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Abstract

Purpose: Cervical cancer is a significant public health concern, particularly in developing countries.
Despite available treatment strategies, the prognosis for patients with locally advanced cervical cancer
and beyond remains poor. Therefore, an accurate prediction model that can reliably forecast prognosis is
essential in clinical setting. Programmed cell death (PCD) mechanisms are diverse and play a critical role
in tumor growth, survival, and metastasis, making PCD a potential reliable prognostic marker for cervical
cancer.

Methods: In this study, we created a novel prognostic indicator, programmed cell death-index (PCDi),
based on a 10-fold cross-validation framework for comprehensive analysis of PCD-associated genes.

Results: Our PCDi-based prognostic model outperformed previously published signature models,
stratifying cervical cancer patients into two distinct groups with significant differences in overall survival
prognosis, tumor immune features, and drug sensitivity. Higher PCDi scores were associated with poorer
prognosis. The nomogram survival model integrated PCDi and clinical characteristics, demonstrating
higher prognostic prediction performance. Furthermore, our study investigated the immune features of
cervical cancer patients and found that those with high PCDi scores had lower infiltrating immune cells,
lower potential of T cell dysfunction, and higher potential of T cell exclusion. Patients with high PCDi
scores were resistant to classic chemotherapy regimens, including cisplatin, docetaxel, and paclitaxel, but
showed sensitivity to the inhibitor SB505124 and Trametinib.

Conclusion: Our findings suggest that PCD-related gene signature could serve as a useful biomarker to
reliably predict prognosis and guide treatment decisions in cervical cancer.
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Introduction

Cervical cancer remains the most common
gynecological cancer for women worldwide, with
604,000 incidences and 342,000 deaths reported by
World Health Organization in its latest report [1].
Unfortunately, developing regions such as Asia and
Africa suffer a disproportionate burden of cervical

cancer due to limited access to HPV vaccinations and
early-cancer screening programs [2]. While surgery is
the primary treatment option for cervical cancer,
patients diagnosed with locally advanced cervical
cancer (LACC) with risk factors usually require
adjuvant concurrent chemoradiotherapy (CCRT) after
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surgery. However, the heterogeneity of cervical
cancer often results in variable clinical outcomes
among patients [3].

Recent advancements in bioinformatics have led
to the development of numerous prognostic gene
signatures for cervical cancer [4-6]. Nonetheless, the
application of these prognostic signatures in clinical
practice has been hindered by their poor accuracy and
unreliability. Therefore, there is an urgent need for a
high-quality molecular prognosis prediction model to
aid in clinical treatment decision-making.

Programmed cell death (PCD) is a crucial
biological process that regulates cell suicide through
specific signaling cascades, unlike accident cell death
(ACD) caused by external injury or unintentional
damage [7, 8]. Various types of PCD mechanisms
have been identified, including apoptosis, lysosome-
dependent cell death, pyroptosis, immunogenic cell
death, necroptosis, ferroptosis, autophagy-dependent
cell death, cuproptosis, anoikis, paraptosis,
parthanatos, entotic cell death, netotic cell death,
alkaliptosis, and oxeiptosis.

Apoptosis is a gene-regulated biological process
that enables phagocytes to disassemble and digest
injured cells without affecting surrounding cells [9-
11]. Paraptosis, mediated by mitogen-activated
protein kinases (MAPKs) and inhibited by the
multifunctional adaptor protein Alix, is induced by
different natural compounds [12, 13]. Lysosome-
dependent cell death is triggered by hydrolytic
enzymes like cathepsins released into cytosol for
cellular component degradations following lysosomal
membrane permeabilization [14-16]. Pyroptosis, an
inflammatory form of cell death, is activated by the
inflammasome multiprotein complex, followed by the
release of pro-inflammatory factors [17, 18]. Netotic
cell death is caused by the formation of neutrophil
extracellular traps (NETs) which are composed of
decondensed chromatin and bactericidal proteins
[19]. Immunogenic cell death results in an immune
response characterized by the secretion of various
types of damage-associated molecular patterns
(DAMPs) caused by endoplasmic reticulum stress [20,
21]. Necroptosis, another form of inflammatory cell
death shares similar morphological features with
necrosis but greatly depends on the signaling
pathway involving RIPK3 and MLKL [22, 23]. Entotic
cell death is caused by a cell invading to an adjacent
living cell, leading to the death of the inner cell [24].
Parthanatos is a form of cell death that relies on the
activation of poly(ADP-ribose)-polymerase (PARP)
and the translocation of mitochondrial-associated
apoptosis-inducing factor (AIF), leading to DNA
fragmentation and chromatin condensation [25].
Anoikis is a regulated cell death form triggered by the

detachment of anchorage-dependent cells from the
surrounding extracellular matrix (ECM) due to the
loss of cell-matrix interaction [26]. Ferroptosis is
initiated by the accumulation of lipid peroxides
balanced by the production of reaction oxygen species
(ROS) and antioxidant system in an iron-dependent
manner [27-29]. Autophagy-dependent cell death is
regulated by over 40 autophagy-related genes, driven
by autophagic machinery [30]. Alkaliptosis, a
pH-dependent cell death form, is induced by
intracellular alkalinization through NF-kappaB
signaling pathway and carbonic anhydrase 9 (CA9)
downregulation [31]. Oxeiptosis is triggered by a high
intracellular ROS level, leading to a caspase-
independent cell death process through the regulation
of KEAP1-PGAM5-AIFM1 pathway [32]. Similar to
ferroptosis, the accumulation of the heavy metal
copper can induce mitochondrial stress, eventually
leading to cell deaths eventually. This process has
been termed cuproptosis [33, 34].

Recent advances in PCD studies have led to the
development of novel anticancer strategies and drugs
that promote cell death, showing promising results in
cancer treatment. Specifically, targeting overex-
pressed proteins like BCL-2/BCL-XL and MCL1
enables the therapeutic induction of apoptosis in
tumors [11]. Additionally, a recent study has
proposed a novel approach to overcome drug
resistance in chemotherapy treatment by inducing
ferroptosis [27]. Small molecules targeting caspase-1
can trigger pyroptosis, leading to the destruction of
tumor cells in colorectal cancer [35]. Furthermore,
sensitizing detached tumor cells to anoikis can
prevent tumor metastasis, making it a potential
strategy in cancer therapy [36, 37]. Recent studies
have reported promising findings have been reported
in killing cervical cancer cells by activating PCD
mechanisms. Evidence from in vivo experiments have
shown the significant impact of Nrf2 on the metastasis
of cervical cancer by the enhancement of
epithelial-mesenchymal transition (EMT) and anoikis
resistance [38]. Moreover, the potential therapeutic
agents have been proposed to actively induce PCD
activities. It has been reported that necroptosis could
be induced in cervical cancer cells by a small anti-
cancer agent called RETRA (REactivation of
Transcriptional Reporter Activity) [39]. Besides, as a
natural bioflavonoid found in many medicinal
herbs/plants, Pinostrobin (PN) exerted anticancer
effect to eliminate cervical cancer cells by ROS-
dependent apoptosis [40].

Cell homeostasis in multicellular organisms is
maintained through the intricate processes of diverse
PCDs [8]. However, PCD mechanisms are often
impaired in cancer cells, which allows them to resist
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and evade various forms of gene-regulated cell death,
leading to tumor growth, progression, and metastasis
[41]. Our study presents a comprehensive exploration
of the intricate relationship between PCD and cervical
cancer. By integrating survival-associated genes, we
have established a high-quality molecular prognostic
model based on a novel indicator known as the
programmed cell death index (PCDi), which holds
great promise for predicting prognosis and selecting
therapeutic regimens for cervical cancer patients. Our
study identifies the heterogeneity of cervical cancer
based on different PCD mechanisms, contributing to a
deeper understanding of the disease and holding
significant clinical implications. The development of
PCDi highlights the potential for personalized
medicine in the management of cervical cancer,
ultimately leading to improved patient outcomes.

Materials and Methods

Data collection

PCD processes are regulated by various
PCD-related genes. To create an ultimate gene list, we
curated regulatory genes for fifteen PCD mechanisms
from review articles and databases. Genes related to
apoptosis, lysosome-dependent cell death, netotic cell
death, entotic cell death, parthanatos, autophagy,
alkaliptosis, and oxeiptosis were extracted based on a
curated gene list [42]. Additionally, pyroptosis- and
immunogenic cell death-related genes were extracted
from prior reviews [43, 44]. Gene related to parap-
tosis, anokikis, and necroptosis with a relevance score
> 0.4 were downloaded from GeneCards database
(https:/ /www.genecards.org/) [45]. Furthermore,
ferroptosis- and cuproptosis-related genes were
downloaded from FerrDb database (http://www
.zhounan.org/ferrdb/current/), only driver and
suppressor datasets were extracted [46]. The ultimate
gene list contains a total of 1,949 PCD-related genes,
including 580 apoptosis-related genes, 508
anoikis-related genes, 483 ferroptosis-related genes,
11 cuproptosis-related genes, 209 necroptosis-related
genes, 33 pyroptosis-related genes, 34 immunogenic
cell death-related genes, 367 autophagy-related genes,
17 paraptosis-related genes, 9 parthanatos-related
genes, 15 entotic cell death-related genes, 8 netotic cell
death-related genes, 7 alkaliptosis-related genes, 5
oxeiptosis- related genes, and 220 lysosome-
dependent cell death-related genes (Supplementary
Table S1).

Four datasets from different research institutes
were collected for the following analysis. Using Xena
platform  from  USCS  Genomics  Institute
(https:/ /xenabrowser.net/datapages/), we obtained
a combined cervical cancer cohort of The Cancer

Genome Atlas (TCGA) and The Genotype-Tissue
Expression (GTEx) samples [47]. To ensure
consistency and comparability of clinical data, cancer
stage information of patients was standardized
according to 2009 The International Federation of
Gynecology and Obstetrics (FIGO) Staging Classifi-
cation (Supplementary Fig. 1). Two tumor samples
were excluded because they came from metastatic
tumor tissues, and five tumor samples were excluded
because of a lack of mRNA expression data
(Supplementary Fig. 2A). Molecular and clinical data
from CGCI- HTMCP-CC dataset were accessed
through National Cancer Institute’s Genome Data
Commons (https:/ / gdc.cancer.gov/about-data/
publications/ CGCI-HTMCP-CC-2020) [48]. Tumor
tissues of five patients were excluded because they
were ultimately not diagnosed with cervical cancer
(Supplementary Fig. 2B). Through Gene Expression
Omnibus (GEO) database, microarray and clinical
data from GSE52904 and GSE44001 were collected [49,
50]. For high-dimensional data visualization,
t-distributed stochastic neighbor embedding (t-SNE)
method was employed, using the R package “tsne”.

Identification of the differentially expressed
PCD-related genes

To identify differentially expressed genes
(DEGs), we utilized samples from TCGA- GTEx
cervical cancer cohort, consisting of 303 tumor tissues
and 13 normal tissues. Raw transcriptome count data
was analyzed using the R packages “edgeR”,
“limma”, and “DESeq2” [51-53]. A gene identified by
at least two algorithms with the selection criteria of
adjusted p-value or FDR < 0.05 and |Log2FC| >=2,
was considered as a significant DEG. The absolute
value of the logarithm base 2 of the fold change (FC)
greater than or equal to 2 is a common criterion for
identifying DEGs.

Construction of the PCD-related gene
signature by machine learning algorithms

Survival-associated DEGs were screened using
univariate Cox regression with a significant threshold
of p-value < 0.1. Currently, many types of machine
learning were available with unique algorithm deign.
Without systematic comparison, it was unfair to rely
on a particular machine learning algorithm for the
model building. We employed ten machine learning
algorithms, including survival support vector
machine (survivalSVM), elastic network (Enet), least
absolute shrinkage and selection operator (LASSO),
ridge regression (Ridge), random survival forest
(RSF),  stepwise  Cox  regression  analysis
(stepwiseCox), fitting Cox models by likelihood based
boosting (CoxBoost), generalized boosted regression
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modeling (GBM), partial least squares regression for
Cox (plsRcox), and supervised principal components
(SuperPC) based on a 10-fold cross-validation
framework to identify the optimal gene signature for
cervical cancer (Supplementary Method). A total of
101 combination results were generated. We
evaluated the performance of prognostic signatures
using a Rank Score, which was calculated using the
following formula:

Rank Score = Loglo(Rmean * \/E)

Rmean stands for the average rank and n denotes
the number of genes in the signature model. Average
area under the curve (AUC) of GSE52904 was the
mean of 1-year and 2-year AUC values from
time-dependent receiver operating characteristic
(ROC) analysis. Average AUC of other datasets was
the mean of 1-year, 2-year, 3-year, and 5-year AUC
values from time-dependent ROC analysis. We chose
the optimal signature model with lowest Rank Score,
which had a reasonable number of genes and high
average rank of Harrell’s concordance index (C-index)
and AUC value.

In this study, the prognostic gene signature was
established through a combination of two machine
learning algorithms stepwiseCox and Enet. Ten genes
were identified by stepwiseCox algorithm with
backward approach to yield the optimal model with
minimum Akaike information criterion (AIC).
Subsequently, the regression model was finalized
using Enet algorithm with a parameter alpha set to
0.5. For each patient, a PCDi score was calculated
using the following formula:

n
PCDi = Z Ci * E;
j=1

G stands for the coefficient and E; denotes the
expression value of each PCD-related gene. To
facilitate cross-comparisons of PCDi across the
datasets, a linear transformation was employed for
data normalization. The normalized PCDi scores had
a range from 0 to 1. Based on the median PCDi,
cervical cancer patients were separated into PCDi-
High and PCDi-Low groups. The R package “stats”
was used to performance principal component (PCA)
analysis for visualizing high-dimensional data.
Kaplan-Meier (KM) analysis was used to investigate
the survival difference between two compared
groups. The R packages “survival” and “survminer”
were implemented for survival analysis and result
visualization.

Functional annotation and enrichment analysis

The R package “clusterProfiler” was used to
perform functional annotation analysis of DEGs based

on Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases [54]. REVIGO
algorithm was implemented to remove redundant GO
terms [55]. Gene set enrichment analysis (GSEA) was
performed to identify the significant enriched
signaling pathways in association with PCDi
subgroups.

Establishment of the nomogram

The R package “regplot” was used to develop a
nomogram survival model for cervical cancer that
integrated PCDi and clinical features, including FIGO
cancer stage and age at diagnosis. We evaluated the
efficacy of the nomogram in prognosis prediction
using the R packages “rmda” and “rms” for model
calibration and decision curve analysis (DCA). The
performance of the nomogram was also assessed by
AUC value obtained through time-dependent ROC
analysis with the R package “timeROC”.

Tumor cell infiltration analysis and drug
sensitivity prediction

Infiltrating immune cells in cervical cancer were
estimated using TIMER2.0 platform [56]. Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm
was used to estimate the potential of tumor immune
escape and response [57]. The lists of gene signatures
of 28 tumor infiltrating lymphocytes and genes
encoding for immunomodulators and chemokines
were downloaded from TISIDB database (http://cis.
hku.hk/TISIDB/index.php) [58]. Single-sample gene
set enrichment analysis (ssGSEA) was used to
calculate the enrichment scores of 28 tumor infiltrates.
The R package “oncoPredict” was utilized to predict
drug sensitivities for individual cervical cancer
patients [59].

Formalin-fixed and paraffin-embedded (FFPE)
samples acquisition and immunohisto
chemistry (IHC) staining

Four FFPE samples were collected from patients
diagnosed with cervical cancer from January 2023 to
October 2023 at The First People’s Hospital of Foshan.
The samples of surgically resected cancerous and
normal tissues were preserved after 4% formalin
fixation and paraffin embedding treatment. Five pm
thick sections were analyzed by IHC staining, as
previously described [60]. Briefly, heat-induced
antigen retrieval was performed using 10 mM sodium
citrate buffer, pH 6.5. Peroxidase activity was
quenched with 3% H202 and tissues were blocked in
5% bovine serum albumin for 1 hour. Primary MMP1
(1:2000) (10371-2-AP, Proteintech) was added and
sections were incubated overnight at 4 °C. Horse-
radish peroxidase-conjugated secondary antibody
(1:1000) (K8002, Dako Corp., Ltd) and DAB were used
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for detection. Slides were counterstained with
hematoxylin.

Statistical analysis and data visualization

R software (http://www.R-project.org) was
used for all other statistical analyses, such as
Spearman correlation, Kruskal-wallis test, and
Mann-Whitney test. Data visualization was carried
out using the R package “ggstatsplot”, “ggplot2”, and
Sangerbox platform (http://www.sangerbox.com/

home.html).

Results

Landscape of PCD-related genes for cervical
cancer

In this study, we aimed to develop a reliable
prognostic signature for cervical cancer based on the
expression of PCD-related genes. Different PCD
mechanisms regulate cell elimination that plays a
crucial role in cancer development and therapy.
PCD-related DEGs are genes that show significant
changes in expression levels between cancer and
normal tissues, and may reflect the PCD status of
cancer cells. We hypothesized that PCD-related DEGs
could serve as potential biomarkers for predicting the
survival outcomes of cervical cancer patients. To test
this hypothesis, we performed the following analyses.
We collected 303 and 118 cervical cancer patients from
TCGA- CESC and CGCI-HTMCP-CC datasets
respectively, as the training cohort. We also collected
55, 173, and 300 patients from GSE52904,
TCGA-CESC, and GSE44001 datasets respectively, as
the validation cohort. We designed a computational
workflow consisting of five major steps to develop the
PCD-related prognostic signature for cervical cancer
(Figure 1). In the first step, we compiled an ultimate
gene list with 1,949 regulatory genes associated with
fifteen PCD patterns based on literature and database
search. In the second step, we identified PCD-related
DEGs from the ultimate gene list by performing
differential expression analysis of TCGA-GTEx
dataset. In the third step, we further narrowed down
the target genes by selecting prognosis-associated
genes from the PCD-related DEGs using univariate
Cox regression. In the fourth step, we established the
most valuable PCD-related prognostic gene signature
by applying the combination of 10 machine learning
algorithms based on 10-fold cross validation
framework. In the last step, we conducted a group of
follow-up analyses to demonstrate the importance of
PCD-related prognostic gene signature. More
importantly, we used independent datasets to further
validate the prognosis prediction of the gene
signature.

Using three different algorithms with selection
criteria of adjusted p-value or FDR < 0.05 and
| Log2FC| >= 2, we identified 2,803 up-regulated
genes and 2,380 down-regulated genes in
TCGA-CESC cervical cancer dataset (Figure 2A to C,
Supplementary Table S2). Among the DEGs, a total of
302 PCD-related genes were identified, including 198
up-regulated 104 down-regulated genes. A heatmap
of Z-score transformed expression levels between
tumor and normal tissues is showed in Figure 2E, and
two groups are well-separated (Figure 2D). Notably,
KEGG pathway analysis revealed that the DEGs were
not only implicated in cell death processes such as
ferroptosis and necroptosis, but also in the signaling
pathways like PI3K-Akt and NF-kappaB pathways,
which play a critical role in regulating cell growth and
survival (Figure 2F). Furthermore, GO functional
annotation analysis showed that the DEGs are
involved in the biological processes relating to oxygen
level and ROS, which are pivotal mediators of
multiple PCD mechanisms (Figure 2G).

PCD-related prognostic gene signature

The overall survival (OS) data from two datasets
within the training cohort were analyzed using
univariate Cox regression analysis to identify
survival-associated genes among 302 PCD-related
DEGs. Applying a significant threshold of p-value <
0.1, 80 and 62 genes were identified in TCGA-CESC
and CGCI-HTMCP-CC  datasets respectively.
Twenty-seven genes were consistently identified in
both datasets and were subsequently utilized to
construct the most robust prognostic gene signature
(Supplementary Fig. S3). This procedure was
achieved through the combinations of 10 machine
learning algorithms, based on 10-fold cross-validation
framework. The finalized PCD-related prognostic
signature with best performance was established by
the combination of stepwiseCox and Enet algorithms
(Figure 3, Supplementary Table S3).

The PCD-related prognostic signature consisted
of 10 genes that were up-regulated in tumor tissues
(Supplementary Fig. S4). Among these genes, three
genes were related to anoikis (SPP1, SPIB, FASLG),
one gene was related to netotic cell death-related
(MMP1), four genes were related to ferroptosis
(ALOX15, GLS2, CA9, IFNG), two genes were related
to apoptosis (IFNG, FASLG), two genes were related
to immunogenic cell death (FOXP3, IFNG), one gene
was related to necroptosis (FASLG), one gene was
related to lysosome-dependent cell death (CLNK),
one gene was related to alkaliptosis (CA9 ), and one
gene related to autophagy-dependent cell death
(IFNG). Notably, FALSG, CA9, and IFNG were
involved in multiple PCD mechanisms.
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Figure 3. Development of the PCD-related prognostic signature by machine learning algorithms. (A) A total of 101 combinations of machine learning algorithms were used to
identify the most valuable prognostic signature for cervical cancer. The C-index and AUC values of each dataset were displayed, and the Rank Score was calculated for each
combination based on the rank average and the number of genes in the model. (B) The change of AIC value in stepwiseCox algorithm with a backward approach. (C) The selection
of 10 PCD-related genes using Enet algorithm. (D) The selection of lambda.min value to minimize cross-validation error in regression analysis.

We performed KM analysis to assess the
association between the expression of genes in the
PCD-related prognostic signature and OS. Using a
median cutoff, we founded that all genes, except for
FASLG, IFNG and ALOX15, had significant impact on
OS (Log-rank test, p < 0.1, Supplementary Fig. S5).
novel prognostic indicator, called PCDi was derived
from the 10-gene signature model. The PCDi score for
each patient was calculated as the sum of the
expression levels of 10 genes, weighted by the

coefficients derived from Enet regression model. The
formula for the calculation of PCDi is shown below.
PCDi = (0.201458 * SPP1 exp.) + (0.098878 * MMP1
exp.) + (0.130493 * CA9 exp.) + (-0.108410 * ALOX15
exp.) + (0.304840 * GLS2 exp.) + (0.449150 * FOXP3
exp.) + (0.198570 * SPIB exp.) + (0.781472 * FALSG
exp.) + (0.675460 * IFNG exp.) + (0.988550 * CLNK
exp.). Based on the median PCDi, we stratified the
patients from the TCGA-CESC dataset into two
subgroups, PCDi-High (n = 152) and PCDi-Low
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(n=151). Statistical analysis was performed to
investigate the associations between PCDi and clinical
characteristics  in  cervical cancer  patients
(Supplementary Fig. S6A). Out analysis revealed that
PCDi was significantly associated with FIGO clinical

stage (Supplementary Fig. S6B), tumor size
(Supplementary Fig. S6C), tumor metastasis
(Supplementary Fig. S6E), and survival status

(Supplementary Fig. S6F and G). Notably, even within
the same clinical stage, patients from different PCDi
subgroup have shown significant OS differences
(Supplementary Fig. S7 and S8). However, PCDi was
not associated with lymph node invasion in cervical
cancer (Supplementary Fig. S6D).

To evaluate the quality of the PCD-related
prognostic signature, a total of 33 published
mRNA-based prognostic signature for cervical cancer
were retrieved through literature search for a
comprehensive comparison (Figure 4, Supplementary
Table S4). It is noteworthy that the PCD-related
prognostic signature exhibited superior performance
compared to other published signatures in the
prognostic prediction for both OS and disease-free
survival (DFS) in cervical cancer patients.

Prognosis prediction by gene signature in
training cohort and validation cohort

To validate our findings, we compared OS
between cervical cancer patients with different PCDi
scores in CGCI-HTMCP-CC and GSE52904 datasets.
Cervical cancer patients with DFS data were also
obtained from TCGA-CESC and GSE44001 datasets
for validation.

The PCDi scores were normalized for better
comparisons between datasets. Consistent with the
results from TCGA-CESC dataset, higher death rate in
cervical cancer patients with higher PCDi scores was
observed in other datasets (Figure 5A). PCA plot
revealed that the cervical cancer patients were
well-separated based on PCDi (Figure 5B). The
significant OS differences between PCDi-High and
PCDi-Low subgroups were observed in both datasets
from the training cohort. More importantly, this
finding was further validated in the independent
cervical cancer datasets, with significant survival
differences in both OS and DFS (Figure 5C).

PCDi-based homogram survival model for
cervical cancer

Prognostic factors for cervical cancer were
identified using univariate Cox regression analysis.
Our finding revealed that patients with high PCDi
scores (Hazard Ratio = 2.91, 95% Confidence Interval:
2.16-3.91), as well as those with locally advanced stage
(Stage IB2-IVA, HR = 2.06, 95% CI: 1.17-3.65) or

metastasized stage (Stage IVB, HR = 6.12, 95% CL
2.58-14.51) cervical cancer had higher risk of OS
(Figure 6A).

To eliminate false discovery results contributed
by the confounding factors, multivariate Cox analysis
was performed, which confirmed that PCDi was an
independent predictor of OS (HR = 3.19, 95% CL
2.33-4.39, Figure 6B), highlighting its clinical
significance in predicting the prognosis of cervical
cancer patients (Supplementary Fig. S9). Based on
multivariate Cox regression analysis, a nomogram
survival model that integrated clinical features and
PCDi was established to estimate 1-, 2-, 3-, and 5-year
OS for cervical cancer patients (C-index = 0.789, 95%
CL: 0.737-0.842, Figure 6C). High accuracy of the
nomogram model in predicting the prognosis of
cervical cancer patients was presented in Figure 6E.
Additionally, DCA plot showed the nomogram
survival model outperformed other predictors in the
prediction of survival outcome (Figure 6F). Patients
were categorized into Risk-High and Risk-Low
subgroups based on the median score given by the
nomogram survival model, revealing a significant
survival difference (HR = 5.72, 95% CI: 3.18-10.29,
Figure 6D). Furthermore, time-dependent ROC
analysis demonstrated that the nomogram survival
model had better performance than the PCD-related
gene signature model in predicting multi-year OS of
cervical cancer patients (Figure 6G and H). Our results
highlight the clinical significance of PCDi as a
prognostic factor and the utility of the nomogram
survival model in the prediction of prognosis for
cervical cancer.

Immune features and drug sensitivities for
cervical cancer

To investigate the differences in tumor immune
features between two PCDi groups in cervical cancer,
we estimated immune infiltrate abundance by
calculating the enrichment scores of tumor-infiltrating
immune cells using eight different algorithms
(TIMER, CIBERSORT, CIBERSORT-ABS, EPIC,
ESTIMATE, MCP-COUNTER, QUANTISEQ, and
XELL). Additionally, the abundance of 28 tumor
immune infiltrates was quantified using ssGSEA
algorithm. Interestingly, our results revealed
significant differences in tumor microenvironment
(TME) of cervical cancer, with patients having higher
PCDi scores exhibiting significantly lower tumor
infiltration levels of immune cells (Figure 7A,
Supplementary Fig. S10). Furthermore, most immune
modulators were negatively correlated with PCDj,
demonstrating a similar trend with TMB profiles
(Figure 7B).
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Figure 4. Comparison of the PCD-related prognostic signature and previously published signatures. (A) Comparison of the PCD-related prognostic signature and 33 published
signatures for cervical cancer. The C-index and AUC values of each dataset were displayed, and the Rank Score was calculated for each signature based on the rank average and
the number of genes in the model. (B) Average C-index of OS was calculated for each signature. (C) Average C-index of DFS was calculated for each signature. (D) Average AUC
value of OS was calculated for each signature. (E) Average AUC value of DFS was calculated for each signature.

We utilized GSEA algorithm to further between two PCDi groups. The results showed that
investigate the dysregulated signaling pathways immune-related signaling pathways were up-
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regulated in PCDi-Low group, such as antigen
processing and presentation, B cell receptor signaling
pathway, T cell receptor signaling pathway, and so on
(Figure 7C). Additionally, we evaluated the potential
for tumor immune escape and response using TIDE
algorithm, which showed a higher potential of T cell
dysfunction was observed in PCDi-Low group
(Supplementary Fig. S11A and C), while the
prediction scores of T cell exclusion were positively
correlated with PCDi (Figure 7D and E,
Supplementary Fig. S11B and D).

Furthermore, we analyzed the association
between drug’s half maximum inhibitory
concentration (IC50) and PCDi to predict the

sensitivities of various drugs for cervical cancer
(Figure 8A). We observed significant positive
correlations between PCDi and IC50 values of
commonly used chemotherapy regimens for cervical
cancer such as cisplatin, docetraxel, paclitaxel, and
gemcitabine (Figure 8B and C), indicating that
patients with high PCDi scores were more likely
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resistant to chemotherapy. Fortunately, we also found
that treatment options were available for PCDi-high
group, such as SB505124 and Trametinib (Figure 8D
and E), proving potential alternative therapeutic
options for these patients.

Experimental validation of MMP1

For the developed PCD-related prognostic gene
signature, we were interested in the contribution of
individual genes to the signature. We calculated the
relative importance of individual genes of our
prognostic gene signature using three machine
learning algorithm RSF, GBM, and SuperPC. We
found that the relative importance of MMP1 gene to
our prognostic gene signature was up 0.216 (Figure
9A). Matrix metalloproteinase-1 is encoded by gene
MMP1, also known as interstitial collagenase,
involves in the breakdown of interstitial collagens. It
has been reported that the MMP1 was up-regulated
and affecting lymph node metastasis of cervical
cancer through PPAR signaling pathways in vivo [61].
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Figure 6. Development and assessment of the nomogram survival model for cervical cancer. (A) Univariate Cox regression analysis for PCDi and clinical data in TCGA-CESC
dataset. The variable with a p-value <0.05 is highlighted in red. (B) Multivariate Cox regression analysis for PCDi and clinical data in TCGA-CESC dataset. The variable with a
p-value <0.2 is kept in the regression model. The variable with a p-value <0.05 is highlighted in red. (C) Nomogram survival model developed by integrating PCDi and clinical
characteristics. (D) KM estimate of OS in Risk-High and Risk-Low group patients classified by nomogram model. (E) Calibration plot of the nomogram model in predicting
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the predicted probability matches the actual probability. The dots represent the prediction sets for different follow-up periods. The vertical line of each dot represents 95% ClI
of the actual probability. (F) DCA plot evaluating the performance of different predictors in predicting survival status. The x-axis and y-axis indicate the risk threshold and the
standardized net benefit, respectively. The curves show the net benefit of using different predictors including Age (red), FIGO Stage (green), PCDi (cyan), and Nomogram (purple)
across different threshold probabilities. A predictor with highest net benefit across a range of risk threshold is recommended. (G-H) Time-dependent ROC analysis evaluating the
performances of PCD-related gene signature (G) and nomogram model (H) in predicting multi-year OS in TCGA- CESC, CGCI-HTMCP-CC, and GSE52904 datasets.
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(C) Dysregulated signaling pathways identified in PCDi-High and PCDi-Low groups for cervical cancer. (D) Violin and scatter plots of the association between PCDi and T cell
exclusion potential. (E) Violin and scatter plots of the association between PCDi and T cell dysfunction potential.
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According to GEPIA2 database (http://gepia2.
cancer-pku.cn), the expression of MMP1 was
significantly higher in the tumor tissue among
different cancer types when comparing to the normal
tissue (Supplementary Fig. 12). IHC staining images

have shown that the overexpression of MMP1 in
tumor tissue compared to normal tissue (Figure 9B).
In short, the expression of MMP1 was elevated and
may serve as a prognostic marker in cervical cancer.

https://lwww.jcancer.org



Journal of Cancer 2024, Vol. 15

1392

A

MMP1
ALOX15
CA9
SPP1
SPIB
CLNK
FOXP3
GLS2
IFNG

FASLG

. SuperPC . RSF . GBM . Average

0.398

0.0 0.1 0.2

0.3 0.4

Relative Importance (Average)

B

MMP1

Figure 9. MMP1 is the most important gene in the PCD-related prognostic signature and is highly expressed in cervical cancer tissues. (A) Relative importance of individual genes
to the PCD-related prognostic signature was calculated by three algorithms, including SuperPC (green), RSF (yellow), and GBM (blue). The red bar represents the average relative
importance across the three algorithms. MMP1 had the highest average relative importance, indicating that it was the most influential gene in the prognostic signature. (B)
Representative IHC staining images for MMP1 in cervical cancer tissues and normal tissues. The expression level of MMP1 was indicated by the intensity of the brown color.
Cervical cancer tissues showed higher expression level of MMPI than normal tissues, suggesting that MMP1 may play a role in the progression and invasion of cervical cancer.

Discussion

To the best of our knowledge, this study
represents the first comprehensive analysis of PCD
patterns in TCGA-CESC dataset to develop a
high-quality prognostic gene signature for cervical
cancer. We introduced a novel concept named Rank
Score to evaluate the performance of gene signature in
prognostic  prediction of cervical cancer. The
calculation of a Rank Score of a gene signature not
only integrated the prediction performance of OS and
DFS, but also considered the number of genes
included. The optimal signature model with very low

Rank Score indicated its high C-index and AUC value
in prognosis prediction and a reasonable number of
genes. Our analysis resulted in a highly accurate OS
prediction model that can aid in therapeutic decision-
making, outperforming previously published
prognostic signatures and validated by independent
datasets. We further established a nomogram survival
model that integrates PCDi and clinical features,
demonstrating excellent performance in prognosis
prediction. The FIGO staging system is one of the
most important clinical indicators of the cancers
originated from female reproductive system which
provides accurate assessment of cancer development
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for appropriate disease management and prognosti-
cation in clinical settings. Due to the heterogeneity of
cancer, the patients who have the same clinical stage
could be further stratified into subgroups with two
prognostic outcomes with the help of PCDi
(Supplementary Fig. 7). Additionally, our findings
highlight significant correlations between PCDi and
tumor immune features and drug sensitivities,
indicating the potential of PCDi to inform treatment
decisions, and have significant implications in clinical
practice.

Our PCD-related prognostic gene signature
includes 10 genes (SPP1, SPIB, MMP1, ALOX15,
GLS2, CA9, IENG, FOXP3, FASLG, CLNK) that were
found to be independent prognostic factors for the OS
in cervical cancer. Higher expression of SPP1, MMP1,
and CA9 was associated with a poorer prognosis.
Secreted Phospho- protein 1 is encoded by gene SPP1,
also known as Osteopontin (OPN), which has
significant function roles in cancer development, such
as cell proliferation and survival [62]. OPN splice
variant OPN-c support anchorage-independent
growth by inducing the expression of oxidoreductases
to avoid anoikis [63, 64]. As a component of NETs,
highly expressed MMP1 can promote tumor growth
and metastasis in breast cancer cells [65, 66]. CA9 is
considered as an endogenous tumor hypoxia marker
for cervical cancer, and its overexpression can
promote the migration of tumor cells [67, 68]. Lower
expression of SPIB, ALOX15, GLS2, IFNG, FOXP3,
FASLG, and CLNK was associated with a poorer
prognosis. The activation of ETS transcription factor
SPIB has been shown to increases anoikis resistance in
vitro [69]. In gastric cancer, cancer- associated
fibroblasts secreted exo-miR-522 directly targets
arachidonate lipoxygenase 15 (ALOX15) to suppress
ferroptosis  [70]. In hepatocellular carcinoma,
glutamine syn- thases 2 (GLS2) acts as a tumor
suppressor by promoting ferroptosis through the
production of a-ketoglutarate-dependent lipid ROS
[71]. Interferon gamma, encoded by gene IFNG, can
induce caspase dependent cell apoptosis in pancreatic
cancer cells through the upregulation of procaspase-1
and interferon regulatory factor 1 [72]. Fork- head box
P3 (FOXP3), also known as Scurfin, plays a role in
immune responses by regulating the development of
regulatory T cells [73]. As a member of the tumor
necrosis factor family, FAS/FASLG signaling
pathways is triggered by the binding of and FASLG
(also known as FASL) to induce cell apoptosis.
According to in vitro and in vivo evidence, FASLG
targeted gene therapy could suppress the tumor
growth in head and neck cancer [74]. CLNK, also
known as MIST, is an adaptor protein related to
SLP76 protein family that regulates multiple

immunoreceptor signaling pathways in a LAT-(linker
for activation T cells) dependent manner [75]. Among
the 10 genes, we found the highest relative
importance of MMP1 in the prognostic model. Our
IHC results of cervical cancer patients further
validated the overexpression of MMP1 in tumor
tissue compared to normal tissue.

Tumor microenvironment is a complex interplay
of signaling molecules, structural elements such as
extracellular matrix, and various types of cells
including stromal cells, immune cells, and tumor cells
[76]. The dynamic interactions between these
components have profound impacts on cell survival,
tumor growth, local invasion, and metastasis [77].
Immune cells, as a critical component of TME, have
dichotomous functions of either suppressing tumor
formation or promoting tumorigenesis [78]. Tumor
cells are under surveillance by the immune system
and can be attacked by various immune cells, such as
cytotoxic T cells (CD8+), which play a crucial role in
killing tumor cells by recognizing tumor antigens and
subsequently suppressing tumor growth [77, 78].
Infiltrating B cells, on the other hand, are involved in
antigen production, antigen presentation, and
secretion of cytokines instead of directly targeting
tumor cells [77]. In this study, we found that the
enrichment of B cells and CD8+ T cells was negatively
correlated with PCDi in cervical cancer patient,
indicating lower infiltration of these immune cells in
PCDi-High group. A review study has reported that
higher infiltration of immune cells, including B cells
and CD8+ T cells, is associated with better prognosis
[79]. Consistent with previous findings, a worse
prognosis in cervical cancer patients with higher PCDi
scores was observed in this study. Additionally, TIDE
analysis revealed higher potentials of T cell
dysfunction and T cell exclusion in PCDi-High group,
supporting the significant difference in tumor
immune features between two PCDi subgroups.
Furthermore, we investigated the sensitivities of
various drugs for cervical cancer by analyzing the
association between PCDi and IC50. Higher IC50
value of commonly used chemotherapy regimens
such as cisplatin, docetaxel, paclitaxel, and
gemcitabine, were found in PCDi-High group,
indicating high chemotherapy resistance in cervical
cancer patients with high PCDi scores, which could
potentially explain their poor prognosis. However,
there are still treatment options available for patients
in the PCDi-High group who have high sensitivity to
these drugs, such as SB505124 and Trametinib.
SB505124 is a selective inhibitor which targets
transformation growth factor beta type I (TGF-beta)
receptors ALK4, ALK5, and ALK7 and inhibits
downstream Smad signaling [80]. Previous studies
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have shown that SB505124 can restrain the migration
and invasion of breast cancer cells [81]. Trametinib, an
FDA approved mitogen-activated protein kinase
kinase (MEK) inhibitor, is used to treat melanoma
patients with BRAF V600E. A phase II clinical trial is
currently underway to evaluate the efficacy of
combining  Trametinib and AKT inhibitor
GSK21411795 for the treatment of recurrent cervical
cancer with PIK3CA and KRAS mutation [82].

In this study, we observed excellent performance
of the PCD-related gene signature and the nomogram
survival model in both training and validation
cohorts. However, there are two limitations that
should be acknowledged. Firstly, all tumor samples
analyzed were retrospectively recruited, additional
datasets with larger sample sizes, high quality, and
longer follow-up periods will be required for further
validation. Secondly, while our study highlights the
importance of PCD-related genes as prognostic
markers, there is still insufficient knowledge about
some of these genes. Further research, particularly in
vivo experiment, is warranted to better understand
their roles in cervical cancer.

Conclusions

In conclusion, we proposed a novel prognostic
gene signature related to PCD for cervical cancer
patients using a machine learning-based framework
that can stratify them into two groups with significant
differences in prognosis, tumor immune features, and
drug sensitivity. Our signature model outperformed
than previously published gene signatures in
predicting patient’s prognosis and demonstrated
robustness and reproducibility in both training and
validation cohorts. This signature model could serve
as a valuable biomarker for identifying high-risk
patients who may require more intensive treatment
options or frequent disease surveillance. Moreover,
we developed a nomogram survival model that
integrates PCD-related gene signature and clinical
characteristics to enhance the clinical utility of our
signature model. Overall, our study highlights the
potential usefulness of PCD-associated genes in
predicting cervical cancer prognosis and emphasizes
the importance of personalized treatment approaches
tailored to individual patient characteristics. Our
findings could have important implications in
improving the management of cervical cancer
patients.
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