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Abstract 

Background: Pancreatic adenocarcinoma (PAAD) is a frequent digestive system cancer, which has high 
mortality and bad outcome. However, the role of basement membrane (BM)-related gene in assessing 
patient's outcome, microenvironment and treatment response remain unclear.  
Methods: Basement membrane (BM)-associated genes were detected by univariate and least absolute 
shrinkage and selection operator (LASSO) Cox regression analyses using data from the TCGA databases. 
A risk score system was constructed to distinguish patients in the high- and low-risk groups. Prognostic 
gene distribution in various immune cell forms was explored through scRNA-seq. Immune cell infiltration 
was assessed using CIBERSORT and ESTIMATE. The IC50 of common chemotherapeutic drugs and 
useful molecule compounds were evaluated. The mRNA and protein expression of important signatures 
were validated utilizing GEPIA and HPA databases. 
Results: Compared to low risk PAAD patients, PAAD patients with high risk showed a significant much 
worse overall survival (OS). Risk score of BM-associated genes could estimate patient outcome well, and 
areas under the curve (AUC) of receiver operating characteristic (ROC) survival curve were 0.76, 0.85, 
and 0.85 at 1-, 3-, and 5-year. Clinical impact curve (CIC) curve demonstrated the clinical importance of 
risk score. scRNA-seq revealed that BM-related genes were mainly distributed in malignant cells. 
Significant variations existed in the immune microenvironment, immune checkpoint expression and 
chemotherapy response between the studied groups. Furthermore, the mRNA expression levels of 
FAM83A, LY6D, MET, MUC16, MYEOV, and WNT7A were elevated in PAAD tissues, while the protein 
expression patterns of LY6D, MET, MUC16, and WNT7A were higher in tumor sample. RO-90-7501, 
Scriptaid, TG-101348, XMD-892, and XMD-1150 may be valuable small molecule drugs to treat PAAD. 
Conclusions: In conclusion, we develop a novel BM-related gene signature provide new insights and 
targets for the diagnosis, outcome estimation, candidate drugs and therapy management of PAAD 
patients. 
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Introduction 
Pancreatic Adenocarcinoma (PAAD), a highly 

fatal malignancy, has a rate of less than 10% for 5-year 
survival [1]. It was predicted that PAAD will become 

the second main reason of cancer mortality by 2030[2, 
3]. At present, surgical treatment combined with 
adjuvant chemotherapy is still a standard treatment, 
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but PAAD cannot be effectively screened due to the 
hidden anatomic location, insidious characteristics, 
lack of biomarkers, and many patients have advanced 
disease and no good treatment is available[3]. For 
high-risk patients with poor prognosis, individuali-
zed treatment strategies may help improve survival 
and quality of life. Subsequently, reliable predictive 
and novel markers are urgently required to classify 
patients and optimize clinical decision-making 
accurately. 

Basement membranes (BMs) belong to the 
extracellular matrix (ECM) and surround most 
tissues[4]. The main components of BM can be 
divided into collagen, laminin and fibronectin. To 
engage in metastasis, tumor cells must infiltrate 
through BMs. Loss of BM-associated protein 
expression is among the highest critical reasons of 
cancer[5]. In a way independent of matrix metallo-
proteinase, cancer-associated fibroblasts (CAFs) 
enhance cancer cell invasion by BM[6]. Recent 
research indicates that the epithelial-mesenchymal 
transition (EMT) vastly depends on the BM and BM 
can be utilized to design cancer therapeutics to target 
metastasis[7]. Therefore, BM is critical for tumor 
metastasis and progression.  

Few BM-related biomarkers are good predictors 
of the PAAD patient prognosis. Fortunately, a 
high-quality article published in May 2022 in the 
journal of SCIENCE ADVANCES found that a 
network of homologous human and animal proteins 
located in the BM by comprehensive analysis[8]. At 
present, there is no comprehensive analysis report on 
the prognostic value of BM-related proteins in PAAD 
patients. Identifying potential prognostic markers 
associated with treatment benefit can help personalize 
treatment for patients with PAAD. Therefore, finding 

markers is crucial to predict the outcome and 
treatment effect of PAAD. This research aimed to 
detect the key BM-related biomarkers for PAAD 
patients by The Cancer Genome Atlas (TCGA). 
Accordingly, our research can provide certain guiding 
value for the basic research in the field of cancer, 
especially PAAD. 

Materials and Methods  
Data collection 

Various clinical data comprising transcriptome 
expression, gene mutation profiles, and transcriptome 
expression profiles of PAAD patients were retrieved 
from TCGA database. Those patients whose survival 
data was incomplete were excluded. Eventually, 177 
PAAD patients were enrolled in the TCGA-PAAD 
cohort. Two hundred and twenty-four BM-related 
genes were obtained from a recent literature report[8]. 
Forty-two survival related BM genes were obtained 
by survival analysis in the TCGA-PAAD dataset. 
Then, two clusters were confirmed as optimal by 
indicators of NMF rank survey, and cluster 2 was 
found to have a poor prognosis. In order to analyze 
the reasons for the poor prognosis, differential genes 
between the two clusters were compared, and 587 
DEGs were analyzed. Modeling analysis of these 
differential genes was performed in the training set. 
Moreover, univariate analysis found that 65 of the 
differential genes were BM genes associated with 
survival. Following lasso analysis, 11 genes were 
identified to generate the risk score, and the median 
risk score was employed to split the high and low risk 
groups. Finally, nine genes were chosen for 
verification analysis. Figure 1 shows the analysis 
process diagram of this research. 

 

 
Figure 1. The flowchart of this study. 
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Identification of consensus clustering via NMF 
The nonnegative matrix factorization (NMF) 

clustering method was employed to cluster PAAD 
patients. This process was performed by R package 
“NMF” with for typing with rank set to 2:10, choosing 
the standard “brunet”, and performing 50 iterations. 
Finally, determine the optimal clustering number 
(k=2). The idea of NMF: V=WH (W is the weight 
matrix, H is the characteristic matrix, V is the original 
matrix. W: basis, H: coefficients, Consensus: 
Consensus Clustering (Consistent clustering). 

 Silhouette is an approach for interpreting and 
validating the consistency of data clusters. The 
silhouette value quantifies the similarity of an object 
to its own cluster (cohesion) relative to other clusters 
(separation). The silhouette varies from 1 to +1, with a 
high value indicating that an object is well-suited to 
its own cluster but poorly matched to adjacent 
clusters. If the majority of items show a high value, 
the clustering configuration is suitable. If a significant 
proportion of data points have a negative or low 
score, the clustering configuration may have too few 
or too many clusters. 

Risk score of key prognostic signature 
The TCGA-PAAD dataset were split into 

training and validation cohorts according to the ratio 
of 7:3. Survival analysis of training cohort obtained 65 
survival genes (P<0.01), eleven genes were eventually 
obtained using Lasso regression, and the model was 
created. Afterward, risk score of each PAAD patient 
was measured. This equation was employed to 
measure the risk score: Risk Score=ΣA*B. (A: 
expression of every gene, and B: corresponding 
coefficient). Patients with PAAD were categorized 
into high- and low-risk groups based on the 
appropriate risk score cutoff value. R packages 
"survival" and "survminer" were employed to 
evaluate the survival rates of patients in the two risk 
groups using Kaplan–Meier (KM) curves. R package 
"timeROC" was employed to generate receiver 
operating characteristic (ROC) curves. ICGC data set 
was utilized to further verify the correlation between 
differential genes and survival in the high-low risk 
group. Subgroup analyses of clinically relevant factors 
(sex, stage, and age) were conducted to assess the 
function of BM-associated genes on PAAD patient 
outcome. 

Assessment of prognostic value 
After further excluding patients for whom 

clinical information was lacking, univariate and 
multivariate Cox regression analyses were performed 
to evaluate the individual prognostic significance of 
risk scores, age, sex, and stage in pancreatic 

adenocarcinoma (Supplementary Table 1). ROC 
curves were employed to gauge the predictive 
accuracy of risk scores at 1, 3, and 5 years, quantified 
by the area under the ROC curve (AUC). 
Additionally, we employed the clinical impact curve 
(CIC) to assess the practical utility of our risk score 
model. This allowed us to measure the net benefit of 
using the risk score to guide clinical decisions, 
factoring in threshold probabilities for clinical 
interventions. 

Enrichment analyses of DEGs 
Using the "limma" R package and volcano plots, 

the DEGs between the two risk groups were 
examined. GeneMANIA (http://www.genemania. 
org) is an adaptable, user-friendly web-based 
application for creating gene function hypotheses, 
assessing gene records, and selecting genes for 
functional tests [9]. The PPI networks of key 
prognostic genes were predicted using GeneMANIA. 
Metascape studied the functional and pathway 
enrichment analyses of DEGs. 

scRNA-seq analysis 
The Tumor Immune Single-cell Hub (TISCH) 

database (http://tisch.comp-genomics.org/) com-
prises 79 high-quality single-cell transcriptome 
datasets of 27 tumors with matching clinical data, 
which can enable thorough single-cell level cell type 
annotation. This database offers comprehensive data, 
simple operation, user-friendliness, and data 
visualization[10]. The Uniform Manifold 
Approximation and Projection (UMAP) plot was 
employed to depict the dispersion and expression of 
predictive-associated genes in the PAAD sample 
according to the TISCH database. 

Immune microenvironment analysis 
Employing CIBERSORT method, the infiltrating 

abundance of 22 kinds of immune cells in high- and 
low-risk patients was determined. Each PAAD 
patient's stromal, immunological, and ESTIMATE 
scores and tumor purity were detected utilizing the 
ESTIMATE method. Moreover, MHC molecules 
expression and 36 frequent immune checkpoints 
among the various risk groups were compared. 

Somatic mutation analysis 
Somatic mutation profiles from TCGA database 

were collected, and then the "maftools" R tool was 
employed to create a waterfall plot to show The rate 
of somatic mutations and the distribution of variable 
gene forms in the two studied groups. Furthermore, 
to examine the underlying molecular pathway of 
developing PAAD, the mutually exclusive and 
co-occurrence of mutated genes were examined 
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between two risk groups. 

Chemotherapy sensitivity and potential 
medications 

The Genomics of Drug Sensitivity in Cancer 
(GDSC) Project (https://www.cancerrxgene.org/) is 
an accessible to the public genomics database of 
antitumor treatment response that identifies the 
molecular characteristics of tumor and predicts the 
target response to antitumor medicines. Sensitivity of 
PAAD patients to common chemotherapy drugs was 
predicted by GDSC database. Calculation of the half 
maximal inhibitory concentration (IC50) for frequent 
chemotherapeutic drug in PAAD patients by utilizing 
R tool "pRRophetic". Connectivity Map (CMap) 
database (http://www.broadinstitute.org), a biolo-
gical database, uncovers the functional connections 
between small molecule drugs, genes, and disease 
conditions[11, 12] . Upregulated and downregulated 
DEGs between the two studied groups were uploaded 
to the CMap database to forecast small molecule 
medicines that could be utilized to treat PAAD (The 
enrichment scores ranged from -1:0). 

Gene verification 
The GEPIA website (http://gepia2.cancer-pku. 

cn/) was employed to examine the variations in 
mRNA expression and overall survival between 
cancer and healthy individuals. Additionally, we used 
the HPA website (https://www.proteinatlas.org/) to 
analyze the protein expression of key genes in human 
cancer and healthy tissues. Protein expression score 
was detected using immunohistochemical (IHC) 
staining intensity and staining cell proportion.  

Statistical analysis 
R program (v4.0.5) and related R tools were 

utilized to conduct all graphs and statistical analyses. 
Variation between two studied groups were 

examined utilizing t- test. Wilcoxon test was utilized 
to study the nonparametric comparisons between two 
groups. Utilizing log-rank test, survival was 
conducted. 

Using Spearman correlation analysis, the 
association between two continuous variables was 
evaluated. P < 0.05 was judged statistically significant. 

Results  
Identifying BM-associated molecular subtypes 

According to the 224 BM-associated genes, data 
of 177 PAAD patients were retrieved from TCGA 
database. We gained forty-two survival-associated 
genes using Cox regression analysis. Next, two 
molecular subtypes of PAAD were identified by the 
NMF algorithm. Finally, the clusters 1 and 2 were 
obtained by BM-associated genes under NMF 
clustering (Figures 2A and S1). DEGs of the two 
clusters were compared by volcanic map (Figure 2B). 
According to survival analysis, the prognosis of 
cluster 1 was significantly better than cluster 2 (Figure 
2C). 

Identification and validation of the predictive 
signature  

We identified 587 DEGs between cluster 2 and 
cluster 1. Next, LASSO Cox regression was employed 
to examine eleven prognostic genes related to BM 
according to DEG (Figures 3A and B). There were 123 
PAAD patients in training and 54 patients in 
validation cohorts at a 7:3 ratio. The estimated risk 
scores were segmented into high- and low-risk groups 
in accordance with the median risk scores (Risk 
Score=ΣA*B. (A: expression of each gene, and B: 
corresponding coefficient). Figure 3C shows the 
survival times for PAAD patients. A total of 11 key 
genes expression in the two risk groups were depicted 
by heatmap (Figure 3C). In addition, the survival 

 

 
Figure 2. (A) Consensus map of NMF clustering (k=2). The idea of NMF: V=WH (W is the weight matrix, H is the characteristic matrix, V is the original matrix. W: basis, H: 
coefficients, Consensus: Consensus Clustering (Consistent clustering). (B) Volcano map of DEGs in cluster 1 and 2. (C) Survival curve of two clusters. 
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curve revealed a reduced survival rate in high- than 
the low-risk group (Figure 3D). Above all, the areas 
under curves (AUCs) were 0.83, 0.86, and 0.85 at 1-, 3-, 

and 5-year survival, respectively, suggesting that 
BM-related prognostic genes could be useful in 
forecasting PAAD patients' outcome (Figure 3E). 

 

 
Figure 3. (A) The LASSO coefficient profile of 11 basement membrane-related prognostic signatures. (B) Identification of the optimal tuning parameter (log λ) LASSO model 
using cross-validation. (C, F) The distribution map of risk score (upper), survival time (middle), and heatmap for the expression of eleven genes (below) in the training cohort 
(C) and validation cohort (F). (D, G) Survival curve of the high- and low-risk groups in the training cohort (D) and validation cohort (G). (E, H) ROC curve of the basement 
membrane-related prognostic gene for predicting the 1-, 3- and 5-year OS of PAAD patients in the training cohort (E) and validation cohort(H). 
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Figure 4. (A) The correlation analysis between eleven key prognostic genes. (B) Coexpression PPI network of basement membrane-related genes by the GeneMANIA 
database. (C) Volcano plot of DEGs in the high- and low-risk groups. (D) GO analysis of DEGs. (E) KEGG analysis of DEGs. 

 
We further performed similar analyses to detect 

the significance of prognostic genes in validation and 
total cohorts. The risk score was measured using the 
exact equation. Figure 3F and Supplementary Figure 
S2A shown the risk score, survival time, and key 
genes’ expression and distribution. From figures 3G 
and S2B, we can conclude that the prognosis was 
significantly increased in the low- compared to 
high-risk group in both the validation and the total 
cohorts. AUC at 1-, 3-, and 5-year of validation cohort 
were 0.73, 0.99, and 1.00, of total cohort were 0.76, 
0.85, and 0.85, respectively (Figures 3H and S2C). At 
the same time, we observed that the prognosis was 
significantly better in the low- compared to high-risk 
group in the ICGC dataset. AUC at 1- and 3-year of 
ICGC cohort were 0.71 and 0.84 (Figure S3). 

Functional analysis 
This is the correlation analysis among 11 

BM-related genes (Figure 4A). In addition, eleven 
gene PPI networks were predicted through the 
GeneMANIA website (Figure 4B). Findings show that 
MUC16 and LY6D are positively correlated, while 
there is a negative correlation between CCDC188 and 
MET. Next, we developed the interaction network of 
11 key prognostic genes by GeneMANIA website. The 
function of SCD, FASH, and DGAT2 was mainly 
related to the fatty-acyl-CoA metabolic process. 
Further, we modeled the differential genes obtained 

in Figure 2B to obtain risk scores (categorized into 
high and low risk groups by the median risk score). In 
total, 352 differential genes between the high and low 
risk groups were used for enrichment analysis. The 
volcanic map of DEGs between two risk groups 
(Figure 4C). The volcano plot revealed 352 DEGs 
between two risk groups, including 161 
downregulated genes and 191 upregulated genes. The 
DEGs were principally enriched in “epidermis 
development”, “regulation of hormone levels”, 
“presynapse”, “channel activity”, and “regulation of 
secretion” based on GO analysis (Figures 4D and 
S4A). KEGG analysis shown that the DEGs were 
principally enriched in “Formation of the cornified 
envelop”, “Insulin secretion”, “Defective GALNT3 
causes HFTC”, “Peptide hormone metabolism”, and 
“Neuronal System” (Figures 4E and S4B). 

Clinicopathological manifestations 
Herein, the risk scores of eleven BM-related key 

signatures were calculated for each PAAD patient. We 
examined the association between the BM-associated 
genes expression and clinicopathological features 
using heatmap (Figure 5A). Findings revealed that 
BM-associated genes expression was significantly 
related to sex, survival status, stage, and age. After 
that, we carried out a survival analysis of PAAD 
patients categorized by sex, age, as well as stage. 
According to our findings, survival time was 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

407 

significantly reduced in patients in the high- 
compared to those in the low-risk group (Figures 
5B-G). Our results show that there is only a difference 
between the risk score of stages I and II. Figure S5A 
shows non-significant variation between the risk score 
for stage II, III, and IV. Additionally, a non-significant 
variation existed in risk score between subgroups of 
age and gender (Figure S5B, C). In summary, the 
BM-related signature could be promising the 
predictive treatment of PAAD patients. 

Prognostic factors and risk scores 
To examine if the BM-associated signature is an 

independent predictive variable for PAAD, we 
conducted cox regression analyses on the risk score 
and clinical data. Independent variable: age, sex, risk 
score, and stage. Dependent variable: survival data 
(including binary outcome variable and continuous 
survival time variable). The present findings 
demonstrated that the hazard ratio (HR) levels of risk 
score were 2.65 (95% CI: 1.96-3,57) and 2.58 (95% CI: 
1.92-3.46) in univariate and multivariate Cox 
regression analyses, respectively (Figures 6A and B). 
Particularly, HR demonstrated an raising trend from 
univariate to multivariate Cox regression analysis. We 
found that age, gender, and stage had minimally 
affect the outcome (P>0.05), whereas only risk score 
had a significant effect (P<0.05). Therefore, we did not 
construct nomogram. By comparing the predictive 
value of risk score sex, age, and stage, it was 
discovered that risk score may anticipate the outcome 
well. Results show that the DCA and CIC curve 
suggested that the risk score may acquire the highest 
net gain relative to other clinical variables, showing 

excellent validity and reliability (Figures 6C and D). 
Furthermore, we evaluated the predictive ability of 
the risk score to other clinical characteristics. 
Compared to other clinical characteristics, the risk 
score for estimating 1-, 3-, and 5-years OS had the 
greatest AUC of 0.752, 0.82, and 0.81, respectively 
(Figures 6E-G). According to these data, the risk score 
could effectively anticipate the outcome of PAAD 
patients and assist in the discovery of therapeutic 
treatment methods. 

Association of BM-associated signature with 
single cell properties 

Recently, developing scRNA-seq has evolved 
into a crucial method for revealing variations across 
cell populations and characterizing diverse cell 
populations. To evaluate the involvement of 
BM-associated gene in the tumor microenvironment 
(TME), therefore, this research evaluated the 
scRNA-seq data of PAAD using the TISCH database. 
UMAP plot depicts cell clusters, all of which are 
annotated according to its unique signature genes 
(Figure 7A). The majority consisted of acinar, CD8+, 
DC, ductal, endocrine, endothelial, malignant cells, 
and monocytes/macrophages. Moreover, B, plasma, 
mast cells, and fibroblasts are essential immune 
microenvironment constituents. Also, we evaluated 
the distribution of MYEOV, MET, LY6D, MUC16, 
FAM83A and WNT7A in 12 cell clusters (Figures 
7B-G). According to our findings, these genes were 
primarly distributed in malignant cells. But, 
CCDC188, KHDRBS2, and SLC7A10 were rarely 
found in malignant cells (Figure S6). Overall, our 
results showed a clear correlation between BM-related 

 

 
Figure 5. (A) Correlation of basement membrane-related genes with clinicopathological manifestations. (B-G) Survival probability of patients in different risk groups stratified 
by stage (B, C), gender (D, E), and age (F, G). 
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important signatures and PAAD tumor microen-
vironment, and the signature is potentially act as a 
marker for anticipating the effectiveness of treatment 
in PAAD patients. In addition, there are also 
significant differences in BM-associated signature 
among different cancer types (Supplementary Table 
2). 

Association between BM-associated signature 
and immune microenvironment 

We examined the immunological landscape in 
the TCGA-PAAD dataset utilizing the CIBERSORT 
method to examine the association between the 
BM-associated signature and the immune 
microenvironment. In total, 22 immune cells were 
represented by a stacked bar plot, as illustrated in 

Figure 8A. We discovered that macrophages and 
CD4+ T cells comprised most of all immune cells. 
Then, the proportional quantities of immune cells in 
distinct risk groups were determined. CD8+ T cell 
infiltration density was greater in the high-risk group 
(Figure 8B). After that, we examined the stromal, the 
immune, and the ESTIMATE scores as well as the 
tumor purity between risk groups. Findings indicate 
that the stromal, immunological, and ESTIMATE 
scores were significantly greater in low- compared to 
high-risk group (P < 0.05), although the tumor purity 
was greater in high-risk group (Figure 8C). The data 
presented above revealed significant changes in the 
immune cell microenvironment between the two 
studied groups, which may contribute to disparities in 
immune function between the two risk groups. In 

 
Figure 6. (A) Univariate and (B) multivariate Cox regression analysis of the basement membrane-related genes. (C) DCA and (D) CIC of the model. (E-G) ROC curves of 
the model for predicting the 1-, 3- and 5-year OS. 
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addition, we discovered that the majority of MHC 
molecules expression was greater in the low-risk 
group (Figure 8D). Immunotherapy, which can 
generate a more persistent response in cancer patients 
than traditional chemotherapy and gives hope for 
cancer treatment, has made considerable and quick 
advances recently. Consequently, 46 immune 
checkpoint genes expression was studied in 
individuals at high and low risk. Additionally, we 
discovered high expression of immune checkpoint 
genes CD276, CD44, CD70, HHLA2, TNFSF4 and 
TNFSF9 in the high-risk group, whereas the immune 
checkpoint genes CD27, CD28, CD40LG, CD48, CD86, 
CTLA4, HAVCR2, ADORA2A, NRP1, PDCD1, BTLA, 
BTNL2, CD160, ICOS, IDO2, KIR3DL1, LAG3, LAIR1, 
TIGIT, CD200, TNFRSF8, TNFSF14, CD200R1, CD244, 
TMIGD2, TNFRSF4, and TNFSF18 revealed high 
expression in the low-risk group (Figure 8E). Our 
analysis demonstrate that the BM-associated 
signature can possess potential clinical value in 
anticipating PAAD immunotherapy. 

Correlation between the BM-associated 
signature and mutation status 

The tumor burden mutation (TMB) may have 
certain influence on the treatment of tumor, thus TMB 
analysis was performed for each PAAD patient. In 
Figure 9A, it is found that the TMB was significantly 

higher in high- compared to low-risk group. 
Moreover, we evaluated the latent relevance of risk 
score and TMB in PAAD patients. In addition, we 
investigated the potential link of TMB to risk score, 
and observed a positive relationship between them 
through correlation analysis (r = 0.34, P＜0.05, Figure 
9B). After that, we studied the influence of the 
BM-associated gene on somatic mutations in PAAD 
patients. The waterfall plots depict the mutational 
landscapes of high- and low-risk groups (Figures 9C 
and D). In the high-risk group, the highest five 
mutated genes were KRAS (90%), TP53 (71%), 
SMAD4 (28%), CDKN2A (23%), and TTN (13%). The 
highest five mutated genes were KRAS (62%), TP53 
(55%), SMAD4 (19%), TTN (15%), and CDKN2A 
(11%) in the low-risk. Importantly, the frequency of 
TTN mutations was lower in the high- in comparison 
to the low-risk group. Additionally, missense 
mutations were the most prevalent kind of mutation 
in both risk subgroups. The cooccurrence and mutual 
exclusivity of the mutant genes in the two risk groups 
were then compared. In the high-risk group, mutated 
genes including KRAS and TP53 co-occurred (Figure 
9C). The same thing happened in the low-risk group 
(Figure 9D). Mutual exclusivity of clearly mutated 
genes was clearly existed between GNAS and TP53, 
KRAS in the high-risk group (Figure 9E and 9F).  

 

 
Figure 7. (A) UMAP plot of twelve major cell clusters in the PAAD tumor microenvironment. The distribution of MYEOV (B), MET (C), LY6D (D), MUC16 (E), FAM83A (F), 
WNT7A (G) in the cell subsets. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

410 

 
Figure 8. (A) The estimated proportion of immune cells in each tumor sample. (B) The ESTIMATE score of different immune cell subtypes in different risk groups. (C) The 
stromal score, immune score, ESTIMATE score, and tumor purity in the high- and low-risk groups. (D) The expression of MHC molecules in different risk groups. (E) The 
expression of immune checkpoint related genes in different risk groups. 

 
 

Chemotherapy response and small molecule 
drug screening 

To raise the advantage of chemotherapy in 
PAAD patients, the prognostic capbaility of BM- 
associated signature was assessed for the effectiveness 
of typical chemotherapies in various risk patient. IC50 
values for medications (axitinib, camptothecin, 
nilotinib, and temsirolimus) was significantly 

increased in high- compared to low-risk group 
(P<0.05, Figure 10A-C), which shown that these 
chemotherapeutic medications possess higher clinical 
effectiveness in high-risk patients. The current 
analysis findings revealed that the BM-associated 
signature has the ability to predict the chemotherapy 
effectiveness in PAAD patients. Furthermore, the 
DEGs between two risk groups (161 downregulated 
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and 191 upregulated) were uploaded to the CMap 
database and anticipated five small molecule drugs 
that could be successful for PAAD therapy, namely, 

RO-90-7501 (Figure 10D), Scriptaid (Figure 10E), 
TG-101348 (Figure 10F), XMD-892 (Figure 10G), and 
XMD-1150 (Figure 10H). 

 

 
Figure 9. (A) The difference of TMB in different risk groups. (B) The relationship between TMB and riskscore. (C, D) The distribution of somatic mutation in the high-risk (C) 
and low-risk groups (D). (E, F) The different mutations of genes in the high-risk (E) and low-risk groups (F). 
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Figure 10. (A-C) The difference of chemotherapeutic drugs sensitivity in different risk groups. (D-H) The structure of potential drugs, including RO-90-7501 (D), Scriptaid 
(E), TG-101348 (F), XMD-892 (G), XMD-1150 (H). 

 

Gene expression  
mRNA expression of nine key genes was 

obtained from GEPIA database, and the protein 

expression of four key genes was collected from HPA 
database. mRNA expression of FAM83A, LY6D, MET, 
MUC16, MYEOV, and WNT7A were significantly 
elevated in cancer than healthy tissues (P<0.05) 
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(Figure 11A). Survival curves revealed that high 
expression of these genes was significantly linked to 
bad outcome, except for MUC16 (P>0.05, Figure 11B). 
CDCC188, KHDRBS2, and SLC7A10 mRNA 
expression did not differ between cancer and healthy 
tissues (Figure S7A-C). In contrast, survival curves 

demonstrated that increased expression of these genes 
was significantly linked to bad outcome (Figure 
S7D-F). likewise, IHC staing affirmed that the protein 
expression patterns of LY6D, MET, MUC16, and 
WNT7A were increased in tumor sample compared to 
healthy samples (Figure 12). 

 

 
Figure 11. (A) The mRNA expression of key genes (FAM83A, LY6D, MET, MUC16, MYEOV, WNT7A) in PAAD and normal samples determined by GEPIA database. (B) 
Overall survival analysis of prognostic genes (FAM83A, LY6D, MET, MUC16, MYEOV, WNT7A) in PAAD determined by GEPIA database. 

 
Figure 12. The immunohistochemical staining of key genes in PAAD and normal samples determined by HPA database. 
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Discussions 
Pancreatic adenocarcinoma, commonly known 

as the "king of cancers", is an aggressive disease with 
poor outcomes in the digestive system[13]. Symptoms 
are similar to those of other pancreaticobiliary 
diseases and are prone to misdiagnosis. Because the 
symptoms of the disease are insidious and progresses 
rapidly, it is already in a relatively late stage when it is 
discovered, so there is no very reasonable treatment 
plan when visiting a doctor[3]. At present, gene 
signatures of different molecular subtypes according 
to autophagy, metabolism, etc., have a significant 
impact on cancer[14, 15]. Individual risk assessment 
has good predictive value. Consequently, it is crucial 
to develop a molecular prediction model of PAAD to 
guide individualized treatment and predict 
prognosis. 

Basement membranes (BMs) are is part of the 
extracellular matrix[4]. BMs Basement membranes 
protect tissues from damage and deformation, which 
also related to cell migration, differentiation and 
survival[16-18]. The variation of BM gene is 
associated with human diseases, reflecting the 
diversity and basic function of BM gene[19]. BM 
protein is also one of immunotherapy targets[20] and 
the deletions of BM protein are one of the key factors 
of carcinogenesis[5]. There is no report on BM-related 
signatures in PAAD. We constructed a key prognostic 
risk score calculation model with eleven BMs 
(CCDC188, CSN1S1, FAM83A, KHDRBS2, LY6D, 
MET, MUC16, MYEOV, NIBAN3, SLC7A10, and 
WNT7A) in this study. The analysis showed that risk 
scores of BM-related signatures had excellent and 
independent prognostic significance. Additionally, 
the performance of the ROC curve was also excellent, 
which can well assess patients' prognoses and plan 
therapy. 

Among these prognostic key genes, most of them 
have been reported to be related to the prognosis and 
disease progression of cancer patients. One gene of 
particular interest is CSN1S1, which has emerged as a 
distinctive and highly specific predictive marker, 
primarily associated with hepatocellular 
carcinoma[21]. FAM83A is a family member A gene 
with a sequence similarity of 83, which is a 
protein-coding gene. Extensive research has indicated 
a robust connection between FAM83A and the 
aggressive nature of tumor cells, making it a focal 
point for further investigation[22-24]. Next, 
KHDRBS2 has significant relation with the treatment 
and outcome of GBM patients[25]. Exploring the 
genetic terrain further, we have identified genes 
encoding proteins belonging to the lymphocyte 
antigen 6 (Ly6) superfamily. These genes are located 

on the long arm 24 (8q24) of human chromosome 8, in 
close proximity to the proto-oncogene c-Myc. These 
genes encode secreted proteins that exhibit wide 
distribution across various cell types, with a recurring 
pattern of overexpression in cancer tissues compared 
to their healthy counterparts[26]. LY6D is a prognostic 
marker of pancreatic adenocarcinoma and colorectal 
cancer[27, 28]. The main prevalent pathway of 
resistance to third-generation EGFR tyrosine kinase 
inhibitors (TKI) is MET amplification, which 
stimulates tumor cell STING, a major cancer 
immunogenicity driver[29]. SLC7A10 has emerged as 
a novel candidate molecular biomarker for cancer[30]. 
Moreover, ovarian, breast and lung cancers all exhibit 
abnormally high levels of MUC16[31-33]. MUC16 and 
its ligands are potential targets for treatment due to 
their dysregulation and functional involvement. 
MYEOV is largely upregulated and stimulates tumor 
development in several human cancers, such as 
gastric, colon, and non-small cell lung cancers 
(NSCLC) [34-36]. WNT protein family is comprised of 
several cysteine-rich glycoproteins that are released, 
and 19 WNT genes have been found in the human 
genome [37]. WNT signaling has been observed in 
several cancer forms, including but not restricted to 
colorectal, liver, and lung cancers[38, 39]. The above 
analysis is consistent with our results that BM genes 
are associated with tumor prognosis and progression. 
However, comprehensive analytical studies on PAAD 
and BMs are lacking. Therefore, more experimental 
evidence is needed to demonstrate the correlation 
between BMs and PAAD. Our research results 
unequivocally indicate that our proposed BM- 
associated signature displayed a predictive efficacy 
for PAAD prognosis that is either equivalent to or 
surpasses that of established models[40-42]. This 
finding served to reinforce the substantial importance 
of BM-related genes within the PAAD context. 

Growing evidence suggests that immune cells in 
TME has a crucial function in disease progression[43]. 
Immunotherapy efficacy and overall survival 
significantly linked to TME components[44]. Our 
findings revealed that patients with low-risk score 
exhibited more immune cells infiltration like B, CD8+ 
T, and monocyte cells, which were more strongly 
associated with immune function, suggesting the 
important role of BM-associated genes in immune 
microenvironment. Immune checkpoint blockade 
(ICB) can increase the effect of antitumor immune 
responses[44]. Interestingly, BTLA, CD200, IDO1, 
LAG3, TNFSF14, etc., were overexpressed in the 
low-risk group, suggesting that low-risk patients may 
get better treatment outcomes in tumor immuno-
therapy. Also, we observed that low-risk patients 
showed higher StromalScore, ESTIMATEScore, and 
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ImmuneScore. Various subtypes and immune scores 
can lead to various outcome and immunotherapy 
response[45]. Taken together, BM-related key 
prognostic genes can accurately and scientifically 
evaluate the prognosis of PAAD patients, which plays 
a crucial role in individualized immunotherapy for 
patients. 

Recently, immunotherapy has played an 
important part as an approach to eliminate ICIs-based 
tumor cells in PAAD patients[46]. Nevertheless, the 
development of chemotherapeutic medication 
resistance in tumor patients caused great challenges to 
therapy and improvement of prognosis. Therefore, 
how to improve chemotherapy sensitivity has 
important clinical significance. Due to the existence of 
more neoantigens, there is proof that patients with a 
greater TMB respond better to immunotherapy [47]. 
We found an association of TMB with risk score, 
lower TMB in the low-risk group by TMB analysis, 
The results indicate that these signatures can assess 
the efficacy of PAAD immunotherapy. Finally, we 
predicted some valuable chemotherapeutic agents for 
PAAD patients. High-risk patients are more sensitive 
to axitinib, camptothecin, nilotinib, and temisiro-
limus, while low-risk patients were more sensitive to 
bleomycin, bortezomib, dasatinib, erlotinib, pacli-
taxel, rapamycin, and sorafenib. Individualized 
chemotherapy combined with immunotherapy is 
necessary for patients having different risk scores. 
Above all, we predicted five small molecule drugs 
with potential therapeutic value for PAAD according 
to DEGs between two risk groups. First, Ro-90-7501 is 
an amyloid β42 (Aβ42) fibril assembly inhibitor that 
reduces Aβ42-induced cytotoxicity. Ro-90-7501 
possesses significant radiosensitizing impacts on 
cervical cancer cells in vitro[48]. It could significantly 
delay tumor growth and significantly decreases 
tumor volume in mice[49]. Second, scriptaid is a 
potent histone deacetylase (HDAC) inhibitor, used in 
cancer research. Scriptaid strongly suppresses 
tumorigenesis in a xenograft mouse model[50]. Third, 
TG101348 is a potent and selective inhibitor of janus 
kinase 2 (JAK2). The therapeutic effect on mice with 
myeloproliferative disease induced by gene mutation 
was remarkable[51]. Fourth, XMD-892 is a unique, 
strong and highly selective dual inhibitor of 
BMK1/ERK5 (big mitogen activated protein kinase 
1/extracellular-signal-regulated kinase) with 
potential antineoplastic activity. It significantly 
decreases the tumorigenesis via inducing CD8+ T cell 
antitumor effect[52]. Fifth, XMD-1150 could target one 
or more autophagy hub genes for accelerating 
autophagy modulation in cancer therapy. Here, we 
found five important small-molecule drugs for the 
treatment of PAAD that may help to find scientifically 

sound new therapeutic strategies for PAAD patients. 
This research has some strengths and limitations. 

we report the value of integrating all BM-associated 
genes in the outcome, immune infiltration and drug 
prediction of PAAD for the first time. Then, the 
obtained genes can better predict the prognosis of 
PAAD patients by risk score. Lastly, five small 
molecule drugs with potential therapeutic value were 
predicted by related genes. A limitation of our 
research is that the mRNA and protein expression of 
cruical prognostic genes were verified only in the 
database. This needs to be further verified by basic 
experimental studies at all levels. 

Overall, we developed and validated 
BM-associated genes having good performance in 
estimating PAAD outcome, immune cell infiltration, 
and chemotherapy response. Predicting potentially 
valuable small-molecule drugs through BM-related 
genes provides a new approach in drug therapy and is 
expected to enhance the outcome and quality of life of 
PAAD patients. BM-related genes may provide 
important reference for PAAD patients to obtain more 
scientific and effective individualized treatment 
plans, and can be used as auxiliary diagnosis and 
therapeutic tools for clinicians. 

Supplementary Material 
Supplementary figures and tables.  
https://www.jcancer.org/v15p0401s1.zip 

Acknowledgments 
We acknowledge TCGA database for uploading 

their meaningful datasets. 

Funding 
This research was supported by the National 

Natural Science Foundation of China (No. 81860099), 
the Natural Science Foundation of Jiangxi Province, 
China (No. 20202ACBL206009). 

Author contributions  
FZ and YL performed graphing and writing; DL 

performed data analysis; XZ were responsible for 
language revisions. YX designed the study and 
supervised the study.  

Availability of data and materials 
The RNA sequencing profiles can be obtained 

from The Cancer Genome Atlas (https://xenabrowser 
.net/; TCGA: PAAD). The mRNA and protein 
expression can be obtained from GEPIA and HPA. 
The basement membrane-related genes can be 
downloaded from this published research article 
(PMC9116610). 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

416 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA 

Cancer J Clin. 2021; 71: 7-33. 
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, 

Matrisian LM. Projecting cancer incidence and deaths to 2030: the 
unexpected burden of thyroid, liver, and pancreas cancers in the United 
States. Cancer Res. 2014; 74: 2913-21. 

3. Park W, Chawla A, O'Reilly EM. Pancreatic Cancer: A Review. JAMA. 
2021; 326: 851-62. 

4. Pozzi A, Yurchenco PD, Iozzo RV. The nature and biology of basement 
membranes. Matrix Biol. 2017; 57-58: 1-11. 

5. Naba A, Clauser KR, Whittaker CA, Carr SA, Tanabe KK, Hynes RO. 
Extracellular matrix signatures of human primary metastatic colon 
cancers and their metastases to liver. BMC Cancer. 2014; 14: 518. 

6. Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F, Attieh Y, et al. 
Cancer-associated fibroblasts induce metalloprotease-independent 
cancer cell invasion of the basement membrane. Nat Commun. 2017; 8: 
924. 

7. Banerjee S, Lo WC, Majumder P, Roy D, Ghorai M, Shaikh NK, et al. 
Multiple roles for basement membrane proteins in cancer progression 
and EMT. Eur J Cell Biol. 2022; 101: 151220. 

8. Jayadev R, Morais M, Ellingford JM, Srinivasan S, Naylor RW, Lawless 
C, et al. A basement membrane discovery pipeline uncovers network 
complexity, regulators, and human disease associations. Sci Adv. 2022; 8: 
eabn2265. 

9. Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, et al. 
GeneMANIA prediction server 2013 update. Nucleic Acids Res. 2013; 41: 
W115-22. 

10. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a 
comprehensive web resource enabling interactive single-cell 
transcriptome visualization of tumor microenvironment. Nucleic Acids 
Res. 2021; 49: D1420-D30. 

11. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et 
al. A Next Generation Connectivity Map: L1000 Platform and the First 
1,000,000 Profiles. Cell. 2017; 171: 1437-52 e17. 

12. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The 
Connectivity Map: using gene-expression signatures to connect small 
molecules, genes, and disease. Science. 2006; 313: 1929-35. 

13. Capurso G, Pecorelli N, Burini A, Orsi G, Palumbo D, Macchini M, et al. 
The impact of nutritional status on pancreatic cancer therapy. Expert Rev 
Anticancer Ther. 2022; 22: 155-67. 

14. Hu D, Jiang L, Luo S, Zhao X, Hu H, Zhao G, et al. Development of an 
autophagy-related gene expression signature for prognosis prediction in 
prostate cancer patients. J Transl Med. 2020; 18: 160. 

15. Yang C, Huang X, Liu Z, Qin W, Wang C. Metabolism-associated 
molecular classification of hepatocellular carcinoma. Mol Oncol. 2020; 
14: 896-913. 

16. Li S, Qi Y, McKee K, Liu J, Hsu J, Yurchenco PD. Integrin and 
dystroglycan compensate each other to mediate laminin-dependent 
basement membrane assembly and epiblast polarization. Matrix Biol. 
2017; 57-58: 272-84. 

17. Wang X, Harris RE, Bayston LJ, Ashe HL. Type IV collagens regulate 
BMP signalling in Drosophila. Nature. 2008; 455: 72-7. 

18. Sherwood DR. Basement membrane remodeling guides cell migration 
and cell morphogenesis during development. Curr Opin Cell Biol. 2021; 
72: 19-27. 

19. Nystrom A, Bornert O, Kuhl T. Cell therapy for basement 
membrane-linked diseases. Matrix Biol. 2017; 57-58: 124-39. 

20. Foster MH. Basement membranes and autoimmune diseases. Matrix 
Biol. 2017; 57-58: 149-68. 

21. Wang Z, Teng D, Li Y, Hu Z, Liu L, Zheng H. A six-gene-based 
prognostic signature for hepatocellular carcinoma overall survival 
prediction. Life Sci. 2018; 203: 83-91. 

22. Wu G, Wang Y, Wan Y. Establishing an 8-gene immune prognostic 
model based on TP53 status for lung adenocarcinoma. J Clin Lab Anal. 
2022; 36: e24538. 

23. Yu WS, Wang ZG, Guo RP, Lin ZQ, Ye ZW, Lu CL. Hepatocellular 
carcinoma progression is protected by miRNA-34c-5p by regulating 
FAM83A. Eur Rev Med Pharmacol Sci. 2020; 24: 6046-54. 

24. Jin Y, Yu J, Jiang Y, Bu J, Zhu T, Gu X, et al. Comprehensive analysis of 
the expression, prognostic significance, and function of FAM83 family 
members in breast cancer. World J Surg Oncol. 2022; 20: 172. 

25. Sun R, Pan Y, Mu L, Ma Y, Shen H, Long Y. Development of a 3 RNA 
Binding Protein Signature for Predicting Prognosis and Treatment 
Response for Glioblastoma Multiforme. Front Genet. 2021; 12: 768930. 

26. Luo L, McGarvey P, Madhavan S, Kumar R, Gusev Y, Upadhyay G. 
Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K 
and Ly6H drive tumorigenesis and clinical outcome. Oncotarget. 2016; 7: 
11165-93. 

27. Wang X, Dou X, Ren X, Rong Z, Sun L, Deng Y, et al. A 
Ductal-Cell-Related Risk Model Integrating Single-Cell and Bulk 
Sequencing Data Predicts the Prognosis of Patients With Pancreatic 
Adenocarcinoma. Front Genet. 2021; 12: 763636. 

28. Zhang Z, Huang L, Li J, Wang P. Bioinformatics analysis reveals immune 
prognostic markers for overall survival of colorectal cancer patients: a 
novel machine learning survival predictive system. BMC Bioinformatics. 
2022; 23: 124. 

29. Yoshida R, Saigi M, Tani T, Springer BF, Shibata H, Kitajima S, et al. 
MET-Induced CD73 Restrains STING-Mediated Immunogenicity of 
EGFR-Mutant Lung Cancer. Cancer research. 2022; 82: 4079-92. 

30. Yang RH, Liang B, Li JH, Pi XB, Yu K, Xiang SJ, et al. Identification of a 
novel tumour microenvironment-based prognostic biomarker in skin 
cutaneous melanoma. Journal of cellular and molecular medicine. 2021; 
25: 10990-1001. 

31. Zhang M, Cheng S, Jin Y, Zhao Y, Wang Y. Roles of CA125 in diagnosis, 
prediction, and oncogenesis of ovarian cancer. Biochim Biophys Acta 
Rev Cancer. 2021; 1875: 188503. 

32. Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, et al. 
Cancer-associated mucins: role in immune modulation and metastasis. 
Cancer Metastasis Rev. 2019; 38: 223-36. 

33. Lakshmanan I, Salfity S, Seshacharyulu P, Rachagani S, Thomas A, Das 
S, et al. MUC16 Regulates TSPYL5 for Lung Cancer Cell Growth and 
Chemoresistance by Suppressing p53. Clin Cancer Res. 2017; 23: 3906-17. 

34. Leyden J, Murray D, Moss A, Arumuguma M, Doyle E, McEntee G, et al. 
Net1 and Myeov: computationally identified mediators of gastric cancer. 
Br J Cancer. 2006; 94: 1204-12. 

35. Moss AC, Lawlor G, Murray D, Tighe D, Madden SF, Mulligan AM, et al. 
ETV4 and Myeov knockdown impairs colon cancer cell line proliferation 
and invasion. Biochem Biophys Res Commun. 2006; 345: 216-21. 

36. Fang L, Wu S, Zhu X, Cai J, Wu J, He Z, et al. MYEOV functions as an 
amplified competing endogenous RNA in promoting metastasis by 
activating TGF-beta pathway in NSCLC. Oncogene. 2019; 38: 896-912. 

37. Logan CY, Nusse R. The Wnt signaling pathway in development and 
disease. Annu Rev Cell Dev Biol. 2004; 20: 781-810. 

38. Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of 
targeting the Wnt/beta-catenin signaling pathway in colorectal cancer. 
Biomed Pharmacother. 2019; 110: 473-81. 

39. He S, Tang S. WNT/beta-catenin signaling in the development of liver 
cancers. Biomed Pharmacother. 2020; 132: 110851. 

40. Yan C, Niu Y, Li F, Zhao W, Ma L. System analysis based on the 
pyroptosis-related genes identifies GSDMC as a novel therapy target for 
pancreatic adenocarcinoma. Journal of translational medicine. 2022; 20: 
455. 

41. Chen D, Huang H, Zang L, Gao W, Zhu H, Yu X. Development and 
Verification of the Hypoxia- and Immune-Associated Prognostic 
Signature for Pancreatic Ductal Adenocarcinoma. Frontiers in 
immunology. 2021; 12: 728062. 

42. Wu Z, Huang X, Cai M, Huang P, Guan Z. Novel necroptosis-related 
gene signature for predicting the prognosis of pancreatic 
adenocarcinoma. Aging. 2022; 14: 869-91. 

43. Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately 
Modulates Cancer Progression. Cancer Res. 2019; 79: 4557-66. 

44. Petitprez F, Meylan M, de Reynies A, Sautes-Fridman C, Fridman WH. 
The Tumor Microenvironment in the Response to Immune Checkpoint 
Blockade Therapies. Front Immunol. 2020; 11: 784. 

45. DeBerardinis RJ. Tumor Microenvironment, Metabolism, and 
Immunotherapy. N Engl J Med. 2020; 382: 869-71. 

46. Carpenter E, Nelson S, Bednar F, Cho C, Nathan H, Sahai V, et al. 
Immunotherapy for pancreatic ductal adenocarcinoma. J Surg Oncol. 
2021; 123: 751-9. 

47. Fusco MJ, West HJ, Walko CM. Tumor Mutation Burden and Cancer 
Treatment. JAMA Oncol. 2021; 7: 316. 

48. Bohrmann B, Adrian M, Dubochet J, Kuner P, Muller F, Huber W, et al. 
Self-assembly of beta-amyloid 42 is retarded by small molecular ligands 
at the stage of structural intermediates. J Struct Biol. 2000; 130: 232-46. 

49. Tamari K, Sano K, Li Z, Seo Y, Otani K, Tatekawa S, et al. Ro 90-7501 Is a 
Novel Radiosensitizer for Cervical Cancer Cells that Inhibits ATM 
Phosphorylation. Anticancer Res. 2019; 39: 4805-10. 

50. Keen JC, Yan L, Mack KM, Pettit C, Smith D, Sharma D, et al. A novel 
histone deacetylase inhibitor, scriptaid, enhances expression of 
functional estrogen receptor alpha (ER) in ER negative human breast 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

417 

cancer cells in combination with 5-aza 2'-deoxycytidine. Breast Cancer 
Res Treat. 2003; 81: 177-86. 

51. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE, et al. 
Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine 
model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008; 13: 
311-20. 

52. Zhang S, Yu F, Che A, Tan B, Huang C, Chen Y, et al. Neuroendocrine 
Regulation of Stress-Induced T Cell Dysfunction during Lung Cancer 
Immunosurveillance via the Kisspeptin/GPR54 Signaling Pathway. Adv 
Sci (Weinh). 2022; 9: e2104132. 

 


