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Abstract 

Background: Worldwide, gastric cancer (GC) remains intractable due to its poor prognosis and high 
morbidity and mortality. Disulfidptosis is a novel kind of cell death mediated by abnormal accumulation of 
intracellular disulphides. The correlation between disulfidptosis and GC is still unknown. Therefore, it is 
necessary to elucidate the pathogenesis and mechanism of disulfidptosis and GC for clinical diagnosis and 
intervention. 
Methods: RNA-sequencing data from several public data portals and clinical samples were collected. We 
compared the expression levels of four key genes of disulfidptosis, including SLC7A11, SLC3A2, RPN1, 
and NCKAP1, in GC and selected prognostic genes to build a novel GC prognosis-related nomogram 
model. The biological functions and immune landscape of the identified prognostic genes were explored.  
Results: Overexpressed NCKAP1 and SLC7A11 were prognostic disulfidptosis-related genes in GC. 
We combined these genes and several clinicopathological factors to build a prognostic nomogram model 
for GC. Meanwhile, the ROC curves showed that NCKAP1 and SLC7A11 were promising biomarkers 
for GC screening. The biological and cellular functions were focused on actin activities, GTPase and 
immunoreaction. The tumour immune microenvironment and immune therapy targets were identified. 
Competing endogenous RNA network was built to explore the downstream regulatory mechanisms. 
Finally, the elevated NCKAP1 and SLC7A11 expression in GC was validated via qRT-PCR in a cell line and 
tissue line. 
Conclusion: In conclusion, NCKAP1 and SLC7A11 are promising prognostic and diagnostic biomarkers 
for GC that correlate with the activities of actin, energy metabolism of GTPase, immune infiltration and 
immunotherapy. 
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1. Introduction 
Gastric cancer (GC) is a relatively common 

digestive tract malignancy with the fourth highest 
incidence and mortality rate worldwide[1]. GC lacks 
typical symptoms and signs at an early stage, so most 
patients are diagnosed in the advanced stage with 
lymph node and distal invasion[2, 3]. The detailed 
molecular biological mechanisms of GC initiation and 
development are poorly understood. As one of the 
emerging breakthroughs for cancer therapy, there are 

still no available and effective targets for 
immunotherapy[4]. Hence, the prognosis of GC is 
always poor, with a low five-year survival rate of 
approximately 20%[5]. It is urgent to explore a 
satisfactory diagnostic and prognostic tool to guide 
gastric cancer therapy and improve clinical outcomes. 

Disulfidptosis is a novel kind of cell death 
mediated by abnormal accumulation of intracellular 
disulphides in which glucose transporter inhibitors 
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induce disulfidptosis in glioma cells and suppress 
tumour growth, suggesting a potential clinical 
application and treatment strategy[6]. In addition, it 
has been shown that SLC7A11, SLC3A2, RPN1, and 
NCKAP1 are the key genes required for the 
progression of disulfidptosis[6]. To date, the clinical 
significance and value of disulfidptosis-related genes 
are unknown, so it is necessary to assess the roles of 
these genes in gastric cancer. 

Therefore, we developed and validated a 
prognostic nomogram and combination diagnosis 
model for disulfidptosis-related genes in this study. 
We further investigated the competing endogenous 
RNA (ceRNA) regulatory mechanisms, biological 
function, immune microenvironment and immuno-
therapy-related drugs. We aimed to illustrate the 
clinical value of disulfidptosis-related genes for 
improving the distal outcomes of GC patients and 
characterize the immune landscape to provide novel 
immunotherapy targets for clinical application. 

2. Materials and methods 
2.1 Public database retrieval and clinical data 
acquisition 

We completely downloaded the clinical and 
pathological information of gastric cancer and the 
RNA sequencing (RNA-seq) data collected by The 
Cancer Genome Atlas (TCGA) database (https:// 
genome-cancer.ucsc.edu/) and normalized RNA-seq 
data from the Genotype-Tissue Expression (GTEx) 
data portal (https://www.gtexportal.org/home/ 
index.html). Two human GC cell lines (SGC-7903 and 
MGC-803) and the immortal human stomach cell line 
GES-1 were obtained from the Shanghai Institute of 
Biochemistry and Cell Biology, Chinese Academy of 
Sciences, China. Clinical samples such as GC tissues 
and paired adjacent nontumorous tissues (5 cm away 
from the edge of the tumour) were collected from 30 
patients who received gastrectomy from the Affiliated 
Hospital of Medical School of Ningbo University, 
China, between 2022 and 2023. All patients signed 
informed consent forms, and this study was approved 
by the Ethics Committee of the Affiliated Hospital of 
Medical School of Ningbo University (No. 
KY20220101). 

2.2 Distinguishingly expressed and prognostic 
disulfidptosis-related gene identification 

We first compared the expression levels of 
disulfidptosis-related genes in gastric cancer between 
the TCGA cohort and normal tissues in the GTEx 
cohort using t tests or Wilcoxon rank-sum tests. The 
associations of the expression level of disulfidptosis- 
related and Mismatch Repair Gene (MMR) were 

examined in TCGA cohort [7]. The CBio Cancer 
Genomics Portal (http://cbioportal.org) was used to 
explore multidimensional alterations in disulfidp-
tosis-related genes in TCGA GC samples [8]. The 
Kaplan–Meier method was used to analyse the GC 
survival data from this cohort via R software (version 
4.2.1) and the R package survival v 3.3.1. Univariate 
regression and multivariate regression were utilized 
to assess significant clinical prognostic factors. The 
results of the multivariable model were shown as 
forest plots via the forest plot function in R software. 
The risk score model was constructed by the sum of 
each prognostic risk factor with the following 
formula: risk score = expression level of Gene 1 × β1 + 
expression level of Gene 2 × β2 + … + expression level 
of Gene n × βn [9]. All of the patients in the TCGA 
cohort were computed via the prognostic 
performance of the risk score model. 

2.3 Construction and validation of the 
disulfidptosis-related prognostic nomogram 
model 

The risk factors in the multivariate regression 
and risk score model were incorporated into the 
prognostic nomogram model. The 1-, 3- and 5-year OS 
overall survival time (OS) prediction nomogram 
model was established by the R packages survival 
[3.3.1] and rms [6.3-0] in R software. A calibration 
curve was obtained, and the line on the diagonal 
45-degree line suggested an ideal nomogram [10]. 
Decision curve analysis (DCA) was also performed to 
assess the clinical net benefit [11]. 

2.4 Assessment of diagnostic values of 
disulfidptosis-related genes 

The TCGA cohort and receiver operating 
characteristic (ROC) curve analysis were used to 
evaluate the diagnostic values of disulfidptosis- 
related genes. Then, the GTEx cohort was added to 
validate the diagnostic effectiveness. Combination 
diagnosis was performed to improve the diagnostic 
values. 

2.5 Biological function analysis of prognostic 
disulfidptosis-related genes 

The GeneMANIA prediction server is a web 
portal for gathering interactive genes and drawing 
biological network integration for gene prioritization 
[12]. The interactive genes were chosen to build a 
protein‒protein interaction (PPI) network via STRING 
11.5, an online database for searching and construct-
ing organism-wide protein association networks [13]. 
KEGG pathway enrichment analysis and gene 
ontology (GO) classification were performed to 
explore the biological functions of the PPI network via 
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the R packages “clusterProfiler” and “ggplot2” 
[14-17]. A p value < 0.05 represents a statistically 
significant difference. 

2.6 Immune infiltration landscape analysis 
 The correlations between the expression level of 

prognostic disulfidptosis-related genes and immune 
cell infiltration were analysed by R packages “GSVA 
(1.46.0)” and “estimate (1.0.13)” with the default 
parameters [18]. The Deeply Integrated Single-Cell 
Omics data (DISCO, https://www.immunesinglecell 
.org/) contained comprehensive collections of single- 
cell RNA-seq datasets of the tumour microenviron-
ment that was used to detect the purity and immune 
infiltration of GC [19]. TISIDB (http://cis.hku.hk/ 
TISIDB/index.php), an online web portal generating 
multiple heterogeneous data types, was applied to 
explore immune system interactions and related 
drugs [20]. Pearson's correlation analysis was 
performed to determine the association between the 
expression level of genes and indicators (P <0.05). 

2.7 Construction of competing endogenous 
RNA regulatory network  

MicroRNAs (miRNAs) of disulfidptosis-related 
genes from four prediction databases, including 
DIANA-microT 2023 (http://diana.imis.athena- 
innovation.gr/DianaTools/index.php?r=microT_CD
S/index) [21], TarBase v.8 (https://dianalab.e- 
ce.uth.gr/html/diana/web/index.php?r=tarbasev8) 
[22], miRDB (http://mirdb.org/miRDB/) [23], and 
miRWalk (http://mirwalk.umm.uni-heidelberg.de/). 
Target miRNAs were defined as miRNAs found in all 
four databases [24]. Whereafter, target miRNAs were 
input into mirDIP database (http://ophid.utoronto 
.ca/mirDIP/index_confirm.jsp) and the “Bidirec-
tional” mode was used to filter the very high 
confidence RNAs [25]. All of twenty data sources 
were chosen and three or more of the programs as 
well as the top 1% of the confidence class genes (Very 
High) were considered as possible target genes. 
LncBase V.3 (https://diana.e-ce.uth.gr/lncbasev3) 
helped us to find the long non-coding RNAs 
(lncRNAs) targeted to the miRNAs [26]. LncRNAs 
with direct validation and at least 3 experiments 
validation were deemed as target lncRNAs. The 
potential correlations between RNA binding proteins 
and mRNAs were acquired from starBase (https:// 
rnasysu.com/encori/index.php) [27].  

2.8 RNA isolation and quantitative real-time 
PCR (qRT-PCR) 

All of the RNA was extracted from tissue and 
plasma using TRIzol reagents and TRIzol LS reagents 
(Ambion, Carlsbad, CA, USA) in this study. Total 

RNA was used as a template and reverse transcribed 
to cDNA using a GoScript Reverse Transcription (RT) 
System (Promega, Madison, WI, USA) based on the 
manufacturer’s instructions [28]. qRT-PCR was 
applied with GoTaq qPCR Master Mix (Promega) on 
the basis of the manufacturer’s instructions on an 
Mx3005P Real-Time PCR System (Stratagene, La Jolla, 
CA, USA) repeated twice. The reaction conditions 
were as follows: denaturation at 95 °C for 15 s, 
annealing at 50 °C for 30 s, and extension at 72 °C for 
30 s for 40 cycles, followed by extension at 72 °C for 7 
mins. All of the primers were synthesized by Sangon 
Biotech (Shanghai, China) and the sequences of the 
primers were as follows: NCKAP1: forward, 
5'-TCCTAAATACTGACGCTACAGCA-3', reverse, 
5'-GCCTCCTTGCATTCTTATGTC-3'. SLC7A11: 
forward, 5'-TTACCAGCTTTTTTACGAGTCT-3', 
reverse, 5'-GTGAGCTTGCAAAAGGTTAAGA-3. 
GAPDH: forward, 5'-ACCCACTCCTCCACCTT 
TGAC-3', reverse, 5'-TGTTGCTGTAGCCAAATTC 
GTT-3'. The fold change of targeted genes was 
standardized via the ΔCt method (ΔCt = Ctgene - 
CtGAPDH), in which a higher ΔCt suggests a lower 
expression level [29]. The ΔΔCt method (ΔΔCt = ΔCtGC 

cell - ΔCtGES-1) was used to compare expression levels in 
GC cell lines to calculate relative expression, and a 
higher 2-ΔΔCt value represents a higher relative 
expression level [30]. 

2.9 Statistical analysis 
Analyses in this study were used R software 

(version 4.2.1), cytoscape (version 3.8.0) or GraphPad 
(version 8.02), and their support packages as 
mentioned before. P<0.05 was considered significant. 

3. Results 
3.1 Disulfidptosis-related genes were 
differentially expressed in GC 

 The RNA-Seq data of 414 GC tissues and 36 
para-carcinoma tissues were extracted from the 
TCGA database, and 174 normal tissues were 
downloaded from the GTEx database. Our results 
showed that NCKAP1, RPN1, SLC3A2, and SLC7A11 
were consistently overexpressed in GC tissues 
(P<0.001) in Figure (Fig. 1A). Co-expression analysis 
showed that these genes were significantly elevated, 
suggesting the internal links of these genes (Fig. 1B). 
Similarly, the associations between the expression of 
MMR genes and disulfidptosis-related genes were 
revealed in Fig 1B-D. The mutation data of these 
genes in GC and GC subtypes were shown in 
Supplementary Figure 1 (Fig. S1). 
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Figure 1. The expression level of disulfidptosis-related genes in GC. A: The expression level of NCKAP1, RPN1, SLC3A2, SLC7A11 in GC from TCGA and GTEx 
cohorts. B: The coexpression analysis of NCKAP1, RPN1, SLC3A2, SLC7A11 in GC from TCGA cohort. C-F: The association between NCKAP1 (C), RPN1 (D), SLC3A2 (E), 
SLC7A11 (F) and MMR genes in GC from TCGA cohort (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Table 1. Univariate and multivariate regression of clinical characteristics. 

Characteristics Total(N) Univariate analysis   Multivariate analysis 
Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

NCKAP1 370 1.196 (0.917 - 1.560) 0.187  1.455 (1.075 - 1.969) 0.015 
SLC3A2 370 0.868 (0.699 - 1.078) 0.200     
SLC7A11 370 0.915 (0.808 - 1.036) 0.162  0.776 (0.667 - 0.904) 0.001 
Age 367 1.022 (1.005 - 1.039) 0.009  1.040 (1.021 - 1.060) < 0.001 
Gender 370   0.182     
Male 237 Reference    Reference   
Female 133 0.789 (0.554 - 1.123) 0.188  0.626 (0.425 - 0.922) 0.018 
Pathologic T stage 362   0.003     
T1 18 Reference    Reference   
T2 78 6.725 (0.913 - 49.524) 0.061  4.341 (0.578 - 32.585) 0.153 
T3 167 9.548 (1.326 - 68.748) 0.025  5.995 (0.814 - 44.152) 0.079 
T4 99 9.634 (1.323 - 70.151) 0.025  6.048 (0.803 - 45.564) 0.081 
Pathologic N stage 352   0.001     
N0 107 Reference    Reference   
N1&N2&N3 245 1.925 (1.264 - 2.931) 0.002  1.680 (1.064 - 2.654) 0.026 
Pathologic M stage 352   0.010     
M0 327 Reference    Reference   
M1 25 2.254 (1.295 - 3.924) 0.004  2.466 (1.307 - 4.652) 0.005 
Histologic grade 361   0.169     
G1 10 Reference    Reference   
G2 134 1.648 (0.400 - 6.787) 0.489  1.980 (0.269 - 14.579) 0.503 
G3 217 2.174 (0.535 - 8.832) 0.278  2.510 (0.344 - 18.326) 0.364 

Entry: 0.05; Removal: 0.10, P <0.05 

 

3.2 Identification of prognostic disulfidptosis- 
related genes 

Obviously, the expression levels of NCKAP1, 
SLC3A2, and SLC7A11 were remarkably associated 
with OS in GC by Kaplan-Meier methods, as shown in 
Fig. 2A-D. Combined with common clinicopathologic 
characteristics (Table S1-2), univariate regression and 
multivariate COX regression showed that NCKAP1, 
SLC7A11, age, sex, pathological T stage, pathological 
N stage, and pathological M stage were independent 
risk factors for OS (Table 1), which was visualized by 
a forest plot (Fig. 2E). Then, the prognostic risk score 
model was constructed according to the multivariate 
COX regression: Risk score = (1.455*NCKAP1 exp) + 
(0.776*SLC7A11 exp). The Kaplan-Meier curve 
showed that the patients with higher risk factors had 
poor distal overcome (include NCKAP1 and 
SLC7A11, Fig. S2). 

3.3 Construction and validation of the 
prognostic nomogram model 

Given the favourable prognostic value of these 
parameters, we integrated these characteristics and 
established a prognostic nomogram model to predict 
the 1-, 3-, and 5-year OS of GC patients, as displayed 
in Fig. 3A. The C-index of the nomogram model was 
0.681 (0.656-0.707). Subsequently, the nomogram 
calibration plot (Fig. 3B) demonstrated that the model 
was accurately calibrated to the observed probabi-

lities. The DCA curves in Fig. 3C-E indicated that our 
nomogram model had satisfactory clinical usefulness. 

3.4 NCKAP1 and SLC7A11 are promising 
screening biomarkers of GC 

Furthermore, the diagnostic values of both 
prognostic genes were detected. We first built the 
ROC curves of NCKAP1 and SLC7A11 from the 
TCGA cohort in Fig. 4A. Based on the superior AUC 
value, we expanded the samples by adding the GTEx 
cohort for validation. The AUC values in Fig. 4B are 
0.664 (NCKAP1) and 0.698 (SLC7A11). Finally, 
combination diagnosis was performed to improve the 
diagnostic efficacy, as shown in Fig. 4C (AUC= 0.676, 
95% CI= 0.631-0.720). 

3.5 Biological function analysis of NCKAP1 and 
SLC7A11 

The functions of NCKAP1 and SLC7A11 were 
further explored. Twenty genes were significantly 
enriched by NCKAP1 and SLC7A11, and the network 
output is shown in Fig. 5A by GeneMANIA. All of the 
nodes were analysed using STRING, and the PPI 
network is shown in Fig. 5B in order to illustrate the 
protein-protein interaction relationship. Moreover, 
biological process, molecular function, cellular 
component, and KEGG pathway analyses were 
identified and visualized in Fig. S3 and Table S3. The 
biological and cellular functions were focused on actin 
activities, GTPase and immunoreaction. 
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Figure 2. Identification prognostic values of disulfidptosis-related genes in GC. A: Overexpression NCKAP1 associated with poor overall survival time in GC. B: The 
expression of RPN1 did not correlate with the prognosis of GC. C: Overexpression SLC3A2 associated with poor overall survival time in GC. D: Downregulated SLC7A11 
associated with poor overall survival time in GC. E: Forest plot of the multivariate COX regression model.  
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Figure 3. The overall survival nomogram model and validation. A: The overall survival nomogram model to predict the 1, 3, and 5, year OS of GC patients. B: The 1, 
3, and 5, year calibration plots of the overall survival nomogram model. C-E: The 1, 3, and 5, year DCA curves of the nomogram. 
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Figure 4. The ROC curves of NCKAP1 and SLC7A11 of GC. A: The ROC curves of NCKAP1 and SLC7A11 in TCGA cohort. B: The ROC curves of NCKAP1 and 
SLC7A11 in TCGA and GTEx cohorts. C: The ROC curve of combination diagnosis of NCKAP1 and SLC7A11 in TCGA and GTEx cohorts.  

 
Figure 5. The gene pairs and PPI network of SCL7A11 and NCKAP1. A: The top 20 genes associated with NCKAP1 and SLC7A11 using GeneMANIA. B: The PPI 
network of interactions proteins with NCKAP1 and SLC7A11.  

 

3.6 Comprehensive evaluation of the immune 
landscape in GC 

 Based on the immunoreaction of the functional 
analysis, we further described the immune landscape 
of NCKAP1 and SLC7A11. Our results showed that 
the expression of NCKAP1 was significantly 
associated with the infiltration of immune cells, such 
as T central memory (Tcm) cells, T helper cells, and 
plasmacytoid DCs, as shown in Fig. 6A. Furthermore, 
the expression level of SLC7A11 correlated with 

immune cell infiltration, including helper cells, Th2 
cells, and neutrophils (Fig. 6B). Meanwhile, both 
NCKAP1 and SLC7A11 were related to the 
ESTIMATE score and immune score (Fig. 6C-D). 
Moreover, we systemically evaluated the relation-
ships of both molecules and microenvironment, 
chemokines, chemokine receptors, immunoinhibitors, 
immunostimulators, MHC molecules, and target 
drugs, as shown in Fig. S4-5.  
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Figure 6. The correlation between the expression level of NCKAP1, SLC7A11 and immune cell infiltration. A: The lollipop diagram of the correlation between 
the expression of NCKAP1 and immune cell infiltration levels in TCGA cohort. B: The lollipop diagram of the correlation between the expression of SLC7A11 and immune cell 
infiltration levels in TCGA cohort. C: The stromal score, estimate score, immune score of different expression level of NCKAP1 of GC samples in TCGA cohort. D: The stromal 
score, estimate score, immune score of different expression level of SLC7A11 of GC samples in TCGA cohort. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

1062 

 
Figure 7. The ceRNA regulatory network of NCKAP1 and SLC7A11. Red hexagons represent NCKAP1 and SLC7A11, orange rhombuses represent the miRNAs, 
purple triangles represent the lncRNAs, blue circles represent the mRNAs and green represents the co-regulated molecules. 

 
 

3.7 Establishment of the ceRNA regulatory 
network 

 Aiming to reveal the downstream regulatory 
mechanisms of NCKAP1 and SLC7A11, the interact-
ions of miRNAs and lncRNAs were investigated. Our 
result showed that NCKAP1 bound to 5 miRNAs and 
SLC7A11 bound to 3 miRNAs. More interestingly, 
TUG1 and SNHG6 (2 lncRNAs) as well as 8 mRNAs 
were co-regulated by NCKAP1 and SLC7A11 via 
miRNAs (Fig. 7), which provided important targets 
for further research. The expression of the 
co-regulated targets was detected via TCGA cohort 
shown in Fig. S6. In addition, the relationship 
between RNA binding proteins and NCKAP1, 
SLC7A11 was shown in Table S4. Finally, biological 
process, molecular function, cellular component, and 
KEGG pathway analyses displayed the potential 
function of the ceRNA in Fig. S7. 

3.8 Validation of the differential expression 
and clinical significance of NCKAP1 and 
SLC7A11 

To validate the differential expression of both 
genes, qRT-PCR was performed to detect the 
expression levels of NCKAP1 and SLC7A11 in the cell 

line and tissue line. Our results showed that NCKAP1 
and SLC7A11 were both upregulated in GC cells (Fig. 
8A-B). The results of paired GC tissues showed that 
NCKAP1 and SLC7A11 were also overexpressed in 
GC tissues (Fig. 8C-D). The AUC, cut-off line, sensi-
tivity, and specificity of the ROC curve of NCKAP1 
were 0.648, 3.16, 66.7%, and 60%, respectively (Fig. 
8E). The AUC, cut-off line, sensitivity, and specificity 
of the ROC curve of SLC7A11 were 0.699, 6.275, 
50.0%, and 93.3%, respectively (Fig. 8F). All of these 
results suggested that higher NCKAP1 and SLC7A11 
were promising prognostic and diagnostic biomarkers 
in GC. 

4. Discussion 
Currently, the diagnostic efficacy and prognosis 

of GC are still not ideal despite developments and 
breakthroughs in surgery, radiotherapy combined 
with chemotherapy and immunological regulators 
[31, 32]. Moreover, the aetiology and pathogenesis of 
GC are multifactorial and poorly understood. Hence, 
it is important to identify novel tumour biomarkers 
and elucidate the molecular mechanisms of tumour 
initiation and progression. 
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Figure 8. Validation of the expression and diagnostic values of NCKAP1 and SLC7A11. A: NCKAP1 was significantly upregulated in the GC cells. B: SLC7A11was 
significantly upregulated in the GC cells. C: NCKAP1 was significantly upregulated in the GC tissues compared to the paracarcinoma. D: SLC7A11 was significantly upregulated 
in the GC tissues compared to the paracarcinoma. E: The ROC curve of NCKAP1 in GC tissues and normal tissues. F: The ROC curve of SLC7A11 in GC tissues and normal 
tissues. 

 
Abnormal programmed cell death and apoptosis 

are critical pathways for tumour growth and develo-
pment. Illustration of uncontrolled proliferation and 
apoptosis can facilitate recovery of the balance of the 

cell cycle, which is helpful to design sparking tumour 
biomarkers and immunotherapy targets. Disulfidp-
tosis is a unique and novel type of cell death that is 
different from traditional apoptosis and necrosis and 
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triggers cell death by promoting actin polymerization 
and lamellipodia formation, inducing aberrant 
accumulation of intracellular disulphides [33]. 
NCKAP1, RPN1, SLC3A2, and SLC7A11 are the key 
genes in the progression of disulfidptosis, and their 
potential to lead to actin network collapse and cell 
death in GC is unknown. It has been demonstrated 
that loss of NCKAP1 can affect major actin nucleators 
in lamellipodia formation in fibroblasts by influencing 
spreading and focal adhesion dynamics, indicating 
the role of NCKAP1 in cell migration [34]. Moreover, 
NCKAP1 significantly inhibited cell proliferation, 
invasion and migration in clear cell renal cell 
carcinoma and is a prognostic biomarker for clinical 
application [35]. The expression level of SLC7A11 is 
regulated by stress, such as oxidative stress and 
genotoxic stress, which further induces cell death and 
apoptosis [36]. However, the clinical value and cell 
function of these genes in GC remain unclear. In this 
study, we found that NCKAP1 and SLC7A11 were 
independent risk factors for GC survival time and 
established a prognostic nomogram. The validity of 
the model was proven by a calibration plot and DCA 
curves. Moreover, we further explored and validated 
their values towards diagnostic application. The 
analysis of TCGA samples and clinical samples 
displayed satisfactory results for the AUC, sensitivity 
and specificity of NCKAP1 and SLC7A11 overex-
pression for GC screening. All of the results implied 
that NCKAP1 and SLC7A11 were potential prognostic 
and diagnostic biomarkers for GC and are worthy of a 
larger, multicentre randomized clinical trial. In 
addition, we revealed the integrated functions of 
NCKAP1, SLC7A11 and associated genes in a 
functional network and explored their possible 
functions via enrichment analysis. These genes and 
proteins may influence GC development by 
regulating the activities of actin, energy metabolism of 
GTPase and immunoreaction, which is closely related 
to the process of disulfidptosis, as mentioned before. 

Special immune-related genes can reflect the GC 
immune microenvironment and predict the efficacy of 
immune checkpoint inhibitors therapy [37]. In fact, 
numerous studies have linked high mutation burdens 
of tumor with immunotherapy responses, and immu-
notherapy strategies have made progress [38-41]. For 
instance, chemotherapy and pembrolizumab plus 
trastuzumab display obvious benefits of improving 
overall survival time in GC patients and are approved 
as first-line treatments for Her2-positive GC [42]. 
Nivolumab is a monoclonal antibody inhibitor of 
PD-1 that has been indicated to provide durable 
responses with manageable safety in patients with 
advanced GC who progressed following second-line 
treatment [43]. However, the exact contribution and 

durable responses of immunotherapy are still 
uncertain, and it is necessary to assess the objective 
response rate as well as novel treatment targets [44]. 
In this work, we found the relationship of the MMR 
genes and the expression of NCKAP1 and SLC7A11, 
which was essential to anti-tumor immunity [45]. the 
Meanwhile, overexpression of NCKAP1 and 
SLC7A11 was simultaneously associated with the 
infiltration of T helper cells, NK CD56dim cells, acti-
vated DCs (aDCs), immature DCs (iDCs), T follicular 
helper cells (TFHs), B cells, and plasmacytoid DCs 
(pDCs). Subsequently, the expression of SLC7A11 was 
associated with several drugs, such as riluzole and 
sulfasalazine, to regulate downstream genes, which 
provided useful information and directions for future 
clinical research [46]. Subsequently, we systematically 
delineate an overall immune landscape related to 
treatment, which provides promising immune treat-
ment targets with the ultimate goal of improving 
clinical outcomes and survivorship. 

With the emerging appreciation for the signifi-
cance of ncRNAs, the present studies pay attention to 
determine the roles of ceRNA in the process of 
participating tumor initiation and progress [47]. 
miRNAs play important roles in cancer-related 
immune regulation whose expression correlates with 
tumor mutation burden and immune regulation [48]. 
Meanwhile, lncRNAs can function as competing 
endogenous RNAs to impair the miRNA inhibition on 
targeted mRNAs, further regulating gene expression, 
protein translation and malignant biological 
properties [49]. Recent study has been demonstrated 
that disulfidptosis-associated lncRNAs have potential 
to predict the prognosis, tumor microenvironment, 
and immunotherapy and chemotherapy options in 
colon adenocarcinoma, which strongly implies the 
significance of the correlation between lncRNA and 
disulfidptosis-associated genes [50]. Our ceRNA 
network showed the interactions of co-regulated 
lncRNAs and mRNAs of NCKAP1 and SLC7A11, 
which points out the direction of future research of 
downstream regulation signal pathway. 

The limitations of our present study were the 
lack of functional verification results, which will be 
assessed in future studies. 

5. Conclusion 
 In conclusion, NCKAP1 and SLC7A11 are 

promising prognostic and diagnostic biomarkers for 
GC, which correlate with the activities of actin, energy 
metabolism of GTPase, immune infiltration and 
immunotherapy. 
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