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Abstract 

Background: Most of the current research on prognostic model construction for non-small cell lung 
cancer (NSCLC) only involves in bulk RNA-seq data without integration of single-cell RNA-seq 
(scRNA-seq) data. Besides, most of the prognostic models are constructed by predictive genes, ignoring 
other predictive variables such as clinical features. 
Methods: We obtained scRNA-seq data from GEO database and bulk RNA-seq data from TCGA 
database. We construct a prognostic model through the Least Absolute Shrinkage and Selection 
Operator (LASSO) and Cox regression. Furthermore, we performed ESTIMATE, CIBERSORT, immune 
checkpoint-related analyses and compared drug sensitivity using pRRophetic method judged by IC50 
between different risk groups. 
Results: 14 tumor-related genes were extracted for model construction. The AUC for 1-, 3-, and 5 years 
overall survival prediction in TCGA and three validation cohorts were almost higher than 0.65, some of 
which were even higher than 0.7, even 0.8. Besides, calibration curves suggested no departure between 
model prediction and perfect fit. Additionally, immune-related and drug sensitivity results revealed 
potential targets and strategies for treatment, which can provide clinical guidance.  
Conclusion: We integrated traditional bulk RNA-seq and scRNA-seq data, along with predictive clinical 
features to develop a prognostic model for patients with NSCLC. According to the constructed model, 
patients in different groups can follow precise and individual therapeutic schedules based on immune 
characteristics as well as drug sensitivity. 

Keywords: non-small cell lung cancer, scRNA-seq, prognostic model, immunotherapy, drug sensitivity  

Introduction 
Lung cancer is the leading cause of cancer- 

related deaths worldwide, with non-small cell lung 
cancer (NSCLC) comprising 85 % of lung cancers 
where lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) are the most 
common subtypes[1, 2]. In recent years, more and 
more promising treatment strategies for patients with 

NSCLC have been proposed and implemented, 
including immunotherapy and chemotherapy drugs. 
However, not all patients with NSCLC can benefit 
from those promising treatment strategies, some of 
which had little response to immune checkpoint 
inhibitors like programmed death 1 (PD1), 
programmed death-ligand 1 (PD-L1), etc.[3, 4]. 
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Response to treatment is tightly associated with many 
factors such as the expression of specific genes, 
clinical features, immune cell infiltration, etc. Thus, it 
is necessary to construct a predictive model for 
patient stratification with considering the gene 
expressions and clinical features. Based on patient 
stratification, we can find out patients’ responses to 
different treatment strategies and adopt appropriate 
ones for patients in different groups, which is in line 
with the principles of precise treatment and rational 
drug use. 

Through literature review on prognostic model 
development for NSCLC, we found most of them 
focusing on immunity, metabolism, etc[5, 6]. 
However, most of the current researches only involve 
bulk RNA-seq data without integration of single-cell 
RNA-seq (scRNA-seq) data, which ignores the effect 
of cell heterogeneity. Moreover, most of the 
prognostic models are constructed by predictive 
genes, ignoring other predictive variables such as 
clinical features, including age, gender, tumor stage, 
etc., which might cause the inefficiency of prognostic 
model. 

Recently, with the rapid development of 
sequencing technologies, scRNA-seq has been widely 
used as an innovative technology to investigate the 
transcriptome of different cell types[7]. Although 
scRNA-seq is relatively expensive, the information 
from it can be quite meaningful. Compared with the 
traditional bulk RNA-seq which mainly concentrates 
on the average expression of all cells in one patient, 
scRNA-seq can detect cellular and molecular changes 
in tumor cells[7]. Additionally, as scRNA-seq 
highlights intratumor heterogeneity and distinct 
subpopulations, we can quantify heterogeneous 
make-up of immune cells infiltration in normal and 
tumor tissues[8, 9], which is a key factor for treatment 
response and prognosis in NSCLC[10, 11]. 

In summary, this study aims to construct a 
prognostic model by integrating scRNA-seq, bulk 
RNA-seq and other clinical features to stratify patients 
with NSCLC based on the risk score. Besides, we also 
performed analyses on scRNA-seq and bulk RNA-seq 
data respectively, as well as analyses between 
high-risk and low-risk groups such as immune- 
related analysis, drug sensitivity analysis, etc. 

Materials and Methods 
Data acquisition and processing 

All datasets used for analyses in this article were 
acquired from public databases. The information of 
these datasets was shown in detail (Table 1). First, a 
10x scRNA-seq dataset (GSE117570) containing four 
NSCLC tumor samples as well as four normal 

samples were downloaded from Gene Expression 
Omnibus (GEO) database. After combination and 
quality control (QC), a dataset with 3146 features and 
9882 cells for prognostic model development and 
analyses was obtained. Besides, we acquired bulk 
RNA-seq data as well as clinical data from The Cancer 
Genome Atlas (TCGA) database. We converted the 
“fpkm” values to “tpm” values for bulk RNA-seq 
data, which were performed log2 transformation after 
adding 1. As for clinical data, the information of 
survival time, survival status, age, gender, tumor 
stage and so on was extracted. Furthermore, after 
merging the processed bulk RNA-seq data with 
processed clinical data, a dataset with 966 patients 
was finally obtained for prognostic model 
construction and analyses. 

 

Table 1. Datasets for model construction and validation 

Dataset Source Type Application Cancer Type Sample Count 
GSE117570 GEO scRNA training LUAD+LUSC 8 
TCGA Cohort TCGA bulk RNA training LUAD+LUSC 966 (LUAD: 482; 

LUSC: 484) 
GSE42127 GEO bulk RNA validation LUAD+LUSC 172 (LUAD: 130; 

LUSC: 42) 
GSE13213 GEO bulk RNA validation LUAD 117 
GSE157009 GEO bulk RNA validation LUSC 248 

* Abbreviations: GEO, Gene Expression Omnibus; TCGA, The Cancer Genome 
Atlas; scRNA, single-cell RNA; LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell carcinoma. 

 
In order to validate model prediction perform-

ance and other findings, 3 validation datasets, 
including 172 NSCLC patients (GSE42127), 117 LUAD 
patients (GSE13213) and 248 LUSC patients 
(GSE157009) were acquired from GEO database. We 
performed log2 transformation after adding 1 for bulk 
RNA-seq data and then normalized the data, which 
was finally integrated with clinical data containing 
information of survival time, survival status, age, 
gender, tumor stage, etc. 

Processing and analysis on scRNA-seq data 
“Seurat” R package[12] was adopted to process 

and analyze the scRNA-seq data. First, we integrated 
the tumor and normal samples, then converted the 
combined data into a Seurat object. After that, we 
performed QC to extract the genes which expressed in 
more than 3 cells as well as the cells with more than 
500 but less than 2000 expression signatures. 
Furthermore, we filtered the mitochondrial and 
ribosomal genes which expressed in more than 20% 
cells. Next, we normalized the filtered data through 
“LogNormalize” method and found the top 1500 
highly variable genes based on the variance 
stabilization transformation (vst). At the same time, 
we scaled and run principal component analysis 
(PCA) on the normalized data with selected 1500 
highly variable genes. Finally, we determined the 
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cluster number by “JackStraw” and “ScoreJackStraw” 
functions, then clustered the cells using 
“FindNeighbors” and “FindClusters” functions. To 
visualize the clustering results, uniform manifold 
approximation and projection (UMAP) algorithm was 
adopted for data dimensionality reduction. In 
addition, according to the clustering results, we used 
“SingleR” R package[13] to automatically annotate 
cell types, and “Monocle” R package[14] to perform 
cell trajectory and pseudo-time analysis. We also run 
gene set enrichment analysis (GSEA) as well as gene 
set variation analysis (GSVA) through 
“clusterProfiler” R package[15] and “GSVA” R 
package[16] separately. Most importantly, to identify 
the tumor-related clusters, we calculated the 
proportions of tumor cells and normal cells in each 
cluster. Clusters with proportion ratios (proportions 
of tumor cells / proportions of normal cells) that were 
higher than the threshold of 2 would be regarded as 
tumor-related clusters. The markers from tumor- 
related clusters derived from “FindAllMarkers” func-
tion were chosen for prognostic model development. 

Processing and analysis on bulk RNA-seq data 
First, we performed differential expression 

analysis (DEA) between tumor samples and normal 
samples by “limma” R package[17], using 
|logeFC|>0.5 and false discovery rate (FDR) < 0.05 as 
cut-off value. Furthermore, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were utilized to investigate the 
most significantly enriched pathways and biological 
processes based on the differential expression analysis 
results through “clusterProfiler” package. 
Subsequently, Weighted Gene Correlation Network 
Analysis (WGCNA) was exploited to cluster the genes 
into different modules and find out the module with 
the highest correlation to tumor phenotype using 
“WGCNA” R package[18]. The genes in that module 
were also selected for prognostic model development. 

Development and validation of prognostic 
model using common genes from both 
scRNA-seq data and bulk RNA-seq data 

We first generated a Venn diagram using 
“VennDiagram” R package to find out common genes 
from both scRNA-seq data and bulk RNA-seq data 
and then merged clinical data with bulk RNA 
expression data containing common genes. Then, 
Least Absolute Shrinkage and Selection Operator 
(LASSO) Cox regression analysis was performed to 
select genes with nonzero coefficients through 
“glmnet” R package[19]. Subsequently, we further 
extracted genes to construct a gene score via 
multivariate Cox regression analysis by “survival” R 

package. The formula for the gene score is listed 
below: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑘𝑘
𝑖𝑖=1  (1) 

In the formula,  represents the expression 
value of the ith chosen gene and  refers to 
corresponding coefficient in multivariate Cox 
regression analysis. Along with the gene score, we 
performed univariate as well as multivariate Cox 
regression analyses on clinical features, including age, 
gender and tumor stage. The variables significantly 
correlated with prognosis were selected for model 
development. After the model construction, we 
obtained the coefficients of selected variables by 
multivariate Cox regression analysis and utilized the 
model to calculate risk score for each patient. 
According to the median of risk scores, we divided 
patients into high-risk group ( median) and low-risk 
group (<median). At the same time, we calculated risk 
scores for three validation cohorts respectively based 
on the constructed model and divided the patients 
into high-risk group and low-risk group based on the 
median of risk scores separately.  

For validation, survival curves were drawn to 
visualize survival difference between high and low 
risk groups by “survival” and “survminer” R 
packages. In addition, we also generated risk plots to 
investigate the relationship between risk group and 
survival status. To test the discrimination, we utilized 
"timeROC" R package[20] to generate receiver 
operating characteristic (ROC) curves and calculated 
the area under the curves (AUC) for 1-, 3-, and 5 years 
to evaluate the model performance in predicting 
overall survival (OS). To test the calibration, we also 
used “rms” R package to draw 1-, 3-, and 5 years of 
calibration curves. For the convenience of application, 
we converted the model into a nomogram through 
“rms” R package, which can be easily utilized to 
predict 1-, 3-, and 5 years OS by doctors, even by 
patients. 

Association between risk score and gene score 
as well as clinical features  

We generated box-violin plots to investigate the 
association between risk score and gene score, as well 
as the relationship between risk score and clinical 
features containing age, gender and tumor stage in 
TCGA cohort through R package “ggpubr”. 

Gene set enrichment analysis between 
high-risk and low-risk groups 

We performed gene set enrichment analysis 
(GSEA) in TCGA cohort to find out and visualize the 
most significantly enriched GO and KEGG pathways 
between high-risk and low-risk groups using R 
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packages “org.Hs.eg.db”, “clusterProfiler” and 
“enrichplot”. 

Immune-related analyses between high-risk 
and low-risk groups 

In TCGA cohort, we first investigated the 
relationship between risk groups and infiltration 
levels of various types of immune cells by calculating 
ESTIMATE Score, Immune Score, Stromal Score and 
Tumor Purity through R package “estimate”[21] to 
estimate the effect of prognostic model on the tumor 
immune microenvironment (TIME) of NSCLC. Then, 
we generated box-violin plots to visualize comparison 
results. Besides, we performed CIBERSORT 
analysis[22] to compare relative proportions of 
various immune cells in tissues of high-risk and 
low-risk groups. We also compared expression of 
immune checkpoint related genes. Box plots were 
drawn to visualize comparison results. 

Drug sensitivity analysis between high-risk and 
low-risk groups 

R package “pRRophetic”[23] used baseline gene 
expression and in vitro drug sensitivity derived from 
cell lines, coupled with in vivo baseline tumor gene 
expression to predict patients’ response to drugs. To 
choose proper drugs for patients in different risk 
groups, we utilized R package “pRRophetic” to 
perform drug sensitivity analysis between high-risk 
and low-risk groups judged by IC50 in TCGA cohort, 
and then generated boxplots and correlation diagrams 
for comparison visualization. 

Statistical analyses and visualization 
R software (version 4.1.1) on CentOS was used 

for statistical analyses. Proportion test was used to 
compare the proportion difference of tumor and 
normal cells. The non-parameter Wilcoxon rank-sum 
test was performed to test difference on continuous 
variables between two groups, while Kruskal−Wallis 
test for three and three more groups. Additionally, we 
performed LASSO regression and Cox regression 
analyses to develop prognostic model, as well as 
Kaplan-Meier survival analysis to test survival 
difference between high-risk and low-risk groups 
using log-rank test. A two-sided p-value < 0.05 
indicated statistical significance. For results 
visualization, we used R packages “ggplot2” and 
“ggpubr”. 

Results 
Identification of markers for tumor-related 
clusters using scRNA-seq data 

We identified 13 clusters and further 
automatically annotated 7 cell types, including NK 

cell covered cluster 0, T cells covered cluster 1, 
Monocyte covered cluster 2, cluster 3 and cluster 8, 
Macrophage covered cluster 4, Epithelial cells covered 
cluster 5, cluster 6, cluster 7 and cluster 9, B cell 
covered cluster 10, cluster 12 and Tissue stem cells 
covered cluster 11 (Figure 1a, 1b). Besides, we also 
focused on the phenotype and found that tumor cells 
mainly distributed in cluster 2, cluster 4, cluster 5 and 
cluster 10, while normal cells mainly distributed in 
cluster 0, cluster 3, cluster 6 and cluster 8 (Figure 1c, 
1d; Table S1). Then we performed gene set variation 
analysis (GSVA) and the results suggested that in 
up-regulated pathways, cluster 4 and cluster 5, 
Macrophage and Epithelial cells, were enriched in the 
cellular component related pathways such as 
endoplasmic reticulum as well as involved in the 
process of immune effector, cell activation and 
organophosphate biosynthetic, while in 
down-regulated pathways, cluster 4 and Macrophage 
were enriched in Ribosome composition-related 
pathways and involved in the process of protein 
localization to the endoplasmic reticulum, peptide 
metabolism, viral gene expression, translational 
initiation and cotranslational protein targeting to 
membrane (Figure S1, S2). Additionally, according to 
the cell trajectory and pseudo-time analysis results, 
Monocyte and Macrophage, which covered cluster 2 
and cluster 4 respectively, only corresponded to state 
3, while Epithelial cells covered cluster 5 only 
corresponded to state 2. Both state 2 and state 3 were 
in later stages of cell trajectory development (Figure 
1e, 1f). Finally, we regarded cluster 2, cluster 4, cluster 
5 and cluster 10 as tumor-related clusters and 
extracted the markers for prognostic model 
development. 

Identification of tumor-related module genes 
using bulk RNA-seq data 

According to the DEA results, there were 5942 
up-regulated genes and 3172 down-regulated genes. 
We generated a volcano plot to visualize the 
distribution of the differential expression genes 
(DEGs) (Figure 2a). Moreover, the results of GO 
enrichment analysis indicated that DEGs were mainly 
enriched in ion transmembrane transport regulation, 
channel and signaling receptor activity, as well as the 
component of apical part of cell, synaptic membrane, 
apical plasma membrane and transporter complex 
(Figure S3a). The results of KEGG enrichment analysis 
revealed that DEGs were mainly involved in 
Neuroactive ligand−receptor interaction and 
Cytokine−cytokine receptor interaction, Calcium 
signaling pathway and cAMP signaling pathway, 
Alcoholism and Neutrophil extracellular trap 
formation (Figure S3b). Finally, we performed 
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WGCNA analysis to identify tumor-related module 
genes. We observed that the soft thresholding power 

 was 10 when the fit index of scale-free topology 
reached 0.9 in the process of co-expression network 
construction (Figure 2b). Based on the soft 
thresholding power as well as the average linkage 
hierarchical clustering, we identified 5 gene modules 
(Figure 2c). The phenotypic correlation analysis 

showed that the “blue” module was most 
significantly correlated with tumor phenotype 
according to the correlation coefficient and p-value 
(Figure 2d). Combined with 1225 markers from 
tumor-related clusters in scRNA-seq data and 5766 
genes from “blue” module in bulk RNA-seq data, 243 
common genes were extracted for prognostic model 
construction (Figure 2e). 

 
 

 
Figure 1. Identification of markers for tumor-related clusters using scRNA-seq data. (a) Identification and visualization of 13 clusters. (b) Annotation and visualization of 7 cell 
types. (c) Distribution of tumor cells and normal cells in each cluster. (d) The proportions of tumor cells and normal cells in each cluster. (e-f) Cell trajectory and pseudo-time 
analysis for the identified clusters and cell types. Abbreviations: scRNA-seq, single-cell RNA-seq. Symbols: ***, 0 < p-value < 0.001; **, 0.001 ≤ p-value < 0.01; *, 0.01 ≤ p-value 
< 0.05; ns, 0.05 ≤ p-value < 1. 

β
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Prognostic model development and validation 
using common genes from both scRNA-seq 
data and bulk RNA-seq data 

According to the results of LASSO Cox 
regression analysis, 20 potential prognostic genes 
were identified from common genes (Figure 3a). We 
further extracted 14 prognostic genes via multivariate 
Cox regression analysis and then constructed a gene 
score:  

gene score = 0.178 ∗ expEEF1D + 0.163 ∗ expKRT18 + 0.261 
∗ expUBB + 0.268 ∗ expITGB1 + 0.097 ∗ expTHBS1 - 0.089 
∗ expCD9 - 0.182 ∗ expTSPAN13 - 0.357 ∗ expVKORC1 - 0.218 

∗ expMYLIP + 0.281 ∗ expNDUFB10 + 0.149 ∗ expCDKN1A - 0.423 

∗ expDDX24 + 0.220 ∗ expFKBP1A + 0.210 ∗ expMRFAPI (2) 

Then we identified variables “gene score”, “age” 
as well as “stage” which were significantly correlated 
with prognosis in univariate and multivariate Cox 
regression analyses at the same time (Figure 3b). After 
that, we utilized selected variables to develop a 
prognostic model and calculate risk score which was 
used to divide patients into high-risk and low-risk 
groups:  

 
risk score = 0.501 ∗ gene score + 0.016 ∗ age + 0.355 ∗ 

stage2 + 0.735 ∗ stage3 + 1.096 ∗ stage4 (3) 
 

 

 
Figure 2. Identification of tumor-related module genes using bulk RNA-seq data. (a) A volcano plot to visualize up-regulated and down-regulated genes based on DEA results. 
(b) The scale-free fit index for soft thresholding powers. The soft thresholding power β in the WGCNA was determined based on a scale-free R2 (R2=0.9). The left panel 
illustrates the relationship between β and R2. The right panel illustrates the relationship between β and mean connectivity. (c) A dendrogram of the DEGs clustered based on 
different metrics. (d) A heatmap indicates the correlation between gene modules and phenotypes (normal & tumor). (e) A Venn diagram to extract 243 common genes between 
markers from tumor-related clusters in scRNA-seq data and genes from tumor-related “blue” module in bulk RNA-seq data. Abbreviations: DEA, differential expression analysis; 
DEGs, differential expression genes; WGCNA, Weighted Gene Correlation Network Analysis; scRNA-seq, single-cell RNA-seq. 
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Figure 3. Prognostic model development and validation using common genes from both scRNA-seq and bulk RNA-seq data. (a) 20 genes with nonzero coefficients were chosen 
for multivariate Cox regression analysis through LASSO Cox regression analysis. (b) Univariate and multivariate Cox regression analyses to select predictive clinical features with 
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independent prognostic ability as well as test the independent prognostic ability of risk score. (c) Survival curves to evaluate the patient stratification ability of the constructed 
prognostic model in the TCGA, GSE42127, GSE13213 and GSE157009 cohorts. (d) Risk score distribution and patient status for TCGA, GSE42127, GSE13213 and GSE157009 
cohorts. (e) ROC curves to evaluate the OS prediction performance of the constructed prognostic model in the TCGA, GSE42127, GSE13213 and GSE157009 cohorts. (f) 
Calibration curves to test departure between model prediction and perfect fit in the TCGA cohort. (g) A nomogram converted from the constructed prognostic model. 
Abbreviations: scRNA-seq, single-cell RNA-seq; LASSO, Least Absolute Shrinkage and Selection Operator; TCGA, The Cancer Genome Atlas; ROC, receiver operating 
characteristic; OS, overall survival. 

 
Comparing with the significant survival 

difference between high and low risk groups in TCGA 
cohort as well as three validation cohorts, we found 
patients in low-risk group had better prognosis 
(Figure 3c). Besides, we also observed that patients in 
high-risk group were associated with dead survival 
status, while patients in low-risk group were 
associated with alive survival status (Figure 3d). 
Additionally, as for discrimination, the prognostic 
model showed good performance in predicting OS of 
each patient. The AUC for 1-, 3-, and 5 years OS 
prediction in TCGA cohort and three validation 
cohorts were almost higher than 0.65, some of which 
were even higher than 0.7, even 0.8 (Figure 3e). As for 
calibration, the curves of 1-, 3-, and 5 years suggested 
no departure between model prediction and perfect fit 
(Figure 3f). For better application, we converted the 
model into a nomogram which can be conveniently 
used to predict 1-, 3-, and 5 years OS by doctors, even 
by patients (Figure 3g). Moreover, we generated a 
heatmap and a bubble plot to visualize the expression 
of model genes in each cluster identified from 
scRNA-Seq data (Figure S4, S5). 

Features relevance, gene set enrichment 
analysis between high-risk and low-risk groups 

According to the box-violin plots, we found risk 
score was significantly associated with gene score as 
well as clinical features including age, gender and 
tumor stage. Specifically, we divided patients into 
two groups based on the median of gene score and the 
median of age respectively. We observed that older 
patients and patients with higher gene scores had 
higher risk scores. We also noticed that male patients 
and patients in Stage IV had higher risk scores (Figure 
4a). 

For GO pathways, GSEA analysis indicated that 
genes in high-risk group most significantly enriched 
in molecular function of ferric iron binding and 
biological process of microtubule cytoskeleton 
organization involved in mitosis, nuclear transcribed 
mRNA catabolic process nonsense mediated decay, 
regulation of CGMP mediated signaling and response 
to ionizing radiation. However, genes in low-risk 
group most significantly enriched in biological 
process of coronary vasculature morphogenesis, G 
protein coupled receptor signaling pathway involved 
in heart process, regulation of cardiac muscle 
contraction by calcium ion signaling, regulation of 
cardiac muscle contraction by regulation of the release 

of sequestered calcium ion and regulation of 
metallopeptidase activity (Figure S6, S7). 

For KEGG pathways, we found that genes in 
high-risk group most significantly enriched in cell 
cycle, DNA replication, ECM receptor interaction, 
focal adhesion and P53 signaling related pathways, 
while genes in low-risk group most significantly 
enriched in cytosolic DNA sensing, olfactory 
transduction and regulation of autophagy related 
pathways (Figure S8). 

Immune-related analyses results between 
high-risk and low-risk groups 

Estimation of infiltration levels of various types 
of immune cells in TIME revealed that there was no 
significant difference on immune score between 
high-risk and low-risk groups. Stromal score and 
ESTIMATE score were higher in high-risk group, 
while tumor purity was higher in low-risk group 
(Figure 4b). CIBERSORT analysis results indicated 
that the relative fractions of T cells CD4 memory 
resting, NK cells resting, Macrophages M0, 
Macrophages M1, Macrophages M2 and Neutrophils 
in tissues were higher in high-risk group, while the 
relative fractions of Plasma cells, T cells follicular 
helper, T cells regulatory and Mast cells resting were 
higher in low-risk group (Figure 4c). Comparing the 
expression of 38 immune checkpoint related genes, 
we found that high-risk group was significantly 
associated with up-regulation of CD86, LDHA, CD80, 
PDCD1LG2, SIGLEC15, IL23A, ICOSLG, TNFSF4, 
HAVCR2, LDHB, LAMA3, CD40, TNFRSF9, JAK1, 
PVR and B2M, while low-risk group was significantly 
correlated with up-regulation of CD40LG and IL12B 
(Figure 4d). 

Drug sensitivity comparison between high-risk 
and low-risk groups 

We obtained 102 drugs which have significant 
difference on IC50 between high-risk and low-risk 
groups from GDSC 2016 drug dataset. Lower IC50 
indicates better response to drug. There were 8 drugs 
with lower IC50 in low-risk group and 94 drugs with 
lower IC50 in high-risk group. Furthermore, we 
extracted 5 drugs including Rapamycin, KIN001-102, 
KIN001-135, SB52334, GSK690693 for low-risk group 
and FTI-277, XAV939, Cytarabine, CCT018159, 
Midostaurin for high-risk group respectively based on 
IC50 difference p-value, correlation value as well as 
correlation p-value (Figure 5a, 5b). Additionally, 
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details on drug sensitivity comparison were shown in 
supplementary material (Table S2). 

Discussions 
In this research, we developed a prognostic 

model for patients with NSCLC integrating 
scRNA-seq, bulk RNA-seq data and other predictive 
clinical features. As for patient stratification 
performance, we noticed the constructed model could 
effectively stratify patients in TCGA cohort into 
high-risk and low-risk groups, which had significant 
survival difference. Additionally, three external 
validation cohorts (NSCLC, LUAD, LUSC) were 

utilized to verify stratification performance, with 
consistent results we observed. As for OS prediction 
performance, the average AUC of 1-, 3-, and 5 years 
OS for TCGA and three validation cohorts was 0.72, 
0.73, 0.73 and 0.65 separately. Comparing with the 
current prognostic models for NSCLC, our model has 
better performance on patient stratification as well as 
OS prediction[24-26]. However, prediction 
performance on 5 years OS and patients with LUSC 
needs improvement, which might be caused by 
insufficient samples for model construction. 

 

 
Figure 4. Features relevance analysis, GSEA as well as immune-related analyses between high-risk and low-risk groups. (a) The association between risk score and features 
including gene score, age, gender as well as tumor stage. (b) Estimation comparison of infiltration levels of various types of immune cells in TIME between high-risk and low-risk 
groups. (c) Relative fractions comparison of 22 immune cells in tissues between high-risk and low-risk groups. (d) Expression comparison of 38 immune checkpoint related genes 
between high-risk and low-risk groups. Abbreviations: GSEA, gene set enrichment analysis; TIME, tumor immune microenvironment. Symbols: ***, 0 < p-value < 0.001; **, 0.001 
≤ p-value < 0.01; *, 0.01 ≤ p-value < 0.05; ns, 0.05 ≤ p-value < 1. 
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Figure 5. Drug sensitivity comparison between high-risk and low-risk groups. (a) Boxplots for IC50 comparison and correlation diagrams for relationship investigation between 
risk score and IC50 on 5 selected drugs in low-risk group. (b) Boxplots for IC50 comparison and correlation diagrams for relationship investigation between risk score and IC50 
on 5 selected drugs in high-risk group. 

 
Considering the composition of prognostic 

model, it is reported that EEF1D overexpression 
promotes osteosarcoma cell proliferation by 
facilitating Akt-mTOR and Akt-bad signaling[27]. 
KRT18 has been suggested to be overexpressed in 
most types of human tumor, which is correlated with 

the malignant status and acts as an oncogene in 
colorectal cancer[28]. High expression of UBB and 
ITGB1 has been demonstrated to predict worse 
prognosis among non-smoking patients with LUAD 
through bioinformatics analysis[29]. Studies have 
indicated the functions of THBS1 in the development 
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of several cancers, including breast cancer, melanoma, 
gastric cancer, cervical cancer and glioblastoma[30]. 
NDUFB10, which is associated with NADH oxidation, 
was observed overexpressed in LIHC and LUAD 
tumor tissues in previous research[31]. CDKN1A 
functions as an oncogene, promoting cancer cell 
proliferation by inhibiting apoptosis in NSCLC[32]. 
High FKBP1A expression is correlated with a poor 
survival rate in LIHC patients based on the current 
research[33], while the relationship between 
expression level of MRFAP1 and prognostic 
significance is unclear. On the contrary, an increased 
CD9 expression was associated with favorable 
survival in cancer patients, suggesting that CD9 
expression could be a valuable survival factor in 
cancer patients[34]. TSPAN13 has been shown to be a 
tumor suppressor gene in breast cancer[35]. MYLIP 
was proved to have a significant inhibitory effect on 
the proliferation, migration, and invasion of lung 
cancer cells, suggesting that MYLIP may be a tumor 
suppressor gene for lung cancer[36]. Investigation 
revealed that DDX24 significantly inhibited growth of 
multiple cancer cell lines without affecting normal cell 
growth and survival, underlining its value as a drug 
target[37]. However, there is no enough evidence to 
confirm the association between expression level of 
VKORC1 and prognostic significance. Except the 
predictive genes, we also innovatively added easily 
available predictive clinical features to the model, 
which was demonstrated to improve the prediction 
performance. It is reported that age and tumor stage 
are major prognostic factors affecting survival in 
patients with lung cancer. The rate of mortality was 
higher in elderly patients, and the median survival 
time of elderly patients was significantly lower 
compared with that of younger patients based on 
univariate and multivariate analyses[38]. Besides, 
current 5-year survival estimates in NSCLC range 
from 73 % in stage IA disease to 13 % in stage IV 
disease[39]. 

Additionally, immune-related analyses between 
high-risk and low-risk groups indicated that the 
constructed prognostic model was tightly associated 
with TIME composition and regulation, which might 
affect the immune response. According to the 
ESTIMATE Score, we found tumor purity was lower 
in high-risk group. Besides, there were totally 6 
immune cells with higher abundance in high-risk 
group, while the relative fractions of 4 immune cells 
were higher in low-risk group based on CIBERSORT 
analysis results. It is reported that T cells regulatory 
which was higher in low-risk group plays an 
important role in suppressing immune responses of 
other cells, which may also suppress immune 
response to cancer cells[40]. Thus, it may be a 

potential target for immunotherapy to patients in 
low-risk group. Moreover, with the development of 
immunogenomics, more and more immune-related 
genes have been found as treatment targets. By 
comparing expression of 38 immune checkpoint 
related genes between high-risk and low-risk groups, 
we found 18 immune checkpoint related genes had 
higher expression in high-risk group, while only 2 
genes had higher expression in low-risk group. 
Concretely, genes of CD86, LDHA, CD80, 
PDCD1LG2, SIGLEC15, JAK1 and B2M have been 
demonstrated to have negative effect on 
immunotherapy, while genes of IL23A, ICOSLG, 
TNFSF4, CD40, TNFRSF9, CD40LG and IL12B have 
positive effect. Therefore, we can choose different 
kinds of immunotherapies based on the expression of 
immune-related genes in different risk groups. 

Like immune-related analyses, drug sensitivity 
comparison between high-risk and low-risk groups 
can help us choose proper drugs with best response to 
patients. It is reported that Rapamycin inhibits the 
growth and metastatic progression of NSCLC[41]. 
Besides, a strong correlation between risk scores and 
anticancer medication sensitivity of KIN001-102 and 
KIN001-135 was found in previous study[42]. 
PAFAH1B3 is elevated in human pan-cancer, which is 
correlated with greater pathology and poor prognosis, 
in particular for NSCLC and liver hepatocellular 
carcinoma (LIHC)[43]. Current research found that 
the expression of PAFAH1B3 was negatively 
correlated with drug sensitivity of SB52334[43]. 
Moreover, it is suggested that the combination of 
temsirolimus and GSK690693 could be a novel 
strategy for lung cancer therapy[44]. The results of 
current studies suggested that FTase inhibition by 
FTI-277 may be an effective strategy for targeting 
H-Ras-mediated proliferation, migration and invasion 
of breast cells[45]. However, there is no evidence to 
prove curative effects on FTI-277 against NSCLC, 
which may be a promising drug needs further 
investigation in the future. Several recent studies have 
demonstrated that XAV939 is able to inhibit the 
growth of breast, colon and non-small cell lung cancer 
cells by blocking the Wnt signaling pathway[46]. A 
case report showed that Gemcitabine is an effective 
drug against NSCLC and has a structure similar to 
cytarabine, which has been widely used in intrathecal 
chemotherapy[47]. According to previous study, 
elevated expression of nuclear HSP90 could be 
detected in breast cancer and NSCLC, and CCT018159 
manifested the inhibitory activity of HSP90[48]. A 
targeted drug screen revealed that the recently 
approved multi-kinase inhibitor Midostaurin has 
potent activity in several lung cancer cells 
independent of its intended target, PKC, or a specific 
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genomic marker[49]. 
Nevertheless, there are also some limitations that 

should be improved in the future. First, all the results 
in this research were obtained from bioinformatic 
analyses, which needs to be validated through 
experiment. Besides, it is promising to add more 
predictive variables to the prognostic model, which 
can further improve the prediction performance on 
OS, and find out more valuable information. 

In conclusion, we integrated traditional bulk 
RNA-seq and scRNA-seq data, along with predictive 
clinical features to develop a prognostic model for 
patients with NSCLC. Through verification, the 
model has been demonstrated to perform well enough 
in TCGA training cohort as well as different GEO 
validation cohorts. With the help of the constructed 
model, we can divide the patients into high-risk and 
low-risk groups. Patients in different groups can 
follow precise and individual therapeutic schedules 
based on immune characteristics as well as drug 
sensitivity comparison. Furthermore, we have 
converted the model to a nomogram, which can be 
conveniently utilized by doctors, even the patients. 
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