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Abstract 

Background: T cells are crucial components of antitumor immunity. A list of genes associated with T cell 
proliferation was recently identified; however, the impact of T cell proliferation-related genes (TRGs) on the 
prognosis and therapeutic responses of patients with colorectal cancer (CRC) remains unclear.  
Methods: 33 TRG expression information and clinical information of patients with CRC gathered from 
multiple datasets were subjected to bioinformatic analysis. Consensus clustering was used to determine the 
molecular subtypes associated with T cell proliferation. Utilizing the Lasso-Cox regression, a predictive 
signature was created and verified in external cohorts. A tumor immune environment analysis was conducted, 
and potential biomarkers and therapeutic drugs were identified and confirmed via in vitro and in vivo studies. 
Results: CRC patients were separated into two TRG clusters, and differentially expressed genes (DEGs) were 
identified. Patient information was divided into three different gene clusters, and the determined molecular 
subtypes were linked to patient survival, immune cells, and immune functions. Prognosis-associated DEGs in 
the three gene clusters were used to evaluate the risk score, and a predictive signature was developed. The 
ability of the risk score to predict patient survival and treatment response has been successfully validated using 
multiple datasets. To discover more possible biomarkers for CRC, the weighted gene co-expression network 
analysis algorithm was utilized to screen key TRG variations between groups with high- and low-risk. CDK1, 
BATF, IL1RN, and ITM2A were screened out as key TRGs, and the expression of key TRGs was confirmed using 
real-time reverse transcription polymerase chain reaction. According to the key TRGs, 7,8-benzoflavone was 
identified as the most significant drug molecule, and MTT, colony formation, wound healing, transwell assays, 
and in vivo experiments indicated that 7,8-benzoflavone significantly suppressed the proliferation and migration 
of CRC cells.  
Conclusion: T cell proliferation-based molecular subtypes and predictive signatures can be utilized to 
anticipate patient results, immunological landscape, and treatment response in CRC. Novel biomarker 
candidates and potential therapeutic drugs for CRC were identified and verified using in vitro and in vivo tests. 
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Introduction 
Cancer has emerged as a prominent contributor 

to human mortality, as evidenced by the recorded 
incidence of more than 19 million recently diagnosed 
cancer cases and almost 10 million cancer-associated 
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fatalities in 2020. Colorectal cancer (CRC) is the third 
most frequently occurring cancer and exhibits the 
second highest fatality rate, comprising approxi-
mately one-tenth of all cases of cancer and 
cancer-associated fatalities [1]. Early-stage CRC can be 
cured by surgery; however, the majority of patients 
have advanced CRC, and recurrence and metastasis 
are often noticed, leading to poor clinical outcomes in 
patients with CRC [2-4]. Overall, survival rates for 
patients with CRC have significantly improved owing 
to developments in traditional surgical techniques, 
chemotherapy, and treatment strategies. Programmed 
cell death protein 1 (PDCD1/PD-1) is an immuno-
logical checkpoint protein comprising 288 amino 
acids. PD-1 is expressed on the surface of T cells and 
functions in apoptosis [5]. Since the approval of the 
first type of PD-1 inhibitor by the US Food and Drug 
Ministration (FDA) in 2014 and 2015 for the treatment 
of advanced lung cancer and melanoma, an increasing 
number of immune checkpoint inhibitors (ICIs) have 
been utilized to treat numerous types of malignant 
tumors. PD-1 inhibitors have been shown to improve 
prognosis in metastatic CRC patients with deficient 
mismatch repair (dMMR) or high microsatellite 
instability (MSI-H) [6]. However, only a subset of 
patients with CRC has benefited considerably from 
ICI therapy. To address this issue, more biomarker 
candidates have been recognized, including tumor 
burden mutations (TMB) and neoantigen load (NAL), 
but the prognostic capacity of these approaches is 
restricted due to their small percentage populations or 
moderate efficiency [7-9]. Thus, the development of 
new and promising biomarker candidates and 
medicinal drugs for CRC patients is imperative if 
existing CRC treatment strategies are to be improved. 

Changes in the tumor microenvironment (TME) 
are typically associated with the incidence and 
progression of malignant tumors [10]. The TME 
contains numerous cellular types, such as tumor, 
stromal, and immune cells [11]. Among these cell 
types in the TME, natural killer (NK) cells, in addition 
to natural killer T (NKT) cells, are increasingly 
utilized in treating cancer. In addition, the use of T 
lymphocytes has been studied. T cells have unique 
anticancer localization characteristics, as they show 
direct effector activity and auxiliary functions by 
recruiting other components of the immune response. 
Furthermore, T lymphocytes can expand in vitro and 
establish memory compartments, which are major 
features of antitumor monitoring [12]. Previous 
studies have suggested that CD4+ and CD8+ T cell 
infiltration into malignant tumors not only represents 
the ongoing anti-tumor response by the host but also 
correlates with the prognosis of patients with cancer 
[13,14]. Recent research [15] discovered 33 synthetic 

drivers of T cell proliferation via genome-wide 
large-scale screening; however, the effects of these T 
cell proliferation-related genes (TRGs) on CRC remain 
largely unknown. Understanding the effects of TRGs 
on cancer is vital for the development of new 
treatment strategies. Therefore, the relationship 
between these T-cell proliferation-related genes and 
patient prognosis and response to immunotherapy 
should be further investigated. 

Advances in high-throughput sequencing 
technology have allowed investigators to utilize 
multiple categories of sequencing data acquired from 
free access databases such as The Cancer Genome 
Atlas (TCGA) and the Gene Expression Omnibus 
(GEO). Recently, numerous researchers have begun to 
use sequencing data from publicly available databases 
to identify new biomarkers for diagnosis and 
treatment, and to construct prognostic models or 
molecular classifications to predict clinical outcomes 
and improve the effects of immunotherapy and 
chemotherapy against various cancer types. Chen et 
al. established a predictive score related to the 
immune system for head and neck squamous cell 
carcinoma (HNSCC) [16]. It can accurately predict the 
clinical outcomes, immune escape, and ICI benefits in 
patients diagnosed with HNSCC. Zhang et al. [17] 
used RNA N6-methyladenosine-related genes to 
categorize patients with gastric cancer into different 
molecular subtypes and calculated a predictive index 
to predict survival and immunotherapy response in 
gastric cancer. Six immune classifications among 
various cancer types were determined in a previous 
investigation using TCGA data [18]: wound healing, 
interferon (IFN)-γ dominance, inflammation, 
lymphocyte depletion, immunologically quiet, and 
transforming growth factor-β dominance. The six 
immune classifications have been found to be related 
to the outcomes and immunological features of 
patients with cancer.  

This study aimed to evaluate the genetic 
alterations, predictive significance, and expression of 
TRGs. Taken together, based on the TRGs, we identi-
fied molecular subtypes and predictive signatures 
that possess the ability to accurately anticipate patient 
outcome, immune landscape, and treatment sensi-
tivity, and screened potential therapeutic biomarker 
candidates and drug molecules for clinical application 
in the treatment of CRC.  

Materials and Methods  
Collection and Analysis of Transcriptional and 
Clinical Data  

The Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov, TCGA-COAD, and 
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TCGA-READ projects) and GEO database 
(https://www.ncbi.nlm.nih.gov/geo/, ID: GSE39582, 
GSE17536, GSE17537, GSE29621, GSE38832, 
GSE45404, and GSE62080) were used to obtain 
transcriptional and clinical data for CRC patients from 
various publicly available datasets. iMvigor210 
(http://research-pub.gene.com/IMvigor210CoreBiol
ogies) is a group of urothelial carcinoma patients that 
contain complete follow-up information and 
immunotherapy effects after treatment with 
Programmed cell death 1 ligand 1 (PD-L1) blockade 
medication. TCGA-CRC, GSE39582, GSE17536, 
GSE17537, GSE29621, GSE38832, and iMvigor210 
contain full data on overall survival (OS), which were 
used to construct and verify our molecular 
classifications and prognostic signature. Two datasets, 
GSE45404 and GSE62080, which contain patients who 
underwent fluorouracil-based adjuvant chemothe-
rapy (ACT) and the iMvigor210 cohort, were used to 
assess the efficacy of the constructed signature in 
anticipating the response to ACT and immune check-
point inhibitor therapy in CRC. Pan-cancer informa-
tion from 32 tumor types was obtained from the USCS 
Xena website (http://xenabroswer.net/hub). 

Fragments per kilobase million (FPKM) 
information from TCGA-CRC was converted into 
transcription per million (TPM) using The R studio 
program (v1.4.1106; R tools for Statistical Computing, 
Vienna, Austria). Information from the GEO datasets 
was retrieved from the GPL570 platform (Affymetrix 
Human Genome U133 Plus 2.0 Array). RNA-seq 
information was further log-2 transformed, and batch 
effects of the combined datasets (TCGA-CRC and 
GSE39582) were removed using the sva R package in 
the ComBat algorithm. Patients diagnosed with CRC 
who had incomplete clinical or follow-up information 
were excluded. A flowchart of this investigation was 
drawn using Figdraw (www.figdraw.com). 

Genetic and Transcriptional Alterations to 
TRGs in CRC 

Thirty-three T-cell proliferation-related genes 
were identified in a recent study [15]. TCGA database 
was utilized to retrieve transcriptional mutation 
information, which was subsequently analyzed to 
determine the frequency of changes in copy number 
and the corresponding location data for the 33 TRGs. 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were done to 
in-depth study TRG-related biological functions and 
pathways utilizing R tools: “ggplot2”, “Bioconductor”, 
as well as “org.Hs.eg.db”. The Wilcoxon signed-rank 
test in the limma tool was used to compare TRGs 
expression between normal and tumor tissues. 
Moreover, the prognostic value and interactions 

among TRGs were assessed using KM and univariate 
Cox regression analyses.  

Consensus Clustering to Detect TRG Clusters 
Consensus clustering was performed to 

determine molecular classifications based on the 
expression values of the TRGs. By increasing the 
clustering variable k, the categorization exhibiting the 
most intragroup connections and the fewest inter-
group connections was determined. Then, principal 
component analysis (PCA) was utilized to differen-
tiate the two identified molecular classifications using 
the stats R tool. The KM method was used to examine 
the variations in survival time among TRG clusters 
and was compared using the log-rank test and the 
survival and survminer R tools. A comparison was 
made between the clinical variables of the TRG 
clusters, and differentially expressed genes (DEGs) 
between the two clusters were found using the criteria 
|log fold-change| > 1 and p < 0.05. Immunological 
cell infiltration and immunological-associated 
pathways in the TRG clusters were identified via gene 
set variation analysis (GSVA) and single-sample gene 
set enrichment analysis (ssGSEA) using the gsva R 
package. The expression of three well-known immune 
checkpoint genes, including PD-1, programmed cell 
death 1 ligand 1 (PD-L1), and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) in the 
TRG clusters was examined using the Wilcoxon 
signed-rank test and represented using violin plots. 
Uni-variate Cox regression analysis was used to 
identify the prognosis-related DEGs (PRDEGs). 

Classifying Patients into Gene Clusters Based 
on DEGs between TRG Clusters  

PRDEGs between TRG clusters were used to 
perform consensus clustering to classify patients with 
CRC into three distinct groups. Clinical features and 
TRG expression in the three gene clusters were 
analyzed using heatmaps, boxplots, and Wilcoxon 
signed-rank test. Survival times for gene clusters were 
analyzed utilizing KM approach, and the log-rank test 
was performed to examine them. PD-1, PD-L1, and 
CTLA-4 expression in the three gene clusters was also 
analyzed.  

Creation and Validation of the T Cell 
Proliferation-related Prognostic Signature 

DEGs were identified among three gene clusters. 
Based on these DEGs, least absolute shrinkage and 
selection operator (LASSO) regression and multi- 
variate cox regression analyses were performed to 
identify genes that could be used to construct a 
predictive signature utilizing the survival, survminer, 
and glmnet R packages. The formula used to calculate 
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the risk score was as follows: 

Risk score = , 
where n is the number of genes used in the signature 
construction and and express the regression 
coefficient and gene expression, respectively. Based 
on the risk score, individuals diagnosed with CRC 
were stratified into high- and low-risk groups. The 
study assessed the relationships between risk score, 
survival time, and status. Additionally, both 
univariate and multivariate Cox regression analyses 
were performed to identify the unique predictive 
variables in CRC patients using the risk score along 
with additional relevant clinical features. The 
efficiency of the T cell proliferation-related prognostic 
signature for predicting CRC patient survival was 
further verified in the training cohort and five 
independent cohorts (GSE17536, GSE17537, 
GSE29621, GSE38832, and iMvigor210) using the KM 
and receiver operating characteristic (ROC) methods. 
The C-index of the signature was calculated and 
compared to ten other published signatures for CRC 
[19-28]. Gene sets related to angiogenesis, epithelial to 
mesenchymal transition (EMT), and the cell cycle 
were obtained from a previous study [29], and these 
gene sets were applied to the z-score technique using 
the gsva R program. Moreover, the relationship 
between the risk score and z-score associated with 
malignant biological processes in pan-cancer was 
evaluated using Pearson’s correlation analysis.  

TME, MSI, Tumor Mutation Burden (TMB), 
and Cancer Stem Cell (CSC) Index Differences 
of the High- with Low-risk Groups  

The CIBERSORT algorithm was used to quantify 
infiltrating immunological cells in the CRC samples, 
and the Spearman technique was used to assess the 
association between the risk score and immunological 
cell abundance. The relationship between immuno-
logical cells and the 10 signature genes was also 
analyzed. The Wilcoxon signed-rank test was used to 
compare the variations in TME scores, such as 
stromal, immune, and ESTIMATE scores, between the 
high- and low-risk groups, and violin plots were used 
to visualize them. The TMB score, MSI status, and 
CSC index in both risk groups were examined using 
the Wilcoxon signed-rank test and the Spearman 
technique. 

Immune Checkpoints Expression, Tumor 
Immune Dysfunction and Exclusion (TIDE) 
Score, and Immune Cell proportion Score 
(IPS) in both High- and Low-risk Groups  

To assess the efficacy of the risk score in 

anticipating patient responses to ICI therapy, the 
expression of immunological checkpoint genes in the 
low- and high-risk groups was compared. The TIDE 
scores for patients were obtained from the TIDE 
website (https://tide.dfci.harvard.edu/), and a 
comparison was performed on the scores for the two 
risk groups to identify the likelihood of tumor 
immune escape. The IPSs for the CRC samples were 
retrieved from The Cancer Immunome Atlas (TCIA, 
https://tcia.at/) and were utilized to anticipate 
patient response to different ICI therapies, such as 
PD-1/PD-L1/PD-L2, CTLA-4, CTLA-4, and PD-1/PD- 
L1/PD-L2 blockers. In addition, a comparison was 
made between the IPSs of CRC samples in the high- 
and low-risk groups. Moreover, the clinical 
application of risk scores to predict ICI responses was 
explored using the iMvigor210 cohort to calculate 
complete response (CR), partial response (PR), stable 
disease (SD), and progressive disease (PD) values. 

Association of Risk Score with IC50 of 
Therapeutic Medicines 

IC50 is defined as the half-maximal inhibitory 
concentration of a therapeutic drug necessary to 
achieve 50% suppression of cancer cells. The IC50 
values of various therapeutic drugs, including 
5-fluorouracil, were compared between the high- and 
low-risk groups using the pRRophetic R tool. In the 
GSE45404 and GSE62080 datasets, patients diagnosed 
with CRC were subjected to fluorouracil-based ACT, 
and the risk scores between the non-response (NR) 
and response (R) groups in these two datasets were 
compared to measure the effectiveness of the risk 
score in anticipating patient responses to ACT. 

WGCNA Algorithm to Identify Key TRGs and 
for in vitro Validation via PCR 

WGCNA was performed to identify key TRGs 
according to the risk groups and the intersections 
among the identified 33 TRGs. A suitable power 
exponent was utilized to transform the adjacency 
matrix (AM) into a topological overlap matrix. 
Correlation analyses were performed to screen for the 
key modules that were most relevant to the risk 
groups. P-values were used to identify the most 
significant modules, and the intersection genes 
between these modules and 33 TRGs were defined as 
key TRGs. Expression levels of four key TRGs in 
different single cell types were evaluated using 
GSE108989 and GSE146771 datasets via TISCH 
database (http://tisch.comp-genomics.org/). qRT- 
PCR was performed on a normal colon cell line 
(NCM-460) and four CRC cell lines (HT-29, HCT-116, 
SW-480, and RKO) to validate the expression of key 
TRGs in CRC. Total RNA was extracted using TRIzol 
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reagent (Life Technologies, Carlsbad, CA, USA), and 
complementary DNA (cDNA) was synthesized using 
a PrimeScript RT kit (Vazyme, Nanjing, China). The 
amount of cDNA was evaluated using TB Green 
Premix Ex Taq II (GenStar, Guangdong, China) and a 
LightCycler480 System (Applied Biosystems, 
Waltham, MA, United States). The relative expression 
levels of the four key TRGs were measured using the 
2-ΔΔCt approach and normalized to that of GAPDH. 
The expression levels in different cell lines were 
compared using t-tests. The following primer 
sequences were used for the key TRGs: CDK1, 
forward: 5’-AAACTACAGGTCAAGTGGTAGCC-3’, 
reverse: 5’-TCCTGCATAAGCACATCCTGA-3’; 
BATF, forward: 5’-TATTGCCGCCCAGAAGAGC-3’, 
reverse: 5’-GCTTGATCTCCTTGCGTAGAG-3’; 
IL1RN, forward: 5’-CATTGAGCCTCATGCTCTGTT 
-3’, reverse: 5’-CGCTGTCTGAGCGGATGAA-3’; 
ITM2A, forward: 5’-ATCCTGCAAATTCCCTTC 
GTG-3’, reverse: 5’-CAGGTAAGCAGTCATTCCC 
TTT-3’; and GAPDH, forward: 5’-GGGAAGGTGAA 
GGTCGGAGT-3’, reverse: 5’-GGGGTCATTGATGGC 
AACA-3’. 

Screening Possible Therapeutic Drugs Based 
on Key TRGs 

To screen for possible medicinal drugs according 
to the four key TRGs, a list of drug molecules was 
determined using the Drug Signatures Database 
(DSigDB) via the Enrichr online website 
(https://maayanlab.cloud/Enrichr/). According to 
the adjusted p-value, the eight most significant drug 
molecules were identified as potential therapeutic 
drugs. Three-dimensional (3D) structures of the eight 
drug molecules were obtained from the PubChem 
website (https://pubchem.ncbi.nlm.nih.gov/). 

Cell Culture 
Normal human intestinal epithelial and CRC cell 

lines (NCM-460, HT-29, and HCT-116) were acquired 
from the American Typical Culture Center. Cells were 
incubated in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum 
(FBS; Lonsera, Austria) and 1% double antibody 
(streptomycin and penicillin) at 37 °C with 5% CO2. 

Western Blotting 
After treating with 50μM 7,8-benzoflavone for 48 

hours, protein extraction was conducted utilizing 
RIPA buffer (Beyotime, China) supplemented with 
protease and phosphatase inhibitors in HT-29 and 
HCT-116 cell lines. The Western blotting procedures 
adhered to established protocols as delineated in prior 
publications [30]. The primary antibodies, anti-CDK1, 
anti-IL1RN and anti-GAPDH, were procured from 
Zenbio, China. 

Cell Viability Assay 
In 96-well plates, HT-29 and HCT-116 cells were 

cultivated at a density of 3 × 103 cells/well and each 
treatment consisted of six replicates. Following cell 
adhesion to the plate wall, the experimental groups 
were subjected to a predesigned 7,8-benzoflavone 
concentration gradient (10, 25, 50, 75, 100, 125, 150, 
175, and 200 μM), whereas the control group was 
treated with dimethyl sulfoxide (DMSO) at the same 
concentrations. Following a 48h incubation at 37 °C, 
25 μL MTT solution was applied to all wells, and the 
samples were incubated for 1 h. Then, 100 μL DMSO 
was added to all wells. Five minutes later, a 
microplate analyzer was used to evaluate absorbance 
at 490 nm in each well. Differences in OD values at all 
concentrations were compared, and IC50 values were 
calculated using the GraphPad Prism software 
(version 9.4). 

Colony Formation Assay 
HT-29 and HCT-116 cells were cultured in 6-well 

plates at a density of 5 × 103 per well. The 
experimental and control groups were treated with 
7,8-benzoflavone at a concentration of 50 μM or an 
equal amount of DMSO. All samples were incubated 
in DMEM supplemented with 10% FBS and 1% 
double antibody. Each three days, the DMEM was 
refreshed, and 7,8-benzoflavone and DMSO were 
added to each well to maintain the drug 
concentration. After incubation for 10 days, adherent 
cells were preserved using methanol for 10 min and 
stained with 0.1% crystal violet for 15 min. Finally, 
each well was washed twice with peripheral blood 
smear (PBS). The number of clones was counted using 
ImageJ software and compared using t-tests and 
GraphPad Prism software (n = 3). 

Wound Healing Assay 
In 6-well plates, HT-29 and HCT-116 cells were 

seeded at a 1.5 × 106 cells/well. Following cellular 
adherence to the surface of 6-well plates, a scratch was 
made using the tip of a 200 μL pipette and the 
experimental and control groups were treated with 
7,8-benzoflavone at a concentration of 50 μM or an 
equal amount of DMSO, respectively. The cells were 
incubated in DMEM containing 2% FBS. Scratches 
were observed and photographed using a microscope 
at 0, 24, and 48 h after washing with PBS. Cell 
migration distances after 48 h were calculated using 
ImageJ software and compared using t-tests and 
GraphPad Prism (n = 3). 

Transwell Assay 
A suspension of 5 × 104 CRC cells, treated with 

or without 7,8-benzoflavone, was prepared in 200 μL 
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of serum-free DMEM and subsequently introduced 
into the top chamber of the Transwell. DMEM (600 μL 
DMEM with 10% FBS) was then applied to the lower 
compartments. Following 48h incubation, the cells 
situated in the lowermost part of the membrane were 
treated with methanol for fixation, followed by 
staining with 0.1% crystal violet. Five randomized 
versions of each well were imaged under a 
microscope. Relative cell counts were calculated using 
ImageJ and compared using t-tests and GraphPad 
Prism software (n = 5). 

Nude mouse tumor formation assay 
Five-week-old nude male BALB/c mice were 

obtained from the Model Animal Research Center of 
Nanjing University and housed in a specific 
pathogen-free (SPF) environment. The experimental 
protocol involving animal subjects was approved by 
the Animal Ethical Committee of Anhui Medical 
University, and all animal testing procedures were 
strictly conducted in compliance with the instructions 
prescribed by the Animal Center of Anhui Medical 
University. All experiments involving animals were 
conducted under the instructions of the ARRIVE 
Guidelines 2.0, the U.K. Animals (Scientific 
Procedures) Act, 1986 and associated guidelines. To 
induce tumorigenesis, 2 × 106 HCT116 cells were 
subcutaneously inoculated into the right flank of nude 
mice and monitored for tumor development. Tumor 
volume was evaluated as 1/2 × length × width × 
height. Once the tumor volume reached 100 mm3, 
experimental mice received 50 mg/kg 7,8- 
Benzovlavone (solubilized in a solution comprising 
10% DMSO, 10% Tween80, in addition to 80% NaCl) 
via injection into the tumor each two days, while 
control mice received an equivalent volume of 
vehicle. After 4 weeks, the mice were euthanized and 
the tumors were harvested for subsequent 
examination.  

Immunofluorescence staining 
To prepare the colonic tumor tissues from nude 

mice for histological analysis, The specimens were 
initially immersed in a solution of 10% formalin and 
subsequently immersed in paraffin. To prepare 
colonic tumor tissues from nude mice for histological 
analysis, the specimens were initially immersed in a 
solution of 10% formalin and subsequently immersed 
in paraffin. Subsequently, the tissue blocks were 
sliced into 5 μm slices and affixed onto adhesive 
slides. Subsequently, the slides were deparaffinized 
using xylene and ethanol and treated with distilled 
water. To retrieve antigens, sections were subjected to 
EDTA antigen repair. Subsequently, the slides were 
incubated at 37 °C for 30 min with 5% normal goat 

serum to prevent non-specific binding sites from 
occupying. The slides were incubated overnight at 
4 °C after addition of the primary antibody for Ki67 
(Abclonal, 1:50). After washing, the slides were 
incubated with secondary antibody in the dark at 
37 °C for 1h. Slices were counterstained with DAPI at 
room temperature in the dark for 10 min, followed by 
microscopic examination. 

Results 
Genetic and Transcriptional Changes to TRGs 
in CRC  

A flowchart of the investigation is shown in 
Figure 1. Table S1 shows the clinical data of the 
patients in all datasets. A recent study determined 
thirty-three TRGs (Table S2). The copy number 
variation (CNV) of TRGs in CRC was investigated 
(Figure 2A). ADA, AHCY, LIG3, ZNF830, LTBR, and 
MRPL51 showed widespread CNV increases, whereas 
DCLRE1B, BATF, SL10A7, FOSB, and HOMER1 
showed CNV reductions. Figure 2B illustrates the 
chromosomal positions of CNVs within TRGs in 
humans, and the incidence of somatic mutations in 
TRGs in patients was also measured (Figure S1). 
Then, GO and KEGG analyses were performed to 
identify significant biological processes (BP), cellular 
components (CC), molecular functions (MF), and 
pathways (Figure 2C). The present TRGs were prima-
rily associated with the BP of glycosyl compound 
metabolic processes, control of DNA-dependent DNA 
replication, and control of DNA replication. TRGs 
were correlated with the CC of chromosomes, 
telomeric regions, the cyclin-dependent protein 
kinase holoenzyme complex, and costameres, which 
are also implicated in the MF of cytokine activity, 
histone kinase activity, and bile acid transmembrane 
transporter activity. These TRGs participate in several 
pathways, including amphetamine addiction, human 
T-cell leukemia virus 1 infection, and the cytokine- 
cytokine receptor interactions. Among these, 27 TRGs 
were differentially expressed (p < 0.05); CXCL12, 
FOSB, AHNAK, MS4A3, CYP27A1, and ITM2A were 
downregulated, whereas the others were upregulated 
(Figure 2D). The interactions between the TRGs and 
their predictive significance were revealed by 
constructing a network (Figure 2E). The survival 
curves of prognosis-associated TRGs are shown 
(Figure S2). 

Identification of TRG Clusters Using 
Consensus Clustering 

The expression of the TRGs were used to 
perform a consensus clustering analysis and the 
patients with CRC were divided into two TRG 
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clusters (Figure 3A; Figure S3). Satisfactory 
separation between the two TRG clusters was 
observed after the PCA (Figure 3B). The KM curve 
showed that patients with TRG cluster A had a more 
favorable prognosis than those with TRG cluster B 
(Figure 3C). The relationship between the clinical 
characteristics, TRG cluster, and TRG expression is 
presented in a heatmap (Figure 3D). The ssGSEA 
results revealed that TRG cluster B had greater 
immune cell infiltration levels than TRG cluster A 
(Figure 3E). The GSEA demonstrated that the TRG 
cluster A exhibited enrichment in the pathways for 
aminoacyl tRNA biosynthesis and base excision 
repair. In addition, some cancer-associated pathways, 
such as the MAPK signaling pathway, were enriched 
in TRG cluster B (Figure 3F). Furthermore, TRG 
cluster B showed a greater expression of immune 
checkpoint genes, which includes PD-1 (Figure 3G, p 
< 0.001), PD-L1 (Figure 3H, p < 0.001), and CTLA-4 
(Figure 3I, p < 0.001). 

Classification of Patients into Gene Clusters on 
the basis of DEGs between TRG Clusters  

The DEGs between TRG clusters A and B were 
determined, and their expression profiles were used 
to divide the patients with CRC into three gene 
clusters (Figure S4). The associations between clinical 
characteristics, TRG clusters, gene clusters, and DEGs 
are shown in Figure 4A. DEG expression in TRGs is 
shown in a boxplot (Figure 4B). In addition, the 
overall survival time of patients with CRC within the 
three gene clusters was analyzed. The KM plot 
revealed that gene cluster B had the most favorable 
prognosis in the first four years, whereas gene cluster 
A exhibited the most favorable prognosis after five 
years. However, gene cluster C showed the shortest 
survival time at all time points (Figure 4C, p = 0.004). 
Furthermore, gene cluster A had the lowest 
expression of PD-1 (Figure 4D, p < 0.001), PD-L1 
(Figure 4E, p < 0.001), and CTLA-4 (Figure 4F, p < 
0.001), whereas immune checkpoints showed the 
highest expression in cluster C. 

 
 
 

 
Figure 1. Workflow of the present study. 
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Creation and Validation of the T Cell 
Proliferation-related Predictive Signature  

The DEGs among the gene clusters were further 
identified, LASSO and stepwise Cox analyses were 
performed to monitor PRDEGs that may be utilized to 
construct the predictive signature, and 10 signature 
genes were screened (SLIT3, KLF2, DUSP5, SCG2, 
ENPP2, CCL11, CXCL13, G0S2, CKMT2, and 
HEPACAM2). The processes for LASSO regression are 
shown in Figure 5A-B and the coefficient values of the 
multivariate Cox regression are shown (Figure 5C; 
Table S3). The risk score was measured in accordance 
with the signature gene expression and coefficient 
values. Patients with CRC were divided into high- 
and low-risk groups based on their risk score values. 
The Sankey diagram depicts the correlation between 
the risk score, TRG cluster, gene cluster, and survival 
status of patients diagnosed with CRC (Figure 5D). 
The risk scores for the two TRG clusters (Figure 5E) 
and three gene clusters (Figure 5F) are shown in the 
boxplots. Differentially expressed TRGs are shown in 
Figure 5G and the expression differences of the 10 
signature genes are shown in the heatmap (Figure 
5H). Patients with high-risk CRC exhibited a higher 
risk of mortality (Figure 5I). Univariate (Figure 5J, p < 

0.001) and multivariate (Figure 5K, p = 0.002) analyses 
demonstrated that the risk score may be utilized as a 
distinct predictive variable for patients with CRC. KM 
and area under curve (AUC) values were utilized to 
assess the efficacy of the risk score in predicting 
patient survival. The results for five independent 
validation cohorts, GSE17536 (Figure 6A, p = 0.009, 
1-year AUC = 0.624, 3-year AUC = 0.637, 5-year AUC 
= 0.630), GSE17537 (Figure 6B, p < 0.001, 1-year AUC 
= 0.774, 3-year AUC = 0.829, 5-year AUC = 0.810), 
GSE29621 (Figure 6C, p = 0.575, 1-year AUC = 0.745, 
3-year AUC = 0.631, 5-year AUC = 0.557), GSE38832 
(Figure 6D, p < 0.001, 1-year AUC = 0.842, 3-year 
AUC = 0.843, 5-year AUC = 0.851), and iMvigor210 
(Figure 6E, p = 0.007, 1-year AUC = 0.665, 3-year AUC 
= 0.575, 5-year AUC = 0.560), showed that patients 
with low-risk CRC exhibited a significantly longer 
survival duration than patients diagnosed with 
high-risk CRC and that the risk index had the ability 
to accurately anticipating patient survival. For the 
training cohort (TCGA + GSE39582), according to the 
KM curve, low-risk patients exhibited less favorable 
outcomes (p < 0.001), and the 1-, 3-, and 5-year AUC 
measures were 0.767, 0.739, and 0.741, respectively 
(Figure 6F). The meta-analysis results did not show 

 

 
Figure 2. Genetic and transcriptional changes to TRGs in CRC. (A) CNV of TRGs in CRC. (B) The chromosomal positions of CNVs within TRGs in humans. (C) Functional 
analyses of TRGs using GO and KEGG. (D) Twenty-seven TRGs were differentially expressed (p < 0.05); CXCL12, FOSB, AHNAK, MS4A3, CYP27A1, and ITM2A were 
downregulated, whereas the others were upregulated. (E) The interactions between the TRGs and their predictive significance were revealed by constructing a network. *p < 
0.05; **p < 0.01; ***p < 0.001. 
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any evidence of heterogeneity between the training 
and validation cohorts (Figure 6G). The C-index for 
the prognostic signature was calculated and 
compared to 10 published CRC signatures. These 
findings demonstrated that our signature was 
superior in predicting CRC prognosis (Figure 6H). 
Malignant features of angiogenesis, EMT, and cell 
cycle were quantified using gene sets via the z-score 

algorithm, and positive correlations were observed 
between risk score and angiogenesis (R = 0.67, p < 
0.0001) and EMT (R = 0.51, p < 0.0001) z-score, while 
risk score had an adverse association with cell cycle 
z-score (R = -0.24, p < 0.0001) in the overall pan-cancer 
cohort (Figure 7A), and positive correlations were 
also observed in most of the separate cancer types 
(Figure 7B-C).  

 
 
 

 
Figure 3. Identification of TRG clusters using consensus clustering. (A) The expression of the TRGs were used to perform a consensus clustering analysis and the patients with 
CRC were divided into two TRG clusters. (B) Satisfactory separation between the two TRG clusters was observed after the PCA. (C) The KM curve showed that patients with 
TRG cluster A had a more favorable prognosis than those with TRG cluster B (p = 0.040); (D) The relationship between the clinical characteristics, TRG cluster, and TRG 
expression is presented in a heatmap. (E) The ssGSEA results revealed that TRG cluster B had greater immune cell infiltration levels than TRG cluster A. (F) TRG cluster B was 
enriched in cancer-associated pathways pathways. (G-H) Expression levels of PD-1, PD-L1, and CTLA-4 in two clusters. **p < 0.01; ***p < 0.001. 
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Figure 4. Identification of gene clusters based on DEGs. (A) Heatmap showed the association between three gene cluster and clinical features. (B) Expression levels of DETRGs 
in three gene clusters. (C) The KM curve shows that patients in cluster A had the longest survival time, whereas patients in cluster C had the worst prognosis (p = 0.004). (D-F) 
Expression levels of PD-1, PD-L1, and CTLA-4 in three gene clusters. *p < 0.05; **p < 0.01; ***p < 0.001. 

 
Figure 5. Development of the TRGs-related prognostic signature. (A-B) LASSO and stepwise Cox analyses were performed to monitor PRDEGs that may be utilized to 
construct the predictive signature. (C) 10 signature genes were screened, and the coefficient values of the multivariate Cox regression are shown. (D) The Sankey diagram 
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depicts the correlation between the risk score, TRG cluster, gene cluster, and survival status of patients diagnosed with CRC. (E-F) The risk scores for the two TRG clusters 
and three gene clusters are shown in the boxplots. (G) Differentially expressed TRGs between high- and low-risk groups are shown. (H) The expression differences of the 10 
signature genes. (I) Patients with high-risk CRC exhibited a higher risk of mortality. Univariate (J) and multivariate (K) analyses demonstrated that the risk score may be utilized 
as a distinct predictive variable for patients with CRC. *p < 0.05; **p < 0.01; ***p < 0.001. 

 

 
Figure 6. Validating the accuracy of the risk score in predicting patient outcome. (A-F) The results for five independent cohorts showed that patients with low-risk CRC 
exhibited a significantly longer survival duration than patients diagnosed with high-risk CRC and that the risk index had the ability to accurately anticipating patient survival. (G) 
The meta-analysis results did not show evidence of heterogeneity between the training and validation cohorts. (H) C-index of our signature showed a superior performance at 
predicting CRC prognosis compared with other 10 published signatures. 
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Figure 7. The risk score was correlated with malignant features in pan-cancer (A) and most of the tumor types (B-C). 

 

TME, Tumor Mutation Burden (TMB), 
Microsatellite Instability (MSI), and Cancer 
Stem Cell (CSC) Index between the High- and 
Low-risk Groups  

The correlation between the risk score and 
immune cell infiltration is shown in Figure 8A. The 

results revealed that 10 forms of immune cells are 
associated with the risk score: naive B cells, M0 and 
M1 macrophages, activated and resting mast cells, 
neutrophils, plasma cells, activated memory CD4+, 
CD8+, and follicular helper T cells. The association of 
signature genes with immune cell abundance is 
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shown in Figure 8B. The high-risk group was 
associated with a greater stromal score (Figure 8C) 
and reduced TMB (Figures 8D-E). Figure 8F shows 
the MSI status percentages in the two studied groups. 
The risk score was negatively associated with the CSC 
index (Figure 8G). 

Immune Checkpoints Expression, TIDE Score, 
and IPS in the High- and Low-risk Groups 

Subsequent analysis investigated the expression 
of immune checkpoint genes in both high- and 
low-risk groups. The results demonstrated that the 
low-risk group displayed heightened expression 

 
 
 

 
Figure 8. Evaluating the tumor microenvironment in two risk groups. (A) The correlation between the risk score and immune cell infiltration is shown. (B) The association of 
signature genes with immune cell abundance is shown. (C) Immune-related scores in two risk groups. TMB (D-E), MSI (F), and CSC (G) in high- and low-risk groups. *p < 0.05; 
**p < 0.01; and ***p < 0.001. 
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patterns of immune checkpoint genes, including, but 
not limited to, PD-1 (PDCD1), PD-L1 (CD274), LAG-3, 
and CTLA-4 (Figure 9A, p < 0.05), demonstrating that 
patients with low-risk CRC could have a more 
favorable response to ICI treatment. The TIDE score 
can be used to predict the likelihood of immune 
evasion. The study findings indicated that there was 
no significant variation in the overall TIDE scores 
(Figure 9B, p > 0.05) or immune dysfunction scores 
(Figure 9C, p > 0.05) between the two groups. 
However, Higher immune exclusion scores in the 
high-risk group (Figure 9D, p < 0.001) suggested a 
greater chance of immune exclusion and a poor 
reaction to ICI blockade therapy. A comparison was 
made between the IPSs for the two risk groups to 
further explore the CRC patient response to different 
types of ICI blockade treatment. The IPSs of patients 
who did not receive ICI therapy were almost equal in 
the two risk groups (Figure 9E), whereas low-risk 
patients who received PD-1/PD-L1/PD-L2, CTLA-4, 
or CTLA-4 and PD-1/PD-L1/PD-L2 blockade 
treatment had significantly greater IPSs (Figures 
9F-H, p < 0.01), indicating a better response to ICI 
therapy. The iMvigor210 cohort was used to validate 
the efficacy of the risk score in anticipating ICI 
responses. Patients with CR/PR were more likely to 
obtain a lower risk score, whereas patients with a 
high-risk score had a higher probability of having 
SD/PD (Figure 9I, p < 0.05). 

Association of Risk Score with the IC50 of 
Therapeutic Medicines  

We compared and analyzed the IC50 values of 
the treatment drugs in the two groups. The low-risk 
group exhibited lower IC50 values for 13 drug types 
(Figures 9J-V, p < 0.001), including 5-fluorouracil. 
GSE45404 and GSE62080 contained information on 
CRC patient responses to fluorouracil-based ACT. 
The results demonstrated that NR patients had higher 
risk scores in the GSE45404 (Figure 9W, p < 0.01) and 
GSE62080 (Figure 9X, p < 0.05) cohorts, indicating that 
low-risk patients had a greater response to 
fluorouracil-based ACT. 

Identification and Validation of Key TRGs 
Using WGCNA and qRT-PCR  

Co-expression analysis using the WGCNA 
algorithm was performed to identify the key modules 
with the greatest relationship to the risk score. Seven 
modules were chosen as the soft threshold (Figure 
10A), and 18 modules were obtained in total (Figure 
10B). Nine modules were strongly related to the risk 
score, whereas the other nine modules were inversely 
related to the risk score (Figure 10C). Intersection 
genes between the four most significant modules and 

33 TRGs were defined as key TRGs, and CDK1, BATF, 
IL1RN, and ITM2A were identified (Figure 10D). The 
four TRGs were mainly expressed in T cells, especially 
in proliferative T cells (Figure S5). The expression of 
key TRGs in normal colon (NCM-460) and CRC 
(HT-29 and HCT-116) cell lines was validated using 
qRT-PCR, as shown in Figure 11E. CDK1, BATF, and 
IL1RN expression was higher in HT-29 and HCT-116 
cells than in NCM-460 cells, whereas ITM2A was 
significantly downregulated in both cell lines (Figure 
10E). 

Screening Potential Therapeutic Drugs Based 
on Key TRGs 

A list of drug molecules related to these four key 
TRGs is provided in Table S4. The eight most 
significant drug molecules and their corresponding 
3D structures are presented: 7,8-benzoflavone (Figure 
10F), bexarotene (Figure 10G), fenofibrate (Figure 
10H), roscovitine (Figure 10I), amifostine (Figure 10J), 
deptropine (Figure 10K), cinnarizine (Figure 10L), 
and scopolamine (Figure 10M). Results of Western 
blot showed that 7,8-benzoflavone significantly 
decreased protein expression levels of CDK1 and 
IL1RN in HT29 (Figure 10N) and HCT116 (Figure 
10O) cell lines. 

Validating the Effects of 7,8-benzoflavone on 
CRC Proliferation and Migration via in vitro 
Experiments  

The results of the MTT assay on HT-29 and 
HCT-116 CRC cells (Figure 11A) revealed that 
7,8-benzoflavone significantly inhibited the viability 
of CRC cells. Based on the fitting formula, the IC50 
values of 7,8-benzoflavone for HT-29 and HCT-116 
were 63.28 μM and 67.16 μM at 48 h of therapy, 
respectively. The experimental group showed 
reduced colony-forming abilities compared with the 
control group for HT-29 and HCT-116 CRC cells 
(Figures 11B-C). The findings of the wound healing 
assay suggested that 7,8-benzoflavone reduced the 
migratory distance of CRC cells compared to that of 
control-treated cells (Figures 11D-E). Furthermore, 
the results of the transwell assay indicated that 
7,8-benzoflavone significantly reduced CRC cell 
migration (Figures 11F-G).  

Validating the Effects of 7,8-benzoflavone on 
CRC Proliferation via in vivo Experiments  

BALB/c nude mice were subcutaneously 
injected with HCT116 cells to create xenograft tumors. 
Subsequently, mice were administered the vector or 
7,8-Benzoflavone at 2-day intervals for a duration of 4 
weeks once the tumors had attained an average 
volume of 100 mm3. The findings of our study 
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demonstrated a significant reduction in tumor size 
(Figure 11H-I), tumor weight (Figure 11J), and tumor 
volume (Figure 11K). Further analysis of tumor 
tissues revealed a noticeable decrease in the count of 
Ki67 positive cells in 7,8-benzoflavone-treated mice 

compared to that in the control group (Figure 11L). 
These findings indicate that 7,8-benzoflavone could 
potentially suppress the proliferation of CRC cells in 
vivo by downregulating Ki67 expression. 

 

 
Figure 9. Validating therapeutic benefits in patients using the risk score. (A) The low-risk group displayed heightened expression patterns of immune checkpoint genes. (B-D) 
Predicted TIDE score in high- and low-risk groups. (E-H) IPSs in high- and low-risk groups are shown in violin plots. (I) Response to PD-L1 blockade therapy between high- and 
low-risk groups. (J-V) Low-risk group had higher sensitivities to variable therapeutic drugs. Patients with no response to fluorouracil-based ACT had higher risk scores in both 
the GSE45404 (W) and GSE62080 (X) cohorts. ns: no significance; *p < 0.05; **p < 0.01; and ***p < 0.001. 
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Figure 10. Identification and Validation of Key TRGs Using WGCNA and qRT-PCR, and screening potential therapeutic drugs based on key TRGs. (A-B) Seven was selected 
as the soft threshold, and 18 modules in total were obtained. (C) Nine modules were positively correlated with the risk score, whereas the other nine modules were negatively 
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related to the risk score. (D) Intersection genes between the four most significant modules and the 33 TRGs were defined as key TRGs, and CDK1, BATF, IL1RN, and ITM2A were 
identified. (E) The CDK1, BATF, and IL1RN expression were higher in the HT-29 and HCT-116 cell lines than in the NCM-460 cell line, whereas ITM2A was significantly 
downregulated in the HT-29 and HCT-116 cell lines. The eight most significant drug molecules and their corresponding 3D structures are also presented, which are 
7,8-benzoflavone (F), bexarotene (G), fenofibrate (H), roscovitine (I), amifostine (J), deptropine (K), cinnarizine (L), and scopolamine (M). 7,8-benzoflavone significantly 
decreased protein expression levels of CDK1 and IL1RN in HT29 (N) and HCT116 (O) cell lines. *p < 0.05; **p < 0.01; and ***p < 0.001. 

 

 
Figure 11. Using in vitro and in vivo experiments to validate the effects of 7,8-benzoflavone on CRC proliferation and migration. (A) The results of the MTT assay on HT-29 and 
HCT-116 CRC cells. (B-C) The experimental group showed decreased colony-forming abilities compared to the control group for both HT-29 and HCT-116 CRC cells. (D-E) 
Wound healing assay suggested that 7,8-benzoflavone decreased the migratory distance of CRC cells compared to that of cells treated with the control. (F-G) Transwell assay 
indicated that 7,8-benzoflavone significantly impaired the migration ability of CRC cells. (H-I) Images depicting tumor growth in the human CRC cells, HCT116 (2×106 cells), 
injected into nude mice (n=6). (J) Tumor weights and (K) tumor volumes in different groups. (L) Immunofluorescence staining for Ki67 in tumor tissues from nude mice with 
or without 7,8-benzoflavone treatment (Scale bar: 20 μm). ***p < 0.001. 
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Discussion 
In a previous study, 33 TRGs were identified 

using genome-scale screening [15]. However, the 
ability of these TRGs to predict CRC patient prognosis 
and treatment sensitivity and the potential for 
screening new therapeutic biomarker candidates and 
drug molecules has not been examined. Among these 
TRGs, some have already been shown to be related to 
CRC; for example, CXCL12 is inversely expressed and 
correlated with migration and invasion in CRC cell 
lines [31]. CLIC1 is significantly overexpressed in CRC 
tissues compared to normal tissues and could serve as 
a potential biomarker [32]. Its overexpression of RAN 
is related to poor clinical outcomes in patients with 
CRC [33], and CDK1 has been identified as a potential 
indicator of tumor recurrence in stage II colon cancer 
[34]. The expression, genetic and transcriptional 
alterations, and predictive variables of the TRGs were 
examined. The findings indicated that the majority of 
these TRGs exhibited different expression levels in 
CRC and were correlated with patient survival.  

Based on TRGs expression, patients with CRC 
were divided into two TRG clusters. TRG cluster B 
showed higher survival rates and immune cell 
infiltration values, and was positively related to 
CRC-related pathways, including the MAPK [35], 
JAK-STAT [36], and chemokine [37] signaling 
pathways. The response to anti-checkpoint blockade 
therapy can be influenced by tumor-infiltrating 
immune cells, and upregulation of some 
immunological checkpoint genes, such as PD-1 and 
CTLA-4, can be due to tumor-infiltrating CD4+ T cells 
[38]. The expression of PD-1, PD-L1, and CTLA-4 in 
the TRG clusters was explored, and the results 
showed that these three immune checkpoints had 
higher expression in TRG cluster B than in cluster A. 
PRDEGs between the two TRG clusters were further 
determined, and the patients with CRC were split into 
three gene clusters based on PRDEGs expression. The 
prognoses of CRC patients in the three gene clusters 
were significantly different. Gene cluster A exhibited 
the lowest expression of PD-1, PD-L1, and CTLA-4, 
whereas immunological checkpoint expression was 
the highest in cluster C. 

LASSO and stepwise Cox analyses were 
conducted to determine genes that could be utilized to 
construct the predictive signature, and 10 signature 
genes were identified and utilized to measure the risk 
score. Among these 10 signature genes, KLF2 could 
inhibit cell growth in a human CRC cell line [39], 
SCR2 was determined as a predictive biomarker and 
was associated with immunological cell infiltration in 
CRC [40], and CXCL13 was associated with poor 
survival in advanced CRC patients and may regulate 
5-fluorouracil resistance [41, 42]. The risk score was 

used to classify the patients into two groups. The 
low-risk group exhibited a significant increase in the 
overall survival time relative to the high-risk group. 
These results also showed that the risk score has the 
potential to serve as a distinct predictive biomarker 
for CRC. The effectiveness of the risk score in 
predicting survival was assessed throughout multiple 
cohorts, and survival curves and ROC analysis 
indicated that the risk score had a consistent 
prediction ability in various cohorts. A meta-analysis 
showed no evidence of heterogeneity among the 
cohorts. The risk score was further compared with 10 
published CRC signatures and revealed an improved 
efficiency in predicting patient survival. We also 
discovered that the risk score was strongly associated 
with angiogenesis and EMT in various tumor types, 
suggesting that an elevated risk score is typically 
associated with increased angiogenesis and increased 
aggressive tumor cells. 

The TME is a critical factor in tumor 
development, progression, and drug resistance [43]. 
The association of risk score with tumor-infiltrating 
immunological cells was measured. Ten forms of 
immunological cells were connected to the risk score, 
and the signature genes revealed strong correlations 
with different types of immune cells. The low-risk 
group exhibited a reduced stromal score, and 
immunogenomic analysis can provide an immune 
score that may serve as an indicator of the 
effectiveness of immunotherapy and chemotherapy 
[44], revealing that the risk score has the potential to 
be utilized to anticipate treatment response in patients 
with CRC. TMB levels in the low-risk group were 
significantly higher than those in the high-risk group, 
suggesting that immunotherapy may be more 
beneficial for patients with low CRC scores. MSI is 
attributed to various mismatch repair mechanisms 
that are significantly linked to the response to PD-1 
blockade treatment [45]. The percentage weight of 
MSI status was determined for the two groups. CSCs 
constitute a distinct population of neoplastic cells that 
contribute to tumor metastasis, relapse, and resistance 
to therapeutic interventions. These cells have the same 
self-renewal and differentiation capacities as normal 
stem cells [46]. The risk score correlated with the CSC 
index, suggesting that the risk score may be linked to 
the occurrence and development of CRC. To examine 
the feasibility of utilizing risk scores as a predictive 
tool for immunotherapy response, an investigation 
was carried out to compare the expression patterns of 
different immune checkpoints between the two 
groups. The outcomes indicated that the low-risk 
group displayed greater immunological checkpoint 
expression. Compared to the low-risk group, the 
high-risk group had a higher exclusion score, 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1252 

suggesting an increased possibility of immune escape. 
Furthermore, Patients categorized as low-risk exhibi-
ted a statistically significant increase in IPS compared 
to patients classified as high-risk who received ICI 
therapy. These results suggest that immunotherapy 
may be more efficient in low-risk patients. The 
iMvigor210 cohort was used to verify this finding, 
and the outcomes demonstrated that CR/PR patients 
had significantly decreased risk scores compared to 
patients with SD/PD, demonstrating that the risk 
score could effectively differentiate between cold and 
hot tumors and assist in precise CRC treatment 
mediation. The IC50 values of various therapeutic 
drugs were compared to determine their sensitivity to 
drugs in the two risk groups. The low-risk group had 
reduced IC50 values and exhibited greater sensitivity 
to the administered drugs, including 5-fluorouracil. 
We used the GSE45404 and GSE62080 cohorts to 
validate patient response to fluorouracil-based ACT. 
The results successfully validated our finding that 
patients who responded to fluorouracil-based ACT 
had lower risk scores.  

The WGCNA algorithm was used to screen for 
key TRGs, among which CDK1, BATF, IL1RN, and 
ITM2A were identified as key TRGs. qRT-PCR was 
performed to determine the expression of the four key 
TRGs in the normal human colon and CRC cell lines. 
CDK1, BATF, and IL1RN were upregulated in CRC 
cell lines compared to that in normal colon cell lines, 
whereas ITM2A showed significantly lower 
expression in CRC cells. Based on the four TRGs, a list 
of potential therapeutic drug molecules was screened 
and the 3D structures of the eight most significant 
drugs were determined. 7,8-benzoflavone, also called 
alpha-naphthoflavone, was identified as the most 
significant drug molecule. Human T cells are 
extremely sensitive to inhibition of mitogenesis by 
polycyclic aromatic hydrocarbons, and 7,8-benzofla-
vone can counteract this effect [47]. In addition, 
7,8-benzoflavone can suppress proliferation and 
induce apoptosis in human cervical cancer cells (HeLa 
cells) [48]. It can also hinder colon cancer 
clonogenicity [49]. To further explore the effects of 
7,8-benzoflavone on CRC, MTT, wound healing, 
Transwell, colony formation assays, and in-vivo 
experiments were performed. The results indicated 
that 7,8-benzoflavone could inhibit the proliferation 
and migration of CRC cells, indicating its potential as 
a drug molecule for CRC therapy. 

Our study was subject to certain constraints. 
First, our analysis was conducted using publicly 
available datasets and retrospectively gathered 
samples, which could have resulted in an inherent 
selection bias. Second, the mechanisms by 7,8-Benzo-
flavone affects CRC proliferation and migration 

require further exploration. Finally, some meaningful 
clinical characteristics, including surgery and tumor 
markers, were excluded from this investigation. 
Therefore, additional clinical studies are required to 
validate our findings. 

 Conclusion 
Overall, T-cell proliferation-based molecular 

subtypes and predictive models can be utilized to 
predict patient outcomes, immunological landscape, 
and treatment sensitivity to CRC. Novel biomarker 
candidates and potential therapeutic drugs were 
identified and verified by in vitro experiments. 
However, additional in vivo experiments should be 
performed and clinical cases should be collected to 
further confirm our results. 
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adjacency matrix; cDNA: Complementary DNA; 
DSigDB: Drug Signatures Database; 3D: Three- 
dimensional; DMEM: Dulbecco’s modified Eagle’s 
medium; DMSO: Dimethyl sulfoxide; PBS: Peripheral 
blood smear; SPF: Specific pathogen-free; CNV: Copy 
number variation; BP: Biological processes; CC: 
Cellular components; MF: Molecular functions; AUC: 
Area under curve. 
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