situ and minimally invasive LUAD, while 
only 18 patients had invasive LUAD.  

Metabolomic fingerprinting reveals significant 
metabolites and aberrant metabolic pathways 
in GGO-associated lung cancer 

According to GC-TOF/MS analysis, we detected 
and annotated 121 metabolites in GGO and adjacent 
normal tissue. To identify metabolic alterations in 

GGO, we performed OPLS-DA analysis, and score 
plots demonstrated a clear cluster between GGO and 
adjacent normal tissues (Figure 1A). VIP score 
reflected the contribution of each metabolite to the 
discrimination model, and we selected 45 metabolites 
with VIP value greater than 1.0 as significant 
biomarkers (Figure 1B). The permutation test, with a 
Q2 value 0.69 and a R2 value 0.797, demonstrated that 
the OPLS-DA model had no overfitting effect (Figure 
1C). For further screening significant metabolites in 
GGO, we performed significance analysis of 
microarrays (SAM) and selected 48 metabolites 
(Figure 1D). Based on fold change analysis (fold 
change exceeding 1.25X) and T-tests (FDR < 0.25), we 
identified 34 significant upregulated metabolites and 
17 significant downregulated metabolites in GGO 
tissue compared to adjacent normal tissues (Figure 
1E). Ultimately, Venn's diagram showed 35 
metabolites were common in OPLS-DA, SAM and 
volcano plot (Figure 1F), identifying them as 
differentially expressed metabolites (DEMs). A 
heatmap illustrated the relative expression of DEMs 
in GGO and adjacent normal tissue (Figure 1G). 
Subsequently, we performed a quantitative 
enrichment analysis on DEMs to explore potential 
metabolic alterations in the GGO group. The top 5 of 
enriched pathways were purine metabolism, 
glutamate metabolism, selenoamino acid metabolism, 
betaine metabolism and amino sugar metabolism 
(Figure 1H).  

 

Table 2. Clinical and pathological characteristics of study cohort 
Characteristics Total Metabolomics Transcriptomics P 
Number 40 15 25  
Age (median±SD) 52.0 ± 9.2 51.6 ± 7.0 52.2 ± 10.5 0.86 
Gender (%)    0.85 
Male 10 (25) 4 (26.7) 6 (24.0)  
Female 30 (75) 11 (73.3) 19 (76.0)  
Smoking status (%)    0.28 
Ex-smoker 31 (77.5) 13 (86.7) 18 (72.0)  
Non-smoker 9 (22.5) 2 (13.3) 7 (28.0)  
Localization (%)    0.39 
Right 26 (65.0) 11 (73.3) 15 (60.0)  
Left 14 (35.0) 4 (26.7) 10 (40.0)  
Size (median [IQR]) 8.3 [7.3,10.0] 9.0 [8.0,10.0] 8.0 [7.0,9.8] 0.07 
Component type (%)    0.18 
Pure GGO 24 (60.0) 11 (73.3) 13 (52.0)  
Mixed GGO 16 (40.0) 4 (26.7) 12 (48.0)  
Pathology type    0.46 
In situ 10 (25.0) 4 (26.7) 6 (24.0)  
Minimally invasive 12 (30.0) 6 (40.0) 6 (24.0)  
Invasive 18 (45.0) 5 (33.3) 13 (52.0)  

SD standard deviation, IQR interquartile range, GGO ground-glass opacity 
 

Transcriptomics analysis of GGO 
We performed a differentially expressed genes 

(DEGs) analysis based on high-throughput 
sequencing in samples of transcriptional group. With 
a threshold log2(FC) exceeding 0.75X and P value less 
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than 0.01, we identified 1380 DEGs between GGO and 
adjacent normal tissue, with 532 DEGs up-regulated 
and 848 DEGs down-regulated (Figure S1A and B). 

PCA analysis showed a clear separation between 
samples of different groups (Figure S1C). 

 
 

 
Figure 1. Metabolomics analysis of GGO-associated lung cancer and adjacent normal tissue. A. The scores plot from Orthogonal Partial Least 
Squares-Discriminant Analysis (OPLS-DA) distinctly demonstrated a clustering effect between GGO tissue and normal tissue. B. The Variable important in projection (VIP) 
scores suggested significant metabolites in the OPLS-DA model for distinguishing GGO and normal tissues. C. The permutation test demonstrates the OPLS-DA model had no 
overfitting effect, with reliable Q2 value (0.69) and R2Y value (0.979). D. Significance Analysis of Microarrays (SAM) suggested significant metabolites for distinguishing GGO and 
normal tissue. E. Volcano plot demonstrated significant metabolites distinguishing GGO and normal tissues (FDR＜0.25, fold change exceeding 1.25X). F. The venn diagram of 
OPLS-DA, SAM and volcano revealed 35 underlying metabolites for distinguishing GGO and normal tissues. G. Heatmap of 35 significant metabolites between GGO and normal 
tissues. H. Quantitative enrichment analysis of 35 significant metabolites. 
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Integrative analyses of metabolomics and 
transcriptomics identify metabolite-associated 
gene signature and aberrant metabolic 
pathways in GGO-associated lung cancer 

Metabolites represent downstream products of 
gene expression, and the intensity of metabolites can 
be influenced by multiple factors. To explore primary 
metabolic changes in GGO associated lung cancer, we 
integrated metabolomics and transcriptomics to 
screen coincident variations. We mapped the DEMs to 
their corresponding metabolic genes using human 
metabolome database (HMDB), resulting in 343 
candidate metabolite-associated genes (MAGs). The 
integration of candidate MAGs and DEGs identified 

30 common genes (Figure 2A). The heatmap of the 
30-gene signature displayed the expression level in 
GGO and adjacent normal tissue (Figure 2B). We 
performed metabolism-associated KEGG pathway 
enrichment analysis on the 30-gene signature and 
most of the enriched metabolic pathways were related 
to lipid metabolism and amino acid metabolism 
(Figure 2C). To further explore altered metabolic 
progression both in metabolomics and transcriptomic, 
we subjected 35 DEMs and 30 MAGs to joint network 
analysis. The result suggested aberrant histidine 
metabolism, fatty acid biosynthesis and purine 
metabolism both in metabolic and transcriptional 
levels (Figure 2D).  

 

 
Figure 2. Integrative analyses of metabolomics and transcriptomics in GGO-associated lung cancer. A. Venn diagram of metabolite-associated genes (MAGs) and 
differentially expressed genes (DEGs), identified a 30-gene multi-omics signature. B. Heatmap of the 30-metabolite-gene signature between GGO and normal tissues. C. 
Metabolism-associated KEGG pathway analysis of the 30-metabolic-gene signature. D. Joint network analysis aberrant metabolic pathways both at the metabolic and 
transcriptional levels. 
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Figure 3. Clusters based on metabolite-associated gene signature have distinct prognostic and physiological features. A, B. Using the k-means clustering 
algorithm, 503 lung cancer samples from TCGA were divided into 2 clusters based on 30-metabolic-gene signature when k value was set to 2. C. Patients in cluster 1 and cluster 
2 exhibited different prognostic features. D, E. Patients in cluster 1 and cluster 2 exhibited distinct metabolic and physiological features. 

 

Clusters based on metabolite-associated gene 
signature have distinct prognostic and 
physiological features 

Based on the 30-gene multi-omics signature, we 
conducted k-means consensus clustering analysis on 
503 LUAD samples from TCGA. When the k value 
was set to 2, the TCGA samples were divided into 2 
subgroups (C1 and C2), demonstrating a favorable 
clustering effect (Figure 3A and B). We observed 
significant differences in prognosis between patients 
in cluster C1 and C2 (Figure 3C). Additionally, we 
calculated the score of each sample based on common 
metabolic and oncogenic pathways using ssGESA 
algorithm (Figure 3D and E). Samples in cluster C2 
exhibited higher expression in multiple tumor- 
associated metabolic pathways, including glycolysis, 
purine metabolism, histidine metabolism, arginine 
and proline metabolism, arginine biosynthesis, 
glutathione metabolism, fatty acid synthesis and 
degradation (Figure S2A). Similarly, samples in 
cluster C2 displayed higher expression in multiple 
tumor-associated physiological pathways including 
AKT, EGF, HER2, MAPK, MET, mTOR, PTEN, RAS, 
WNT and NOTCH signal pathway (Figure S2B). 

Screening for metabolic genes with prognostic 
value 

To further identify key genes in GGO, we 
screened for metabolic genes with prognostic value 

within the 30-gene signature. Among the signature, 9 
genes were confirmed as independent prognostic 
factors through univariate analysis (Figure 4A). We 
then subjected these 9 genes to multivariate Cox 
regression analysis. According to stepwise Cox 
regression, we ultimately identified 5 genes as a 
metabolite- associated risk signature in the Cox 
proportional hazard model. The 5 risk genes are 
NT5E, SULT2B1, CYP3A5, MAOB and PLD4 (Figure 
4B). The corresponding parameters of the 5-gene 
signature in Cox regression model was displayed in 
Table S2. Subsequently, we calculated risk scores for 
each sample based on the expression of the 5-gene 
signature. LUAD patients deriving from TCGA were 
divided into high and low-risk groups according to 
the median of risk score, and patients in the high-risk 
group had a worse prognosis with a P-value less than 
0.001 (Figure 4C). The AUC of 5-gene risk signature at 
1-, 3- and 5-year is 0.735, 0.643 and 0.611, respectively 
(Figure 4D), significantly higher than the AUCs of age 
(0.482), gender (0.546), and stage (0.710) (Figure 4E). 
We selected independent prognostic factors (T, N, M 
stages) and the 5-gene risk signature to draw a 
nomogram based on 337 LUAD patients who had 
complete clinical information in TCGA (Figure 4F). 
The calibration curves demonstrated favorable 
accuracy of the nomogram (Figure 4G). We also 
assessed the distribution of clinical features and 
metabolic subgroups in different risk group and 
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demonstrated female, individuals with a lower stage 
and those belonging to cluster 2 were more 
concentrated in the low-risk group (Figure 4H). 

Sc-RNA sequencing and clinical verification 
identify key metabolic gene in malignant GGO  

To access the expression of metabolite-associated 
gene signature at the cell level, we analyzed 19391 
cells derived from 5 GGO associated LUAD samples 
in GSE203360. Utilizing UMAP clustering based on 
cell-type-annotation markers (Table S1), 
GGO-associated cells were classified into ten cell 
types (Figure 5A). The AUCell algorithm identified 
931 cells with high 5-gene signature, with a threshold 
AUC value greater than 0.034. Interestingly, cells with 
a high 5-gene signature were predominantly 

concentrated in cancer cells, rather than other cells in 
the tumor microenvironment (Figure 5B). Then we 
performed the GESA algorithm and found that the 
5-gene signature-enriched cells were positively 
related to histidine metabolism and purine 
metabolism, consistent with the result of integrative 
omics analysis (Figure 5C). We also examined the 
distribution of each gene in the 5-gene signature in 
GGO cells and discovered PLD4, NT5E and MAOB 
were differentially expressed between cancer cells 
and non-tumor cells (Figure 5D), suggesting a more 
critical physiological significance. Subsequently, we 
collected 20 pairs of malignant GGO samples and 
adjacent normal tissue from pulmonary resection 
surgery, the mRNA level of the 5-gene signature was 
detected using RT-qPCR. The results of RT-qPCR 

 

 
Figure 4. Screening for metabolic genes with prognostic value. A. Among the metabolite-associated gene signature, 9 genes were confirmed as independent prognostic 
factors through univariate analysis. B. The coefficient of a 5-gene risk signature identified through stepwise Cox regression analysis. C. Based on the expression of the 5-gene 
signature, patients were divided into 2 subgroups, revealing significant distinction in prognosis between high and low-risk subgroups. D, E. The area under the curves (AUCs) of 
5-gene risk signature were significantly higher than the AUCs of age, gender, and stage. F. Based on LUAD data from the TCGA cohort, a nomogram was constructed 
incorporating independent prognostic factors (T, N, M stages) and the 5-gene risk signature. G. The calibration curves demonstrated favorable accuracy of the nomogram. H. 
A Heatmap demonstrated the distribution of clinical features and metabolic clusters in high and low-risk groups. 
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suggested GGO expressed higher levels of PLD4 and 
NT5E, and lower levels of CYP3A5, SULT2B1 and 
MAOB than adjacent normal tissue (Figure 5E). 
Meanwhile, we generated KM plots based on 
prognostic data from Kaplan-Meier Plotter (Figure 5F) 
and only CYP3A5 and MAOB showed consistent 
pattern of gene expression and prognosis, which 
genes with lower expression in lung cancer were 
correlated with a better prognosis. Integrating 
Sc-RNA sequencing, RT-qPCR and KM plots, we 
identified MAOB as a key gene of GGO-associated 
lung cancer. Patients with lower expression level of 

MAOB corresponded to a better prognosis, and even 
in tumor microenvironment, cells expressing MAOB 
were mainly enriched in non-tumor cells. 

The protein of MAOB catalyzes the oxidative 
deamination of biogenic and xenobiotic amines, and 
plays an important role in histidine metabolism. The 
protein-protein interaction (PPI) networks of genes in 
histidine metabolism suggesting the central location 
of MAOB (Figure 5G). Coincidently, the alteration of 
histidine metabolism and MAOB was observed in 
metabolomics, integrated multi-omics analysis and 
Sc-RNA sequencing respectively, suggesting the 

 

 
Figure 5. Single-cell RNA (Sc-RNA) sequencing analysis and clinical verification identified key metabolic genes in GGO. A. The annotated cell types of GGO 
tissue in GSE203360 based on uniform manifold approximation and projection analysis (UMAP). B. The AUC score of the 5-gene signature in Sc-RNA sequencing. C. Gene Set 
Enrichment Analysis (GSEA) showed the enriched KEGG pathways of cells exhibiting high 5-gene signature. D. The AUC of each gene of the 5-gene signature in Sc-RNA 
sequencing. E. RT-qPCR showed mRNA levels of 5-gene signature in 15 paired lung cancer tissues. F. The Kaplan-Meier plots of the 5-gene signature. G. Protein-protein 
interaction (PPI) networks of genes in histidine metabolism, suggesting the central location of MAOB. 
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critical role in the pathogenesis of malignant GGO. 

MAOB suppresses proliferation, migration and 
invasion of lung cancer 

Consistent with the mRNA expression pattern, 
we observed that LUAD tissue expressed a lower 
quantity of MAOB protein using the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) 
database (Figure 6A). Moreover, the protein 
expression decreased with the increase of clinical 
stage (Figure 6B). Immunohistochemical (IHC) assays 
derived from the Human Protein Atlas (HPA) and 
clinical GGO samples showed that the protein 

expression of MAOB was obviously reduced in lung 
cancer (Figure 6C and D). Western blot assays further 
demonstrated lung cancer cell lines expressed a lower 
protein level of MAOB than normal bronchial 
epithelial cells (Figure 6E).  

To further explore the biologic effect of MAOB 
on tumor progression, we overexpressed MAOB in 
PC9 and A549 cell lines using lentivirus. Western blot 
assays verified the efficiency of cell models (Figure 6F 
and G). Colony formation and CCK-8 assays 
demonstrated MAOB suppressed the proliferation of 
PC9 and A549 cells (Figure 6H and I). Transwell 
assays suggested MAOB suppressed the migration 

 

 
Figure 6. MAOB suppresses proliferation, migration and invasion of lung adenocarcinoma in vitro. A. The protein expression of MAOB in Clinical Proteomic 
Tumor Analysis Consortium (CPTAC). B. The protein expression of MAOB in different clinical stages. C. The immunohistochemistry staining of MAOB in The Human Protein 
Atlas (HPA). D. The immunohistochemistry staining of MAOB in GGO samples. E. Western blot detected the protein expression of MAOB in lung cancer cell lines. F, G. 
Overexpression of MAOB in PC9 and A549 cell lines. H, I. Overexpression of MAOB suppressed proliferation of PC9 and A549 cells in vitro. J, K. Overexpression of MAOB 
suppressed migration and invasion of PC9 and A549 cells in vitro. 
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and invasion abilities of PC9 and A549 cells (Figure 6J 
and K). To detect the impact of MAOB on the 
proliferation of lung cancer in vivo, we constructed a 
xenograft model on nude mice. The results 
demonstrated MAOB suppressed the proliferation of 
PC9 and A549 cells in vivo (Figure 7A and B). 
Moreover, we conducted IHC staining for proteins 
associated with proliferation and Epithelial- 
Mesenchymal Transition (EMT) in tumor tissues from 
nude mice (Figure 7C and D). For proliferation- 
related markers, MAOB downregulated the 
expression of Ki67 and PCNA. For EMT-related 

markers, MAOB exhibited no impact on Vimentin 
expression but enhanced E-Cadherin expression and 
suppressed N-Cadherin expression. These findings 
imply the potential role of MAOB in influencing the 
proliferation and EMT progression in LUAD. 
Collectively, these results indicate that MAOB inhibits 
the proliferation, migration, and invasion of LUAD. 

Discussion 
With the widespread use of CT scan, the 

incidence of GGO-associated lung cancer has 
significantly increased, especially in East Asian 

 

 
Figure 7. MAOB suppresses proliferation, migration and invasion of lung adenocarcinoma in vivo. A. MAOB suppresses the growth of tumors in nude mice. B. 
MAOB suppressed the expression of markers associated with proliferation and Epithelial-Mesenchymal Transition in tumor tissues from nude mice. 
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populations [3, 18]. In comparison to solid nodules, 
GGO-associated lung cancer is considered to exhibit a 
lower malignant nature [19], preferring lepidic 
growth and suggesting a better prognosis [4, 5, 20]. At 
the molecular level, GGO represents an early state of 
carcinogenesis, characterized by a lower tumor 
mutational burden and a less active immune 
microenvironment [7], potentially explaining the 
indolent clinical course. Multi-omics integrative 
analysis, which aims to process, compare and analyze 
batch data at different biomolecular levels such as 
genome, transcriptome, proteome and metabolome, 
make it possible to explore tumorigenic mechanisms 
from multiple dimensions. However, the limited 
number of studies on GGO that integrate multi-omics 
analysis has not yet generated disrupted metabolic 
networks in GGO tissue or identified target metabolic 
gene for tumorigenesis in GGO-associated lung 
cancer. Therefore, we employed a systems biology 
approach, integrating metabolomics, transcriptomics 
and Sc-RNA sequencing, to unveil disrupted 
metabolic pathways, a metabolite-associated gene 
signature and potential key gene in the carcinogenesis 
of GGO-associated lung cancer. 

 Metabolic reprogramming plays a critical role in 
the initiation and progression of tumors. On the one 
hand, tumor cells actively alter intracellular metabolic 
flux to meet the increased synthetic and energetic 
demand, exemplified by the Warburg effect [21]. On 
the other hand, the aberrant accumulation of 
metabolites can directly promote tumorigenesis [22]. 
Several metabolomics-based studies have confirmed 
the presence of abnormal metabolites and metabolic 
pathways in lung cancer, such as glycolysis and lipid 
metabolism [13, 23-25]. However, most of these 
studies have focused on liquid detection (e.g., serum, 
urine), aiming to discover advanced metabolic 
biomarkers for tumor diagnosis. The few 
metabolomics studies using lung cancer tissue as a 
specimen have neither been combined with other 
omics to explore the genetic mechanism of tumor 
phenotype, nor focused on GGO-associated lung 
cancer. In this work, Metabolomics and 
transcriptomics analysis of GGO-associated lung 
cancer revealed 35 differential expressed metabolites 
and 30 metabolite-associated genes. The integrative 
multi-omics analysis suggested aberrant metabolic 
pathways in GGO tissue including fatty acid 
biosynthesis, purine metabolism and histidine 
metabolism, indicating the potential biological impact 
of altered metabolic pathways on genesis of lung 
cancer. Notably, the 30-gene signature deriving from 
multi-omics analysis also demonstrated prognostic 
and physiological significance in the TCGA cohort. 
LUAD patients in the TCGA cohort were classified 

into two metabolic clusters based on the expression of 
30-gene signature. Patients in cluster 2 exhibited 
higher expression of multiple oncogenic metabolism 
and signal transduction pathways but had a better 
prognosis. This result aligns with a theory that 
metabolic reprogramming altered from premalignant 
lesions to invasive LUAD [26], further emphasizing 
the importance of the GGO metabolic landscape in 
understanding the carcinogenesis of lung cancer. 

GGO-associated lung cancer reflects an initial 
status of tumor and exhibits molecular difference 
compared to solid nodules, commonly seen in 
invasive lesions. These distinctions include lower 
oncogenic mutation, less active immune infiltration, 
and a different metabolic fingerprint in GGO tissue [7, 
26, 27]. From this perspective, the consistent metabolic 
alteration observed in both GGO and solid lung 
cancer could be of greater significance, such 
alterations may unveil the mechanisms underlying 
tumorigenesis and progression, potentially targeted 
vulnerability. To explore these consistent alterations, 
the 30 metabolites-associated genes were further 
screened using univariate analysis and Cox 
proportional hazard model based on TCGA database. 
Finally, we identified 5 genes that not only 
differentially expressed in the GGO tissue, but also 
had prognostic value in the TCGA cohort which 
included solid nodules. At the single-cell level, 
Sc-RNA sequencing of a GGO cohort revealed the 
cells with high expression of these 5 genes were 
mainly concentrated in tumor cells. Several of these 5 
genes have demonstrated roles in multiple solid 
tumors. For instance, CD73, encoded by NT5E, 
catalyzes the hydrolysis of extracellular AMP into 
adenosine. The hydrolysate promotes tumor 
progression by inhibiting T cell function and 
sustaining cancer-stem-cell traits [28-30]. The protein 
encoded by SULT2B1 is responsible for the sulfation 
of cholesterol, and cholesterol sulfate synthesized by 
SULT2B1 in tumor cells could suppress activity of 
CD8 + T cells and promote glycolytic metabolism [31, 
32]. These findings suggested the 5 metabolite- 
associated genes could not only serve as potential 
biomarkers for predicting survival but also reveal the 
consistent molecular changes between initial and 
invasive state of lung cancer. 

Multiple metabolites and enzymes associated 
with histidine have proven key roles in tumori-
genesis. For instance, histamine, the decarboxylated 
product of histidine, regulates various biological 
processes involved in tumor progression, including 
angiogenesis, proliferation and immune inhibition 
[33, 34]. The observation that histamine antagonists 
enhanced the efficacy of immunotherapy suggests the 
potential of small molecule inhibitors of histidine 
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metabolism in cancer therapy [35]. Notably, pathway 
enrichment analysis demonstrated histidine 
metabolism differently expressed at the level of 
metabolomics, integrative multi-omics and single-cell 
analyses, underscoring the significance of histidine 
metabolism in GGO associated lung cancer. 
Subsequently, we conducted a PPI network analysis 
and identified MAOB as a pivotal player in histidine 
metabolism. Consistent with the corresponding 
metabolic pathway, MAOB-related molecule 
exhibited uniform expression patterns across 
metabolomics, transcriptomics, Sc-RNA sequencing 
and clinical tissue, acting as a lower level of metabolic 
substrate, lower mRNA expression of single cell and 
clinical specimen, and better prognosis in 
GGO-associated lung cancer. MAOs belong to the 
flavin monoamine oxidase family, catalyzing 
oxidative deamination of amines, such as exogenous 
amines and neurotransmitters [36]. In comparison to 
its isoform MAO-A, MAO-B differs in substrate 
affinity, tissue distribution and inhibitor specificity 
[37]. While classically associated with Parkinson 
disease’s vulnerability [38, 39], MAO-B has also been 
found to be expressed differentially between various 
tumors and normal tissue [40, 41]. Additionally, 
neurotransmitters, the substrates of MAOs, have been 
implicated in the pathogenesis of malignancies [42]. 
These findings suggested the potential value of 
MAOB in tumorigenesis, progression and metastasis. 
In this work, we detected the mRNA and protein 
expression in clinical specimen and LUAD cell lines, 
and explored the role of MAOB in tumor proliferation 
and metastasis in vitro and vivo. The results 
demonstrated MAOB was lower expressed in clinical 
specimen and cell lines, and overexpression of MAOB 
suppressed the proliferation and metastasis of LUAD 
in vitro and vivo. These findings highlight MAO-B 
could be a potential vulnerability of LUAD therapy. 

In conclusion, this study represents the first 
comprehensive utilizing metabolomics, transcripto-
mics, and Sc-RNA sequencing, to identify unique 
metabolite-associated gene signature, disrupted 
histidine metabolism, and pinpoint MAOB as a key 
gene in GGO-associated lung cancer. The functional 
experiments further revealed MAOB suppressed the 
proliferation and metastasis of LUAD in vitro and 
vivo. These findings contribute valuable insights into 
the molecular landscape of GGO-associated lung 
cancer and highlight MAOB as a promising target for 
therapeutic intervention in lung cancer. 
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