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Abstract 

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Early diagnosis 
of the disease can greatly improve the clinical prognosis for patients with CRC. Unfortunately, there are 
no current simple and effective early diagnostic markers available. The transfer RNA (tRNA)-derived 
RNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs), which have been shown to play 
an important role in the development and prognosis of CRC. However, only a few studies on tRFs as 
early diagnostic markers in CRC have been conducted. In this study, previously ignored tRFs expression 
data were extracted from six paired small RNA sequencing data in the Sequence Read Archive (SRA) 
database using MINTmap. Three i-tRFs, derived from the tRNA that transports glutamate (i-tRF-Glu), 
were identified and used to construct a random forest diagnostic model. The model performance was 
evaluated using the receiver operating characteristic (ROC) curve and precision-recall (PR) curve. The 
area under the curves (AUC) for the ROC and PR was 0.941 and 0.944, respectively. We further verified 
the differences in expression of the these i-tRF-Glu in the tissue and plasma of both CRC patients and 
healthy subjects using quantitative real-time PCR (qRT-PCR). We found that the ROC-AUC of the three 
was greater than traditional plasma tumor markers such as CEA and CA199. Our bioinformatics analysis 
suggested that the these i-tRF-Glu are associated with cancer development and glutamate 
(Glu)-glutamine (Gln) metabolism. Overall, our study uncovered these i-tRF-Glu that have early 
diagnostic significance and therapeutic potential for CRC, this warrants further investigation into the 
diagnostic and therapeutic potential of these i-tRF-Glu in CRC. 
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Introduction 
Colorectal cancer (CRC) is the second leading 

cause of cancer-related deaths worldwide, with an 
expected increase to between 2 and 5 million cases by 
2035 [1]. According to statistics, more than 945,000 
people are diagnosed with CRC annually, and about 
492,000 people die from CRC [2]. With advancements 
in health awareness and therapeutics, the prognosis of 
CRC has been improved. It has been shown that the 
5-year survival rate of patients with early-stage 
localized CRC can reach 90%, while that of advanced 
CRC patients with distant metastases is still less than 

15% [3]. Thus, increasing the early diagnosis rate is a 
more effective and socially beneficial option to 
improve the prognosis of CRC patients.  

Current early screening modalities for CRC 
include colonoscopy, fecal occult blood test (OB), and 
capsule endoscopy. Colonoscopy is currently the most 
commonly used tool for CRC screening, its low 
detection rate, invasiveness, and high cost for 
screening high-risk CRC groups make it less suitable 
for meeting patient needs [4]. In contrast, simple 
noninvasive tests like liquid biopsy better meet 
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patients’ needs. The carcinoembryonic antigen (CEA) 
is the only blood biomarker recommended by current 
guidelines for postoperative surveillance of CRC. 
However, CEA is not sensitive enough to detect 
tumor recurrence, and many common factors, such as 
smoking, infection, inflammatory bowel disease, and 
liver disease, reduce its diagnostic specificity. Hence, 
there is an urgent need to discover new noninvasive, 
inexpensive, and sensitive markers for the early 
screening and diagnosis of CRC. 

The transfer RNA (tRNA)-derived RNA 
fragments (tRFs) are a class of small non-coding 
RNAs (sncRNAs) that were previously considered to 
be non-functional random degradation products of 
tRNAs. Some tRFs were even previously mistaken as 
novel microRNAs, such as miR-3676 (ts-3676) [5] and 
miR-4521 (ts-4521) [6]. Nowadays, tRFs are closely 
associated with numerous pathophysiological 
processes, and tRFs can be classified based on the site 
of origin into the following five categories: 5'-half, 
3'-half, i-tRF, 5'-tRF, and 3'-tRF. In these classifi-
cations, i-tRFs are derived from the internal body of 
mature tRNAs, including anticodon loops as well as 
fragments of the D- and T-loops, rather than the 5’ 
and 3’ ends [7], and the details of the ribonuclease 
processing required for their production remain 
unknown. Moreover, i‐tRFs are highly abundant and 
may vary depending on gender, population, race, 
amino acid characteristics, anticodons, tissues, 
diseases, and disease subtypes. Recent studies have 
shown that tRFs are associated with the development 
of various cancer types. A study by Mo et al. found 
that 5’-tiRNA-Val could regulate the proliferation, 
migration, and invasion of breast cancer cells through 
the Wnt/β-Catenin signaling pathway [8]. Mean-
while, tRF3008A has been shown to inhibit the 
metastasis and progression of CRC by destabilizing 
FOXK1 in an AGO-dependent manner [9]. Further-
more, 5’-tRF-Gly in the plasma of CRC patients was 
identified as an early diagnostic marker for CRC [10]. 
Although tRFs are currently being studied in the 
context of various tumors, few studies have been done 
in relation to CRC, especially on their potential role as 
an early diagnostic biomarker. 

During tumor development, the metabolic 
reprogramming of amino acids, as one of the three 
major nutrients in the body, plays a significant role. 
For example, tumor cells can promote their growth 
and suppress T-cell activity through metabolic 
reprogramming and the competitive uptake of 
glutamine, leading to immunosuppression [11,12]. 
Moreover, amino acid metabolism was found to be 
strongly associated with CRC. Peng et al. found that 
amino acid metabolism-related genes were associated 
with the immune microenvironment in CRC patients, 

and could be used as biomarkers to predict patient 
prognosis and immunotherapeutic response [13]. In 
addition, key enzymes of amino acid metabolism in 
tumor-associated macrophages (TAMs) have been 
suggested to be involved in the CRC immune escape 
process by affecting programmed cell death (PCD) 
and polarization of TAMs [14]. Thus, tRFs involved in 
amino acid metabolism might be affected by 
metabolic reprogramming, leading to changes in their 
intracellular content, and could further influence the 
course of CRC. 

Interestingly, we found several studies which 
performed small RNA sequencing (RNA-seq) analysis 
by deleting tRFs as confounding signals, resulting in 
the loss of many valuable tRFs sequencing data [15]. 
In line with this, we obtained six small RNA-seq data 
from the SRA database to explore and identify tRFs 
with significant value. After data collation, random 
forest algorithm screening and real-time quantitative 
PCR (qRT-PCR) validation, we finally identified three 
tRFs associated with Glu (tRF-22-RNLNK88KL 
(tRF-22), tRF-27-Z3M8ZLSSXUL (tRF-27) and tRF-32- 
0668K87SERM4P (tRF-32)), which were significantly 
highly expressed in tissues and plasma of CRC 
patients and had the ability to perform early diagnosis 
of CRC. In addition, bioinformatics analysis sugges-
ted a correlation between tRF-22/27/32 and cancer 
development and glutamate-glutamine (Glu-Gln) 
metabolism, among others. It is noteworthy that in 
tumor cells the metabolism of Gln, which is the most 
abundant amino acid and a major cellular energy 
substrate besides glucose, is significantly increased 
[16]. Overall, our results indicate that tRF-22/27/32 
are potential early diagnostic markers and therapeutic 
targets for CRC and deserve further study and 
exploration. 

Method and materials 
Datasets 

The small RNA-seq datasets (SRP107326, 
SRP166942, SRP183064, SRP193100, SRP344867, and 
SRP289772) used in the training and independent 
validation sets were obtained from the SRA public 
repository. Meanwhile, six datasets of clinical 
information and correlation heat maps of the required 
mRNA expression matrix (GSE121842) [17] were 
obtained from the Gene Expression Omnibus (GEO) 
database. Moreover, the RNA-seq data required for 
Gene Set Enrichment Analysis (GSEA) were obtained 
from The Cancer Genome Atlas (TCGA) database. All 
sequencing files were processed through format 
conversion, removal of adapters, low quality filtering, 
and final matching using MINTmap [18] to obtain the 
tRFs expression levels (Counts and RPM, from 
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MINTmap output files), which were processed to 
obtain the tRFs expression matrix. The missing values 
in the expression matrix were filled with MetImp 1.2 
[19]. 

Statistical analysis 
Differential analysis was performed using the 

limma package (RPM matrix, version 3.52.4) [20] and 
the DEseq2 package (Counts matrix, version 1.36.0) 
[21], and the results of the differential analysis were 
taken as the intersection. We identified 317 tRFs from 
the intersection of the difference analysis results, and 
then we used the randomForest package (version 
4.7.1.1) [22] to construct a diagnostic model of CRC for 
the top 100 tRFs. We then selected three i-tRF-Glu 
(tRF-22-RNLNK88KL, tRF-27-Z3M8ZLSSXUL, tRF- 
32-0668K87SERM4P) from the top 30 of the Gini 
index, which were again used to construct the 
diagnostic model. The model performance was 
evaluated using ROC and PR curves and was tested 
using an independent validation set (SRP289772). All 
the above analyses were performed in the R 
programming language (version 4.2.1). Meanwhile, 
the logistic regression analysis was performed using 
IBM SPSS Statistics (version 18), and ROC curves were 
plotted. The results of the tissue and plasma gene 
expression analyses were analyzed using GraphPad 
Prism (version 8.0.2) for paired and unpaired t-tests. 
The clinical data were processed using IBM SPSS 
Statistics (version 18). The correlation of all available 
clinically dichotomous data with the high/low 
expression levels of tRF-22/27/32 was tested using 
Pearson’s chi-squared test or Fisher's exact test. 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns 
indicates not significant. A P-value of <0.05 was 
considered statistically significant. 

Target prediction and enrichment analysis 
We used miRDB [23], TargetScan [24], 

TargetRank [25], and RNAhybrid[26] to predict the 
target genes of tRF-22/27/32. The intersection of the 
four databases was used to select out the target genes 
that were predicted with high scores. The target genes 
were then analyzed by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology 
(GO) using the Database for Annotation, Visuali-
zation, and Integrated Discovery (DAVID) [27,28], 
and the analysis results were downloaded and 
visualized using the R package ggplot2 (version 3.4.0). 
GSEA was performed using the R package 
ClusterProfiler (version 4.4.4) [29]. The network 
diagram was visualized using Cytoscape software 
(version 3.9.1). 

Patient tissue samples 
Human specimens were collected and used in 

this study with the approval of the ethics committee 
of Shunde Hospital, Southern Medical University 
(The First People's Hospital of Shunde Foshan), 
Shunde, Foshan, Guangdong Provinc, China. The 
malignant tissues were collected from patients 
diagnosed with CRC by tumor histopathological 
analysis and underwent colorectal resection in 
Shunde Hospital, Southern Medical University (The 
First People's Hospital of Shunde Foshan) from 2021 
to 2023. All specimens were collected with the 
informed consent of the patients, and all patients had 
not received radiotherapy or chemotherapy before 
surgery. A total of 24 pairs of CRC and normal 
paracancerous tissues were used to verify the 
expression of tRF-22/27/32. Subsequently, we 
collected blood samples from 40 CRC patients and 40 
normal volunteers to test the expression levels of tRFs 
in plasma. The study was conducted in accordance 
with the Declaration of Helsinki. Detailed inclusion 
and exclusion criteria for patients enrolled in this 
study were as follows.Inclusion criteria included. (1) 
histologically confirmed colon or rectal cancer, (2) no 
other malignancies in combination, (3) Chinese male 
or female subjects aged ≥18 years, and (4) voluntary 
signing of informed consent. Exclusion criteria: (1) 
Previous receipt of first-line systemic anti-tumour 
therapy for metastatic CRC (including systemic 
chemotherapy, molecular targeted drug therapy, 
biotherapy and other investigational therapeutic 
agents); (2) Treatment with other concurrent anti- 
tumour therapy, long-term systemic immunotherapy; 
(3) History of malignancy other than colorectal cancer 
within the last 5 years; (4) Participation in a clinical 
trial of another drug within 30 days prior to screening; 
(5) History of autoimmune disease or other medical 
conditions; (6) Other conditions that, in the opinion of 
the investigator, preclude enrolment of subjects. 

Gene expression analysis by qRT-PCR 
Total RNA was extracted from CRC tissue and 

plasma using RNAiso Plus (Takara, Japan). Reverse 
transcription was performed with specific tRFs 
stem-loop RT primers, and cDNA amplification was 
performed by qRT-PCR using the ChamQ Universal 
SYBR qPCR Master Mix reagent (Vazyme, China) and 
the QuantStudio™ 5 Real-Time Fluorescence PCR 
System (Thermo Fisher, USA). U6 was used as an 
internal control for tRFs, and we used the -ΔCt 
method to detect the expression of genes related to the 
internal control. Each assay was repeated three times. 
The agarose gel electrophoresis was used to check the 
uniqueness of the qRT-PCR products. To further 
confirm the sequence of the qRT-PCR products, we 
performed Sanger sequencing experiments. The 
primer sequences are summarized in Table S1. 
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Table 1. Demographic and clinical characteristic of patients with Colorectal cancer in 6 sequenced data sets 

Cohort SRP107326 SRP166942 SRP183064 SRP193100 SRP344867 SRP289772 
Tissues       
 Primary Tumor 104 3 6 2 5 20 
 Adjacent Normal 104 3 6 2 5 32 (Normal volunteers) 
Age       
 Median 61.86 57.67 - - - 63 
 Range 39-85 49-70 - - - 30-83 
Sex       
 Male 59 - - - - 22 
 Female 45 - - - - 30 
Race       
 Asian 104 3 6 2 5 - 
 Black      - 
 White      - 
 American Indian      - 
Location       
 Colon 66 1 - 0 - 47 
 Rectum 38 2 - 2 - 5 
Stage     -  
 0 2 0 - 0 - 8 
 Ⅰ 18 0 - 0 - 1 
 Ⅱ 29 0 - 0 - 4 
 Ⅲ 42 3 - 2 - 4 
 Ⅳ 13 0 - 0 - 3 

 

Results 
Identification of differentially expressed tRFs 
in CRC 

The whole data processing workflow performed 
in this study is illustrated in Figure 1. Moreover, the 
clinical information from the 6 datasets we used is 
summarized in Table 1. Following the extraction of 
the tRFs expression matrices from the SRA files for 
240 pairs of cancer and paracancerous CRC tissues, 
we performed paired differential analysis using the 
limma (Figure 2A) and DEseq2 packages (Figure 2B), 
respectively (The top 50tRFs in the intersection of 
differential analysis results are displayed in Table 
S2). The intersection of the two analyses was used to 
obtain 317 differentially expressed tRFs (P<0.05, 
|logFC|>1; Figure S1). Upon collating the 
information on the intersecting differential tRFs 
(Table S2), we observed that there seems to be a close 
correlation between i-tRFs and Glu-tRNA-derived 
tRFs (tRF-Glu; Figure 2C). The tRF-Glu ranked first 
with 21.77% of the intersecting differential tRFs, and 
tRF-Glu also ranked first with 46.43% of the i-tRFs. 
Meanwhile, i-tRFs ranked second with 35.33% of the 
intersecting differential tRFs, while i-tRFs ranked first 
with 75.36% of the tRF-Glu. Furthermore, we ranked 
the expression of the top 100 intersection tRFs in 
descending order of the absolute value of logFC from 
the heat map (Figure 3). In the row clustering, we also 
observed that there is a large correspondence between 
i-tRFs and tRF-Glu. The chi-square test for i-tRFs and 
tRF-Glu showed a χ2pearson=61.858, and a 
P-value<0.001, indicating a significant correlation 
between the two. 

Selecting out three i-tRF-Glu to construct 
CRC diagnostic models 

The intersection of the differential analysis 
results was explored to identify 317 tRFs (P<0.05, 
|log2 FC|>1), which were then subsequently used to 
construct a random forest model using the 
RandomForest package. Combined with the analysis 
of the composition of the differential tRFs as a result 
of the differential analysis, we concluded that 
i-tRF-Glu may play an important role in the 
development of CRC, and therefore we screened for 
i-tRF-Glu in the top 30 tRFs. Finally, three i-tRF-Glu 
with high expression in colorectal tissues were 
selected: tRF-22-RNLNK88KL (tRF-22), tRF-27- 
Z3M8ZLSSXUL (tRF-27), and tRF-32-0668K87SE 
RM4P (tRF-32), among the top 30 tRFs ranked by Gini 
index (Figure 4A). These tRFs were then used to 
reconstruct the random forest diagnostic model again. 
Model performance was evaluated by testing 
out-of-bag (OOB) samples. The diagnostic efficacy of 
the established diagnostic model was evaluated using 
ROC and PR curves, and the test results showed 
values of ROC -AUC=0.941 (Figure 4B) and PR 
-AUC=0.944 (Figure 4C). To further test the 
diagnostic efficacy of the model in the real world, we 
selected SRP289772 as an independent validation set, 
which contains sequencing data from 32 normal 
volunteers and 20 CRC patients. We calculated a 
diagnostic RF-score for the independent validation 
dataset (SRP289772) based on the OOB predicted 
probabilities, the PR-AUC and ROC-AUC of the 
established model were found to be 0.761 and 0.823 in 
the independent validation set (Figure 4B-C). We also 
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modeled the tRF-22/27/32 separately using logistic 
regression and plotted the ROC curves separately 
with ROC-AUCs of 0.798, 0.902, and 0.844 for each of 
these tRFs (Figures 4D-F). And then We analyzed 
their expression differences in cancer and normal 
using paired t-test and unpaired t-test in the training 
set and independent validation set, respectively. The 
results revealed that the three were significantly 
highly expressed in CRC both in the training and 
independent validation sets and statistically different 
(P<0.05), except for tRF-22 which maybe not 
statistically different in the independent validation set 

due to insufficient sample size. (Figure S2).  

Potential biological function of tRF-22/27/32 in 
the development of CRC 

The target genes of tRF-22/27/32 were predicted 
using four databases: TargetRank, TargetScan, 
RNAhybrid, and miRDB. The tRF-mRNA interaction 
network was then established using some of the 
predicted target genes (Figure 5A-C). Subsequently, 
all target genes that were predicted in two or more 
databases were extracted yielding a total of 1,583 
genes (Figure 5D-F). 

 
 

 
Figure 1. Workflow of data process. Expression levels of tRFs were extracted using small RNA sequencing data from the SRA database of paired colon cancer and 
paracancerous tissues (Upper left panel). Random forest analysis was used to screen tRFs, and 3 tRFs were finally identified (upper right panel). Bioinformatics analysis: target gene 
prediction, function and pathway enrichment analysis (lower left panel). Expression of the 3 tRFs was verified at tissue and plasma levels using qRT-PCR (lower right panel).  
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Figure 2. Differential analysis and the composition analysis of the intersection tRFs. (A) Volcano plot of Limma package differential analysis. (B) Volcano plot of 
Deseq2 package differential analysis. (C) Composition analysis of the intersection tRFs: (a) tRF-Glu accounted for 21.77% of the intersection tRFs. (b) tRF-Glu accounted for 
46.43% of the i-tRFs. (c) i-tRF accounted for 35.33% of the intersection tRFs. (d) i-tRF was 75.36% in tRF-Glu. 

 
The extracted gene list was then subjected to 

KEGG and GO enrichment analysis in the DAVID 
database. The enrichment analysis results were 
visualized using the R programming language 
(Figure 5G-H). In the KEGG enrichment analysis, 
most genes were enriched in the RAS signaling 
pathway. The other genes were found to be involved 
in numerous signaling pathways which are closely 

related to tumor development, such as TNF/NF- 
kappa/Notch/Hippo (Figure 5G). Meanwhile, in the 
GO enrichment analysis, the terms biological process 
(BP), fractional cell composition (CC), and molecular 
function (MF) each displayed 10 pieces of information 
with P-values less than 0.05 (Figure 5H). Among 
them, the important biological functions are 
transcriptional regulation of the RNA pol II promoter, 
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cell differentiation, and protein phosphorylation, 
while most of the target genes were mainly localized 
in the cytoplasm, nucleus, and cell membrane. The 
most important molecular function is protein binding. 

For further analysis, we obtained the CRC 
RNA-seq data from TCGA, extracted the gene expres-
sion matrix, and performed differential analysis. The 
results of the differential analysis were intersected 
with the target genes to obtain the differential 
expression information of target genes in CRC. Using 
GSEA, six enriched pathways emerged with 
P.adj<0.05, including the Wnt signaling pathway, G2 
M checkpoint, and RNA metabolism, L1CAM 
interactions, potential therapeutics for Sars, malignant 
pleural mesothelioma (Figure S3). 

tRF-22/27/32 are involved in the regulation of 
Glu metabolism 

A correlation analysis was performed to explore 
the association between tRF-22/27/32 and Glu meta-
bolism. The RNA-seq data GSE121842 (SRP166942) 
from the GEO database was used to obtain the mRNA 
expression matrix (Figure 6). According to Mantel's 
P<0.01, tRF-22 is associated with the expression of 
GTP, alanine-glyoxylate aminotransferase (AGXT), 
and ribosomal modification protein RimK-like family 

member A (RIMKLA). RIMKLA has also been 
suggested to be involved in the Gln family amino acid 
metabolism [30]. Meanwhile, tRF-27 was significantly 
correlated with the expression of glutamine ligase 
(GLUL), GLS, G protein pathway inhibitor 1 (GPS1), 
and folate hydrolase 1 (FOLH1) genes. Among these, 
GLUL is mainly involved in catalyzing the synthesis 
of Gln from Glu and ammonia in an ATP-dependent 
reaction. This protein plays a role in ammonia and 
Glu detoxification, acid-base homeostasis, cell signal-
ing, and cell proliferation [31], while GLS catalyzes 
the hydrolysis of Gln to Glu and ammonia [32]. 
Furthermore, tRF-32 was shown to correlate with the 
expression of argininosuccinate lyase (ASL), which 
primarily catalyzes the reversible hydrolysis of 
argininosuccinate to arginine and fumarate – an 
important step in the detoxification of ammonia by 
the liver through the urea cycle [33]. In addition, 
pathway analysis of these genes was performed using 
the online database DAVID. The results showed that 
these genes are associated with the anabolism of 
amino acids such as Glu, alanine, and aspartate and 
that there is a close relationship between these genes 
and the development of CRC (Figure S4). 

 

 
Figure 3. Heat map of the expression of the top 100 difference tRFs. Differential analysis of the tRFs using Limma package and DEseq2 package, the expression heat map 
displays the top 100 intersecting tRFs of LogFC absolute values. 
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Figure 4. Exploring the diagnostic efficacy of tRF-22/27/32 for CRC. (A) Random forest RF mean decrease Gini score rank. (B) ROC curves of the random forest 
diagnostic model in the training set and independent validation set. (C) PR curves of the random forest diagnostic model. (D~F) Separate ROC curves for tRF-22/27/32 in the 
training set (logistic regression analysis).  

 

The tRF-22/27/32 can serve as plasma markers 
for CRC screening 

We collected cancer and paracancerous tissues 
from 24 CRC patients for gene expression analysis to 
further validate the differential expression of 

tRF-22/27/32. The results showed that both 
tRF-27/32 had significantly higher expression in 
cancer tissues (P-values=0.012 and 0.006, respectively; 
Figure 7A-C), which is consistent with the results 
obtained from the small RNA-seq data. Subsequently, 
we evaluated the CRC diagnostic efficacy of tissue 
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qRT-PCR results for tRF-22/27/32 in the same model 
as the miRNA sequencing dataset (The results are 
shown in Figure S5). To further demonstrate the 
correctness of the amplification products of the 
qRT-PCR of the three tRFs, we performed agarose gel 

electrophoresis (Result is shown in Figure S6) and 
Sanger sequencing experiments (Figure S7) using the 
products of the three qPCRs, and the results showed 
that the products of the three qRT-PCRs were specific 
and sequenced correctly. 

 
 

 
Figure 5. Enrichment analysis of database predicted target genes (intersection). (A~C) Network analysis of tRF-22/27/32 with predicted target genes. (D~F) Venn 
diagram of four database predicted target genes of tRF-22/27/32. (G) KEGG enrichment analysis of tRF-22/27/32 target genes. (H) GO enrichment analysis of tRF-22/27/32 target 
genes.  
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Figure 6. Correlation analysis of tRF22/27/32 with glutamate metabolism-related genes. The bottom left corner is the connection is the expression analysis of 
tRF-22/27/32 with glutamate-related genes, and the top right corner is the expression correlation analysis between glutamate-related genes. Glutamate-related gene expression 
information was obtained from the GEO database (GSE121842). 

 
To verify the expression of the three tRFs in 

plasma and determine the possibility of using them as 
diagnostic markers for CRC, blood samples were 
collected from 40 CRC patients and 40 normal 
volunteers. The clinical characteristics of the patients 
are summarized in Table 2. Gene expression analyses 
showed that all these tRFs were highly expressed in 
the blood of CRC patients compared with that of 
normal volunteers (P-value=0.025, 0.002, and 0.005, 
respectively; Figure 7D-F). To further determine the 
potential of these tRFs as diagnostic markers, the ROC 
curve for each tRFs was plotted after collecting clinical 
data from patients. The results showed that tRF-32 
had the highest ROC-AUC of 0.786, while tRF-22/27 
had 0.736 and 0.699, respectively (Figure 7G). 
Moreover, all three ROC-AUCs were better than that 
of traditional tumor markers CEA (0.600) and CA199 
(0.562). Subsequently, we analyzed the relationship of 
the tRFs with clinical data, and found that these tRFs 
may be associated with CEA levels, the number of 
lymphatic metastases, and tumor size and location in 
CRC patients (Figure 8A). Furthermore, the 
expression level of tRF-32 in CRC tissues differed with 
age (P=0.013), while both lymph node metastasis 
(P=0.011) and vascular invasion (P=0.005) of the 

tumor correlated with the expression of tRF-32. 
Meanwhile, tRF-27 levels in CRC were significantly 
higher in stage III than in stage I cancer. However, the 
indicators of mismatch repair (MMR), which 
symbolize the tumor mutation load and tumor 
differentiation [34], showed no correlation with these 
tRFs (Table 2). Finally, we explored the correlation 
between tRF-22/27/32 and traditional tumor markers 
and found a negative correlation between tRF-22 and 
tRF-27 with CA199 in plasma (Figure 8B-C), and a 
positive correlation between tRF-27 and CEA (Figure 
8D). These results suggest that tRF-22/27/32 can be 
used as biomarkers for early diagnosis of CRC and 
may mediate CRC development by affecting tumor 
invasion. 

Conclusions and Perspectives 
CRC has become the third most common cancer 

in men and the second most common in women. By 
2035, the number of CRC cases worldwide is expected 
to increase to 2-5 million, which will cause a 
significant socioeconomic burden. Currently, surgical 
resection, supplemented with chemotherapy and 
radiotherapy, is the main treatment for CRC [35]. 
Although targeted and immunotherapy have 
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achieved some success in CRC in recent years, 
increasing the early diagnosis rate seems to be a more 
effective and socioeconomic option to improve the 
clinical prognosis of CRC. It has been shown that the 
5-year survival rate for advanced CRC patients with 
distant metastases is less than 15%, whereas the 5-year 
survival rate for patients with early-stage localized 
CRC can reach 90% [3]. Current screening modalities 
for CRC include colonoscopy, OB, and tumor marker 
(e.g., CEA and CA199) tests. However, these methods 
can also present some challenges and inconveniences, 
such as the invasive and expensive nature of 
colonoscopy [36], the poor sensitivity and specificity 
of the OB [37], and the susceptibility to interference 
and the long half-life of CEA, which cannot indicate 
the presence of early-stage tumors [38]. In contrast, 
tRFs, which are highly base-modified, highly enriched 
in various biological fluids, and have higher levels 
and stability, are promising sncRNAs that have 

garnered significant attention in recent years and 
have the potential to be used as plasma markers for 
tumor screening. Related studies have shown that 
tRFs have great potential value in the diagnosis of 
CRC, for example, chen et al. found that 
TRF-phe-gAA-031 (AUC=0.755) and tRF-VAL-tca-002 
(AUC=0.731) had high diagnostic efficacy in the 
diagnosis of CRC [39]. In addition, Wu et al. found 
that 5'-tRF-GlyGCC (AUC=0.882) had higher diag-
nostic efficacy compared to traditional tumour 
markers (CEA (AUC=0.762), CA199 (AUC=0.557) 
[10]. Therefore exploring tRFs as a diagnostic marker 
for CRC is a very promising field. However, it is 
worth noting that most current studies have ignored 
some of the tRFs as confounding signals when 
performing small RNA-seq analyses, which has led to 
the loss of much valuable tRFs data. Therefore, it is 
very valuable to explore the tRFs data from small 
RNA-seq studies for CRC. 

 

 
Figure 7. qRT-PCR to validate the differential expression of tRF-22/27/32. (A~C) qRT-PCR validation of tRF-22/27/32 expression differences in tissues. (D~F) 
qRT-PCR validation of tRF-22/27/32 expression in plasma of CRC patients and normal volunteers. (G) ROC curves of tRF-22/27/32, CEA, and CA199 in CRC patients and normal 
individuals. 
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Table 2. Correlation analysis of tRF-22/27/32 with clinical data of patients of plasma origin 

Clinical pathological indexes No. of patients p-value of tRF-22 (High-Low1) p-value of tRF-27 (High-Low) p-value of tRF-32 (High-Low) 
Age ≥75 

<75 
8 (20.51%) 
31 (79.49%) 

0.695 0.235 0.013* 

Sex 
 

Male 
Female 

23 (57.50%) 
17 (42.50%) 

0.749 0.749 0.616 

Size 
 

≥5cm 
<5cm 

18 (46.15%) 
21 (53.85%) 

0.111 0.341 1.000 

Tumor location Colon 
Rectum 

33 (82.50%) 
7 (17.50%) 

1.000 1.000 0.432 

Hemicolon Left 
Right 

25 (64.10%) 
14 (35.90%) 

1.000 0.191 0.740 

Tumor differention Well 
Poor 

27 (71.05%) 
11 (28.95%) 

1.000 1.000 0.147 

T stage 
 

T1-T2 
T3-T4 

7 (19.44%) 
29 (80.56%) 

1.000 0.408 0.200 

Lymph node 
 

Positive 
Negative 

16 (41.03%) 
23 (58.97%) 

0.333 0.333 0.011* 

Metastasis Positive 
Negative 

4 (10.26%) 
35 (89.74%) 

0.605 1.000 1.000 

TNM stage 
 

I-II 
III-IV 

20 (54.05%) 
17 (45.95%) 

0.746 0.746 0.104 

CEA High 
Low 

13 (33.33%) 
26 (66.67%) 

0.096 0.320 0.736 

CA199 High 
Low 

12 (30.77%) 
27 (69.23%) 

0.176 0.501 0.174 

Nerve/vascular invasion Positive 
Negative 

18 (51.43%) 
17 (48.57%) 

0.315 0.092 0.005** 

MMR2 
 

dMMR 
pMMR 

3 (7.50%) 
37 (92.50%) 

1.000 0.231 0.565 

1 According to Kolmogorov-Smirnov normality test, tRF-32 obeys the Gaussian distribution, use the arithmetic mean to distinguish its high/low expression. Both tRF-22 and 
tRF-27 do not obey the Gaussian distribution, use the median to distinguish their high/low expression. 
2 MLH1, MSH2, MSH6, and PMS2 were all positive for pMMR (normal expression), and 1 or more negative for dMMR (deletion) 

 
By integrating multiple small RNA-seq data and 

mining the neglected tRFs through MINTmap, we 
found that the differentially expressed tRFs in CRC 
were mainly composed of i-tRF and tRF-Glu. Previous 
studies have reported that the expression of tRFs was 
abnormal in tumors. For example, Huang et al. found 
that tRF-31-U5YKFN8DYDZDD was highly expressed 
in gastric cancer [40]. Other studies demonstrated 
high expression of tRF-Leu-CAG in non-small cell 
lung cancer [41]. In contrast, Wu et al. found by 
sequencing small RNAs in the plasma of CRC patients 
and normal subjects that the percentage of plasma 
i-tRF in normal subjects was only 17.57%, while in 
CRC patients, it reached 25.31%, second only to 5'-tRF 
(57.22%), indicating the overexpression of i-tRFs 
during CRC development. These findings are 
consistent with our study. However, our screening of 
differential tRFs by integrating multiple small 
RNA-seq data may lead to more convincing conclu-
sions compared to individual sequencing data. 
Furthermore, we found that there was a significant 
correlation between i-tRFs and tRFs-Glu among the 
differentially expressed tRFs in CRC (P<0.001). 
Similarly, Wu et al. also found that among the 5 '-tRFs 
with the highest content, tRFs-Glu accounted for 
11.46% in CRC patients, which was significantly 
higher than 6.30% in normal subjects [10], further 
supporting our hypothesis that i-tRFs participate in 
the occurrence and development of CRC and may be 
related to Glu metabolism. tRNAs are are involved in 

the transport of amino acids during protein synthesis. 
Interestingly, CRC is usually accompanied by a 
significantly abnormal amino acid metabolism [42]. In 
a study by Xie et al., they characterized the amino acid 
metabolism of CRC based on the expression status of 
358 amino acid metabolism-related genes and divided 
CRC into AA1 and AA2 types. The AA1 subtype is 
characterized by a weak amino acid metabolism 
activity, a high tumor mutation load, significant 
immune cell infiltration, and poor prognosis, 
although it may benefit from irinotecan, anti-PD-1, 
and CTLA-4 immunotherapy. Meanwhile, the AA2 
subtype exhibits strong amino acid metabolic activity, 
increased sensitivity to 5-fluorouracil and oxaliplatin, 
and generally has a good prognosis [43]. That means 
the metabolism of abnormal amino acids in CRC not 
only regulates tumor progression but also affects 
treatment response and patient prognosis. tRFs are 
likely to serve as a bridge between the occurrence and 
development of CRC and amino acid metabolism. 
Therefore, we selected three i-tRF-Glu (tRF-22/27/32) 
that were significantly highly expressed in CRC and 
were later verified in tissue samples. The ROC curves 
showed that these tRFs could distinguish tumor from 
non-tumor tissues. At the same time, tRF-32 was 
associated with lymph node metastasis and 
nerve/vascular invasion of the tumor. Hence, we 
hypothesize that tRF-22/27/32 are involved in the 
occurrence and progression of CRC, as well as in the 
metabolism of Glu-Gln. These intriguing results urge 
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us to continue to explore the molecular contribution 
of tRF-22/27/32 in the occurrence and development 
of CRC.  

We further performed enrichment analyses of 
the target genes of tRF-22/27/32 and found that these 
genes were mainly enriched in signaling pathways, 
such as WNT, MAPK, and Notch, and were also 
involved in biological processes, such as G2M cell 
cycle checkpoint and L1CAM adhesion molecule 
interactions. The role of these pathways in CRC is 
relatively clear. For example, the Wnt signaling 
pathway is closely related to CRC. It can participate in 
the initiation and development of CRC by integrating 
the stem cell characteristics of tumor cells and 

modulating apoptosis, autophagy, inflammation, 
immunity, and chemoresistance [44]. On the other 
hand, amino acid metabolism has been shown to also 
interfere with the MAPK signal pathway. Xue et al. 
found that branched chain amino acids α Ketate 
dehydrogenase kinase (BCKDK) directly mediates the 
phosphorylation of Ser221 of ERK1 and promotes 
CRC progression by activating the MAPK signaling 
pathway [45]. In addition, a variety of sncRNAs are 
involved in the regulation of the Notch signaling 
pathway in CRC. It has been shown that miR-34a [46], 
miR-195-5p [47] can regulate the levels of Notch1, 
Notch2 in CRC, respectively, and participate in the 
induction of CRC cell apoptosis and inhibition of CRC 

 
Figure 8. Correlation analysis of clinical information. (A) Heat map of correlation between patient clinical information and tRF-22/27/32. (B~C) Correlation analysis of 
CA199 and tRF-22/27. (D~E) Correlation analysis of CEA and tRF-27/32. (G) Correlation between the number of lymph node metastases and tRF-32 was demonstrated. 
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proliferation, migration, and chemoresistance. 
Furthermore, L1CAM in CRC not only promotes cell 
growth and survival, but the L1CAM secreted by 
tumor cells also makes itself more aggressive [48], 
thus, promoting the infiltration and metastasis of 
CRC. Our study suggests that tRF-22/27/32 are 
highly likely to be involved in the development of 
CRC by regulating cell proliferation, regulating the 
cell cycle, and interfering with biological processes 
such as cell adhesion. Finally, upon investigating the 
expression pattern of tRF-22/27/32 in the plasma of 
CRC patients, we found that compared with normal 
subjects, tRF-22/27/32 were also significantly higher 
in the plasma of CRC patients. As diagnostic markers 
for CRC, the AUC values of tRF-22/27/32 were 0.736, 
0.699, and 0.786, respectively. These values were 
higher than those of the conventional markers CEA 
(0.600) and CA199 (0.562), affirming the potential of 
tRF-22/27/32 as plasma markers for CRC screening. 
In addition, the study by Xue et al. shows that the 
combination of tsRNA-MetCAT-37, tsRNA- 
ValTAC-41, and CA199 in pancreatic cancer can 
increase the AUC value of the latter in diagnosing 
pancreatic cancer [49]. In recent years, studies on gene 
expression regulation by tRFs at different levels have 
been increasing, and the molecular mechanism of its 
involvement in the occurrence and development of 
cancer has been gradually revealed. The establish-
ment and improvement of tRFs databases will 
provide new directions and capabilities for the future 
diagnosis and treatment of CRC. 

Overall, our research demonstrates that 
tRF-22/27/32, which are closely related to Glu-Gln 
metabolism and are highly expressed in CRC. 
Moreover, these tRFs participate in the occurrence 
and development of CRC by regulating cell 
proliferation and cell cycle, and interfering cell 
adhesion. We propose the use of tRF-22/27/32 as 
potential tumor treatment targets and plasma markers 
for CRC screening. However, this study still has some 
limitations and challenges. Further exploration and 
experimentation are needed to fully understand the 
relationship between tRF-22/27/32 and the prognosis 
of CRC patients.  
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