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Abstract 

Background: Our study attempts to develop and identify an aerobic glycolysis and glutamine-related 
genes (AGGRGs) signature for estimating prognostic effectively of ovarian cancer (OV) patients.  
Materials & methods: OV related data were extracted from the multiple public databases, including 
TCGA-OV, GSE26193, GSE63885, and ICGC-OV. A consistent clustering approach was used to 
characterize the subtypes associated with AGGRGs. LASSO Cox regressions was utilized to construct 
the prognosis signatures of AGGRGs. In addition, GSE26193, GSE63885 and ICGC-OV served as 
independent external cohorts to assess the reliability of the model. In vitro and in vivo experiments were 
conducted to study the role of AAK1 in the malignant progression and glutamine metabolism of OV, and 
assessed its therapeutic potential for treating OV patients. 
Results: OV patients could be separated into four subtypes (quiescent, glycolysis, glutaminolytic, and 
mixed subtypes). The survival outcome of glutaminolytic subtype was notably worse than the glycolytic 
subtype. Besides, we identified eight AGGRGs (AAK1, GJB6, HMGN5, LPIN3, INTS6L, PPOX, SPAG4, 
and ZNF316) to establish a prognostic signature for OV patients. Comprehensive analysis revealed that 
the signature risk score served as an independent prognostic factor for OV. Additionally, high-risk OV 
patients were less sensitive to platinum and, conversely, were proved to be more responsive to 
immunotherapy than low-risk score. In cytological experiments, we found that AAK1 could promote 
cancer progression and glutamine metabolism via activating the Notch3 pathway in OV cells. 
Furthermore, knockdown of AAK1 significantly inhibited tumor growth and weight, decreased lung 
metastases, and ultimately extended the survival time of the nude mice. 
Conclusions: The prognostic signature of AGGRGs constructed could efficiently estimate the 
prognosis and immunotherapy effectiveness of OV patients. In addition, AAK1 may represent a promising 
therapeutic target for OV. 
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Introduction 
Ovarian cancer (OV) is widely acknowledged as 

the most lethal gynecologic malignancy. According to 
literature reports, the global incidence of OV in 2020 
was recorded as 313,959 patients with a total mortality 
count of 207,252 patients [1]. Although treatments 
such as surgery and platinum-based chemotherapy 

have become standard, five-year survival rates for OV 
patients remain below 50 percent, mainly due to the 
challenges of recurrence and chemotherapy resistance 
[2]. Correspondingly, the investigation of potential 
therapeutic targets, as well as diagnostic or prognostic 
factors, is crucial for OV patients. A considerable body 
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of evidence suggested that the metabolic pathways of 
glycogen, lipids, amino acids, and other substances 
were strongly associated with the diagnosis, 
chemotherapies, and prognosis of OV [3-5]. In this 
regard, metabolism provided a promising target to 
combat cancer progression and assess prognosis. 

A previous study has proposed that aerobic 
glycolysis, an important feature of tumor metabolic 
reprogramming, contributes to malignancy 
progression, chemotherapy resistance, and immune 
evasion [6]. For instance, mitochondrial calcium 
uptake 1 (MICU1) was associated with aerobic 
glycolysis and chemotherapy resistance in OV [7]. 
Tankyrase activation of the Wnt/β-Catenin signal 
pathway and aerobic glycolysis facilitated the 
malignant progression [8]. Importantly, genes 
associated with glycolysis were effective predictors of 
survival in cases of OV [9]. While studies have 
indicated that aerobic glycolysis was the primary 
means for tumor cells to produce energy, the 
dysregulation of fatty acids and amino acids, 
particularly glutamine, serine and glycine, through 
synthesis/catabolism pathways, were also 
significantly associated with tumor energy 
metabolism [10, 11]. Recent research has revealed that 
the primary energy source for cancer cells was 
glutamine, rather than glucose [12]. For instance, 
glutamine participated in the progression of OV as 
well as in the development of resistance to 
chemotherapy [13]. Glutamine metabolism was 
significantly increased in platinum-resistant OV cells 
[14]. One possible critical mechanism was that the 
oncogene MYC promoted platinum resistance by 
up-regulating glutaminase (GLS) [15]. Additionally, 
Glutamate-ammonia ligase (GLUL), popularly known 
as glutamine synthetase (GS), was extremely 
expressed in OV and associated with poor prognosis 
[16]. Thus, metabolic reprogramming, especially 
aerobic glycolysis and glutamine metabolism, were 
strongly associated with patient outcomes. 
Regrettably, at present, there is a lack of 
comprehensive assessment regarding the prognostic 
of glycolysis and glutamine metabolism in forecasting 
the survival of OV patients. 

Considering the significant roles of aerobic 
glycolysis and glutamine genes in OV, we aimed to 
classify the OV patients into four distinct metabolic 
subtypes according to the two metabolic gene 
expressions. In addition, we developed a prognosis 
model for prognostic stratification and drug efficacy 
prediction depended on the aerobic glycolysis and 
glutamine-related genes (AGGRGs), and examined 
the relationship of tumor microenvironment and 
immune infiltration. The process of this research was 
indicated in Figure 1. 

Methods  
Data collection and processing 

TCGA-OV and GTEx data were extracted from 
the UCSC XENA (https://xenabrowser.net/ 
datapages/) by the Toil process [17], which integrates 
TCGA-GTEx and TPM formats. Moreover, three 
datasets were served as external validation cohorts, 
including GSE26193 [18], GSE63885 [19], ICGC-OV 
(https://dcc.icgc.org/). The relevant clinical features 
of those datasets were shown in Table 1. Aerobic 
glycolytic pathway genes (WP_AEROBIC_ 
GLYCOLYSIS, n = 12) and the glutaminolytic 
pathway genes (GOBP_GLUTAMINE_FAMILY_ 
AMINO_ACID_CATABOLIC_PROCESS, n = 27) 
were collected from the MSigDB database [20] (Table 
S1).  

 

Table 1. Distribution of clinical characteristics across the four 
datasates 

  TCGA-OV 
(N=420) 

 GSE26193 
(N=107) 

 GSE63885 
(N=75) 

 ICGC-OV 
(N=111) 

Age         
≤60  231  NA  NA  66 
>60  189  NA  NA  45 
Grade         
G1  1  8  0  NA 
G2  49  31  0  NA 
G3  361  68  58  NA 
G4  1  0  17  NA 
Unknown  8  0  0  NA 
Stage         
Ⅰ  1  20    0 
Ⅱ  25  11  2  0 
Ⅲ  328  59  63  96 
Ⅳ  63  17  10  15 
Unknown  3  0  0  0 

 

Identification of the AGGRGs-related subtypes 
According to previous study [21], the 

“ConsensusClusterPlus” R package was utilized to 
perform consensus clustering of OV samples. 
Ultimately, according to the median expression level 
of co-expressed metabolic genes, we classified the OV 
patients into four completely distinct metabolic 
subtypes: quiescent type, glycolytic type, 
glutaminolytic type, and mixed type.  

Weighted gene co-expression network analysis 
(WGCNA) and enrichment analysis 

Firstly, the "limma" package was applied to 
discover the dysregulated genes between the 
glutaminolytic type and glycolytic type according to | 
Log2FC | > 0.585 and P. adj < 0.05 standard. Next, 
consistent with the approach that Zhang et al. has 
adopted [21], the "WGCNA" package was applied to 
pinpoint the key genes associated with metabolic 
variances between the glutaminolytic and glycolytic 
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subtypes. The "ClusterProfiler" package was 
employed to conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
of the key metabolic genes. 

Establishment and validation of an AGGRGs 
prognostic signature 

An AGGRGs prognostic model was conducted 
by utilizing univariate Cox, LASSO, and multivariate 
Cox regressions established on the TCGA-OV dataset. 
A risk score was computed for each sample utilizing 
the following algorithm: Riskscore = Σ coef × 
expression (coefficient, coef). The samples were 
separated into low- or high-risk founded on the 
median risk score of the constructed model. 
Additionally, the samples were haphazardly 
separated into training and testing cohorts at a 1:1 
ratio. Moreover, survival analysis as well as receiver 
operating characteristic (ROC) curve analysis were 
performed to assess the effectiveness of the model 
across multiple cohorts, including the TCGA-OV train 
cohort (n = 210), TCGA-OV test cohort (n = 210), 
TCGA-OV all cohort (n = 420), as well as the 
GSE26193 (n = 107), GSE63885 (n = 75), and ICGC-OV 
(n = 111) cohorts. In addition, a nomogram was 
established to forecast the 1-, 3-, and 5-year overall 
survival (OS) rates for OV. We evaluated the 
discriminative ability of the model using a calibration 
curve and a concordance index (C-index). Addition-
ally, the clinical outcomes of various decision-making 
strategies were evaluated by decision curve analysis 
(DCA). 

Drug sensitivity prediction and immune 
landscape 

The theoretical basis and reference for 
individualized treatment of clinical patients were 
evaluated by comparing drug sensitivity using the 
"oncoPredict" package [22], which predicts the half 
maximal inhibitory concentration (IC50) of potential 
drugs. Besides, the CIBERSORT algorithm was used 
to compare levels of immune cell infiltration among 
low- and high-risk groups. 

Evaluation of the Immunotherapy 
Firstly, the risk score with each patient in the 

IMvigor210 cohort was quantified based on the 
previous risk algorithm, and subsequently performed 
survival analysis and immunotherapy prediction. We 
next explored the immune efficacy of targeting 
CTLA-4 and PD-1 relying on the TCIA dataset (The 
Cancer Immunome Atlas, https://tcia.at/home). 

Cell culture 
Normal human ovarian epithelial cells IOSE-80, 

and multiple OV cell lines including SKOV3, A2780, 

OVCAR3, OVCAR8, and ES-2 were obtained from the 
China Center for Type Culture Collection (Hubei, 
China). IOSE-80, SKOV3, A2780 were grown in 
RPMI-1640 medium, ES-2 was grown in McCoy's 5A 
medium, and OVCAR3, OVCAR8 were cultured in 
DMEM medium. All medium applied for cell culture 
were added with 1% penicillin-streptomycin mixture 
and 10% fetal bovine serum. All cell lines were 
cultured at 5% CO2, and 95% air at 37 °C. 

CCK-8 assay  
2 × 103 cells per well were inoculated into 96-well 

plates and cultured for the indicated times. Then 10 μl 
of CCK-8 solution (40203ES76, Yeasen Biotechnology 
Co., Ltd, Shanghai, China) was infused into each well 
and were incubated for 2h. The optical density (OD) 
of each chamber was calculated at 450 nm utilizing a 
microplate reader (EnSight, USA) and cell viability 
was quantified. 

EdU assay 
Cells planted into 24-well plates (5 × 104 cells per 

well) were cultured at 80% confluence by using EdU 
Imaging Kit (C0075S, Beyotime Institute of 
Biotechnology, Jiangsu, China). In a nutshell, cells in 
each chamber were marked with 10 μM EdU solution 
for 2 h. Next, cells were immobilized utilizing 4% 
paraformaldehyde for 10 min, then the nucleus was 
stained 5 min by DAPI in the dark. Photographs were 
obtained using a fluorescence microscope (Olympus, 
Tokyo, Japan). The Image J software (v.1.8.0) was 
utilized to assess the number of EdU-positive cells. 

Transwell invasion assay 
Matrigel invasion assay was executed to 

determine the cell invasion capability as previously 
published [23]. The result was calculated utilizing 
Image J software (v.1.8.0). 

Intracellular glutamate (Glu), α-Ketoglutaric 
Acid (α-KG) and ATP levels 

The intracellular levels of glutamate, α-KG, and 
ATP were measured using the Glutamate Content 
Assay Kit (Sosarbio, BC1585), α-KG Content Assay Kit 
(Sosarbio, BC5425), and ATP Colorimetric Assay Kit 
(BioVision, EATP-100), according to the 
manufacturer's instructions. 

Reduced glutathione (GSH) and reactive 
oxygen species (ROS) assay 

The intracellular concentration of GSH was 
assessed utilizing the GSH Assay Kit (Nanjing 
Jiancheng Bioengineering Institute, A006-2-1) based 
on the instructions provided by the manufacturer. 
Dihydroethidium Assay Kit (Beyotime, S0063) was 
used to detect intracellular ROS levels. The 
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observations were made on an Olympus IX71 
fluorescence microscope in a blinded manner and the 
average fluorescence intensity was determined by 
analyzing the images using image J software (v.1.8.0).  

Gene over-expression and knockdown 
Human AAK1(Gene id: 22848) overexpression 

vectors, and an empty vector containing pGPU6 were 
acquired from Ribobio (Guangzhou, China). The 
shRNA sequences against AAK1 (sh-AAK1 #1 and 
sh-AAK1 #2) were obtained from RiboBio 
(Guangzhou, China) with pGPU6 vector. The AAK1 
shRNA sequences were presented as follows: 
shRNA#1: GGCTGAAGATGAGTTTGACCCTATT; 
shRNA#2: GAGCACCAGAAATGGTCAACCTGTA. 

Real-time quantitative PCR (RT-qPCR) 
RT-qPCR was conducted following the 

established protocol as previously described [23]. PCR 
primers were listed below: AAK1 (forward): 
AGTTTGCCCCCATAGCACTC, (reverse): CCTAGA 
GTGCCCACCTTGTG. β-actin (forward): CGCGGC 
GATATCATCATCCA, (reverse): CGGCTTCCTTTG 
TCCCCAAT.  

Western blotting 
Western blotting assay was executed as 

previously reported [23], with rabbit anti-human 
antibodies for AAK1 (1:2000, PA5408, Abmart), 
Notch3 (1:1000, PS08936, Abmart), GLS (1:2000, 
T55719, Abmart), MMP-2 (1:1000, PA1748, Abmart), 
MMP-9 (1:2000, TA5228, Abmart), and β-actin (1:2000, 
GB11001, Servicebio).  

Immunofluorescence staining 
In brief, after formalin fixing, cells were 

permeabilized with 0.1% Triton X-100 in TBS for 5 
minutes, followed by a 30-minute block with goat 
serum. Next, cells were subjected to incubation with 
the AAK1 antibody (1:50, PA5408, Abmart) for 1h and 
hatched with FITC-conjugated goat anti-rabbit IgG 
(1:100, GB22303, servicebio) at room temperature for 2 
hours at 37°C. Subsequently, the nucleus was marked 
with DAPI (BL105A, Biosharp). Finally, the cells were 
captured using a fluorescence microscope (Olympus, 
Tokyo, Japan). 

Hematoxylin and eosin (HE) staining and 
immunohistochemistry (IHC) staining 

The HE, IHC protocol and result analysis 
method were performed as previously described [24], 
with rabbit anti-human antibodies for AAK1 (1:200, 
PA5408, Abmart), Notch3 (1:10, PS08936, Abmart), 
GLS (1:100, T55719, Abmart), MMP-2 (1:100, PA1748, 
Abmart), MMP-9 (1:300, TA5228, Abmart), and Ki-67 
(1:200, GB111141, Servicebio). 

Subcutaneous graft tumor and lung metastasis 
model 

 Briefly, 4 weeks old female BALB/c nude mice, 
were injected with 1 × 106 cells that had been stably 
transfected into the right dorsal flank (n = 5 per 
group). Tumor diameters were measured weekly 
using a caliper, and the volume was calculated as 
follows: tumor volume = length × (width)²/2. 

For the tumor lung metastasis assay, 1 × 107 cells 
were injected into the tail veins of male BALB/c nude 
mice that were 4 weeks old (n = 5 per group). The 
lung tissues were performed to HE staining, and the 
number of lung metastatic nodules was randomly 
counted. 

All experimental animal protocols adhered to the 
NIH Guidelines for the Care and Use of Laboratory 
Animals and received approval from the Animal 
Research Ethics Committee of the Renmin Hospital of 
Wuhan University. 

Statistical analysis 
Statistical analysis was achieved in R software 

(version 4.0.2) and GraphPad Prism (version 8.0). The 
student’s t-test was utilized to compare data between 
the two independent groups. One-way analysis of 
variance (ANOVA) with Bonferroni's correction was 
used to analyze the comparisons among multiple 
groups. Log-rank test was applied to survival 
analysis. The statistical significance was deemed 
significant when the P < 0.05. 

Results 
Identification of the four metabolic subtypes of 
OV 

First, the consensuscluster classification of 
AGGRGs was executed utilizing the 
"ConsensusClusterPlus" R package grounded on the 
TCGA-OV dataset, and the data suggested that when 
K=4, the glycolytic and glutaminolytic genes were 
collected in a cluster, respectively. As revealed in 
Figure 2A, the co-expressed genes in C2 
(characterized as glycolytic genes, including ALDOA, 
ENO1, GAPDH, GPI, LDHA, PGK1, PKM, TPI1) be 
categorized as the glycolytic metabolic pathway, and 
the co-expressed genes in C3 (characterized as 
glutaminolytic genes, including ARG1, ASRGL1, 
DAO, FAH, GAD2, NOS1, NOS2, PRODH2) belong to 
the glutaminolytic metabolic pathway. Patients were 
delineated into four metabolic subtypes based on the 
two types of co-expressed metabolism gene sets, as 
described approach in the earlier literature [21] 
(Figure 2B), including quiescent subtype, glycolytic 
subtype, glutaminolytic subtype, and mixed subtype.  
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Figure 1. The workflow of this study.              

 
The gene expression levels between the four 

metabolic subtypes were shown in Figure 2C. 
Furthermore, an analysis of the prognostic value 
between the four subtypes revealed significant 
differences among them. As shown in Figure 2D, the 
OS of glutaminolytic subtype was extremely worse 

than the glycolytic subtype. Prior research has 
demonstrated that metabolic reprogramming related 
intimately to changes in the tumor microenvironment 
and malignancy progression [25], therefore, we 
explored the difference in tumor microenvironment 
across the four metabolic subtypes. The immune, 
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stromal, and ESTIMATE scores of the four metabolic 
subtypes were from high to low: mixed subtype, 
glycolysis subtype, quiescent subtype, glutaminolytic 
subtype (Figure 2E). Furthermore, we evaluated the 
feasibility of immunotherapy in four metabolic 
subtypes based on the Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm (http://tide 
.dfci.harvard.edu) [26]. The analysis revealed that the 

TIDE score was notably elevated in the glutaminolytic 
subtype compared to all other subtypes (Figure 2F), 
which indicated that the glutaminolytic subtype 
responds worse to immunotherapy than the other 
subtypes. In brief, our results suggested that the four 
metabolic subtypes could effectively assess the 
prognosis and efficacy of immunotherapy based on 
the glycolytic and glutaminolytic genes in OV. 

 

 
Figure 2. Classification of the four metabolic subtypes based on the expression of AGGRGs in OV patients. (A) Consistent clustering of the AGGRGs based on 
TCGA-OV samples. (B) Scatter plot revealing the four metabolic subtypes based on AGGRGs expression. (C) Heatmap indicating the co-expressed AGGRGs levels in the four 
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metabolic subtypes. (D) Comparison of the survival curves among the four metabolic subtypes. (E-F) Violin plot displaying the immune score, stromal score, ESTIMATE score 
and TIDE score among the four metabolic subtypes, respectively. * P < 0.05, ** P < 0.01, ***P < 0.001. 

Identification of co-expression network 
associated with glutaminolytic-glycolytic types 

To further uncover the difference genes, we 
performed a differential expression analysis. Among 
these, a total of 750 differentially expressed genes 
(DEGs) were discovered, including 218 decreased 
expression genes and 532 increased expression genes 
in the glutaminolytic subtype (Figure S1A). 
Subsequently, we conducted a WGCNA depending 
on the 750 differentially expressed genes (Figure 
S1B). To identify distinct gene modules, the dynamic 
cutting method was utilized. The modules were 
further filtered by employing a soft threshold of 0.8, 
resulting in the identification of three different gene 
modules: turquoise, blue, and grey (Figure S1C-E). In 
order to screen modules with significant correlation to 
glycolysis and glutamine subtypes, the eigenvalue 
(ME) of each module was calculated, respectively. The 
correlation heat map was displayed in Figure S1F, 
and the blue module suggested a positive correlation 
with the glutaminolytic subtype (R = 0.75, P = 6E-36), 
while the turquoise module was significantly 
correlated with the glycolytic subtype (R = 070, P = 
3.2E-41) (Figure S1F). Next, the GO enrichment 
analysis unveiled that the biological process (BP) 
category was predominantly enriched in the regula-
tion of ion transmembrane transport, cytokine- 
mediated signaling pathway, calcium ion transport, 
negative regulation of immune system process, and 
calcium ion transmembrane transport (Figure S1G). 
Besides, cell composition (CC) was primarily enriched 
in collagen-containing extracellular matrix, secretory 
granule membrane, ion channel complex, cation 
channel complex, and cluster of actin-based cell 
projections (Figure S1H). Furthermore, molecular 
function (MF) was mostly enriched in passive 
transmembrane transporter activity, metal ion 
transmembrane transporter activity, ion channel 
activity, signaling receptor activator activity, and 
receptor ligand activity (Figure S1I). Those findings 
demonstrated that the metabolism-related genes were 
widely involved in the complex and diverse cellular 
biological processes of OV. In addition, highly 
enriched KEGG pathway indicated calcium signaling 
pathway, PI3K-Akt signaling pathway, cAMP 
signaling pathway, focal adhesion, and protein 
digestion and absorption (Figure S1J). These 
metabolic-related pathways might be closely related 
to malignant progression [27], immune escape [28] 
and chemotherapy resistance [29]. 

Construction and verification of a prognostic 
model based on AGGRGs signature 

In total, 22 genes correlated with prognosis were 
selected based on the metabolic-related genes 
(containing genes in the blue and turquoise modules) 
applying univariate Cox regression, including 13 
genes with high-risk (HR > 1) and 9 genes with 
low-risk (HR < 1) (Figure 3A). Moreover, we 
identified eight key metabolic genes suitable for the 
construction of prognostic model by using LASSO 
and multivariate Cox regressions (Figure 3B-C). The 
risk score for each patient was computed by taking 
into account the gene expression levels and regression 
coefficients. Risk score = (0.219436774166723 ×AAK1 
expression) + (0.318685645443347 × GJB6 expression) 
+ (-0.202206865106937 × HMGN5 expression) + 
(0.210947750407656 × LPIN3 expression) + 
(-0.56026035245543 × INTS6L expression) + 
(-0.356089292934913 × PPOX expression) + 
(-0.298411359156902 × SPAG4 expression) + 
(0.421629173986513 × ZNF316 expression). The total 
cohort of 420 samples was randomly classified into 
two cohorts: a training cohort (n=210) and a test 
cohort (n=210). The OS analysis demonstrated that 
high-risk groups within the training, test, and total 
cohorts consistently had poor outcomes (P < 0.05) 
(Figure 3D-F). The area under the curve (AUC) value 
exceeds 0.6 across all three cohorts at 1-, 3-, and 
5-years (Figure 3G-I). Next, we assessed the risk 
scores in conjunction with clinicopathological 
indicators and observed that the AUC of the risk score 
outperformed other clinical indicators in terms of 
accuracy across all three groups (Figure 3J-L). 
Additionally, high-risk patients with age > 60, G3-4, 
and stage Ⅲ-Ⅳ had worse prognosis in three cohorts 
(P < 0.05) (Figure S2). Furthermore, the reliability of 
the model was verified in multiple independent 
external cohorts, including GSE26913, GSE63885, and 
ICGC-OV (Figure S3).  

To verify the independence of the risk score from 
other clinical indicators, Cox regression analysis 
revealed that our prognostic model was an 
independent prognostic factor, capable of assessing 
patient prognosis autonomously, regardless of other 
clinical indicators (Figure 4). In addition, nomograms 
were constructed to evaluate the prognosis of ovarian 
cancer patients, and not only the calibration curves 
but also concordance index (C-index) results 
indicated that nomograms could accurately predict 
OS rates (Figure 5A-C). Additionally, the decision 
curve analysis (DCA) revealed that the risk score 
offered the greatest net benefit in predicting 5-year 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

390 

overall survival (OS) rates (Figure 5D). In summary, 
our risk model demonstrated extremely efficient 

predictive capability and held significant potential for 
clinical applications. 
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Figure 3. Development of AGGRGs prognostic model established on TCGA-OV dataset. (A) Univariate Cox analysis of the prognostic-related genes. (B-C) LASSO 
regression was applied to determine candidate prognostic-related genes. (D-F) Represent the K-M plot between the low- and high-risk groups in the training cohort (D), test 
cohort (E), and total cohort (F), respectively. (G-I) ROC curves for the prognostic capability of prognostic model in the training cohort (G), test cohort (H), and total cohort 
(I), respectively. (J-L) The ROC curves of the risk score and other clinical indicators for OS in training cohort, verification cohort, total cohort, respectively. 

 
Figure 4. Independent prognostic significance of the AGGRGs risk model. (A-C) Univariate cox and multivariate cox regression analysis in training cohort (A), 
verification cohort (B), and total cohort (C), respectively. 

 

Drug susceptibility prediction and tumor 
immune landscape 

To predict the response to small-molecule 
compounds and chemotherapeutics in the TCGA-OV 
cohort, we applied the "oncoPredict" R package to 
calculate the IC50 values. Our findings revealed that 
low-risk groups responded considerably more to 
cisplatin and oxaliplatin, while high-risk groups 
showed the opposite trend (Figure 6A). This 
suggested that platinum-based therapies might not be 
effective in high-risk patients. Our screening results 
revealed that 14 drugs exhibited greater treatment 
responsiveness in the high-risk group, including 

ABT737 (a Bcl2 inhibitor) and EPZ004777 (a disruptor 
of telomeric silencing 1-like inhibitor) (Figure 6A, 
Figure S4). Earlier research had demonstrated that 
ABT737 promoted apoptosis in OV cells by inhibiting 
aerobic glycolysis [30]. In addition, the mechanism 
underlying EPZ004777 against OV involves the 
inhibition of amino acid and nucleotide biosynthesis 
pathways [31]. Hence, personalized treatment guided 
by patient risk scores represents an encouraging 
treatment modality.  

Next, we investigated whether immunotherapy 
could provide a potential therapeutic benefit for the 
high-risk group that exhibited poor response to 
platinum-based therapy. Due to the strong 
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relationship between tumor metabolism and 
immunity [32], correlation analysis was performed to 
examine the relationship between different risk scores 
and immune infiltration levels in OV. The violin plot 
illustrated that the high-risk group showed higher 
levels of T cells CD8, NK cells, and M2 macrophages 
compared to the low-risk group (P < 0.05). On the 
other hand, the high-risk group presented lower 
levels of T cells follicular helper and macrophages M1 
than the low-risk group (P < 0.05) (Figure 6B). Despite 
the higher enrichment of T cells CD8 and activated 
NK cells, the high-risk group still had an unfavorable 
prognosis in contrast to the low-risk group. We 
speculated the poor prognosis in the high-risk group 
was attributed to immune escape. As we expected, 
notable differences were discovered in immune 
checkpoint expression between the low- and high-risk 
groups. The high-risk group indicated increased 
expression levels of CD276, CD28, CD80, CTLA4, 

HAVCR2, ICOS, LAG3, PDCD1LG2, and PDCD1 
compared to the low-risk group (Figure 6C). Survival 
analysis verified that elevated expression of multiple 
immune checkpoint genes, including CD28, CD276, 
CD80, CD86, CTLA4, HAVCR2, LAG3, PDCD1, and 
PDCD1LG2, was strongly associated with poor 
prognosis. Those results suggested that these immune 
checkpoint genes overexpression might be a crucial 
factor contributing to the poorer prognosis observed 
in high-risk patients (Figure S5). Furthermore, the 
results of our analysis of the tumor microenvironment 
revealed significantly greater stromal, immune, and 
ESTIMATE scores in the high-risk group than in the 
low-risk group (Figure 6D). In contrast, the TIDE 
score was extremely lower in the high-risk patient 
(Figure 6E). Based on the results above, our findings 
indicated that immunotherapy could represent a 
promising therapeutic approach for high-risk 
patients. 

 
 

 
Figure 5. Development and validation of the nomogram. (A) Nomogram to forecast the survival rate of OV at 1-, 3-, and 5-year. (B-C) Calibration curve (B) and 
concordance index (C-index) (C) revealed the predictive capacity and reliability of AGGRGs prognostic model. (D) The DCA diagram evaluated the clinical factor of the risk 
model. 
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Figure 6. Drug susceptibility prediction and tumor immune landscape. (A) Drug sensitivity between the low- and high-risk patients. (B) Immune cell infiltration 
analysis between the low- and high-risk patients. (C) Differential expression of immune checkpoint genes between the low- and high-risk patients. (D) Violin plot displayed the 
stromal score, immune score, and ESTIMATE score between the low- and high-risk groups, respectively. (E) Violin plot revealed the TIDE score between the low- and high-risk 
groups. * P < 0.05, ** P < 0.01, ***P < 0.001. 

 

Evaluation of Immunotherapy 
Given the above results, we evaluated whether 

immunotherapy could provide benefits to high-risk 
patients. We assessed the risk score for each 
individual sample in the IMvigor210 cohort based on 
the established risk model. Subsequently, all samples 
were classified into low- and high-risk groups based 
on the median risk score. The survival analysis 
demonstrated a significantly worse prognosis in 
high-risk patients (Figure 7A). And more importantly, 
we identified that high-risk samples with increased 
levels of CTLA4 or PDCD1 had the worst outcome 
(Figure 7B-C). Encouragingly, high-risk patients were 
more potential to benefit from ICB therapy and 
improve their outcome than the low-risk patients 
(Figure 7D). To validate the reaction of high-risk 
patients to immunotherapy, we conducted an analysis 
of the immune efficacy of targeting CTLA-4 and PD-1 
using data from the TCIA dataset. The results were 
consistent with our prior study and provided 

confirmation that high-risk patients display a more 
favorable response to CTLA-4 and PD-1 
immunotherapy in comparison to low-risk patients 
(Figure 7E). The above results indicated the clinical 
significance of the prognostic model in guiding 
immunotherapy. 

AAK1 promotes malignant progression of OV  
In our analysis of the gene expression and 

prognostic values of risk-model related genes, our 
findings revealed a consistent correlation between 
elevated expression levels of AAK1 and an 
unfavorable prognosis in OV patients. These 
observations provided evidence that AAK1 might 
play an oncogenic role in OV (Figure S6A, Figure 
S6C). Based on the consistency of its expression and 
poor prognosis, we selected AAK1 as our primary 
candidate for further investigation into its potential 
role in OV. Subsequently, we investigated the 
expression levels of AAK1 between OV and normal 
ovary tissues from The Human Protein Atlas (THPA, 
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https://www.proteinatlas.org/) (Figure 8A). We also 
evaluated the mRNA and protein expression of AAK1 
between IOSE-80 and OV cell lines. Results 
consistently demonstrated that AAK1 expression 
levels were significantly higher in both OV tissues as 
well as cancer cell lines when compared to normal 
tissues and cell lines (Figure 8B-C). Furthermore, 
immunofluorescence analysis indicated that AAK1 
protein predominantly localizes to the cytoplasm 
(Figure 8D). We selected A2780 and OVCAR3 cell 
lines for follow-up investigations based on their 
endogenous expression levels of AAK1 (Figure 8B-C). 
Overexpression or knockdown of AAK1 resulted in 
the promotion or reduction of the cell viability, 
proliferation, and invasion in both A2780 and 
OVCAR3 cells, respectively (Figure 8E-G). While 
research on the role of AAK1 in tumor progression 
remains limited, previous study has suggested that 
AAK1 can stimulate the Notch pathway [33]. Multiple 
studies have demonstrated that abnormal activation 
of the Notch pathway plays a crucial role in the 
malignant advancement of OV, and interventions 
targeting this pathway have shown promising 
anti-OV effects [34, 35]. 

The Notch protein family was comprised of four 
members: Notch1, Notch2, Notch3, and Notch4. We 
investigated the expression levels and survival 
significance of these four genes in OV based on the 
TCGA-OV database, and the results indicated that 
only Notch3 was markedly up-regulated and 

associated with poor prognosis in OV (Figure S6B, 
Figure S6C). A prior literature has suggested that 
Notch3 could facilitate the progression of liver cancer 
by upregulating MMP-2 and MMP-9 [36]. 
Furthermore, a high level of Notch3 expression 
indicated an unfavorable prognosis in liver cancer 
patients [36]. Considering the previous exploration, 
we examined the AAK1 abnormal expression effect 
on Notch3-related pathway. As displayed in Figure 
8H, elevating the expression of AAK1 resulted in an 
escalation of Notch3, MMP-2, and MMP-9 expression. 
Conversely, hindering AAK1 expression considerably 
diminished the expression of those molecules.  

AAK1 promotes glutamine metabolism of OV 
via Notch pathway 

Subsequently, we examined the potential role 
involvement of AAK1 in glutamine metabolism in 
OV. Glutamine metabolism is a crucial feature of 
tumor metabolic reprogramming, exerting significant 
effects on cancer cell biosynthesis, energy metabolism, 
and the maintenance of redox homeostasis [37]. 
Hence, we examined various key indicators of 
glutamine metabolism in our experiment, including 
Glu, α-KG, ATP, GSH, and ROS. As expected, the 
overexpression of AAK1 resulted in elevated levels of 
glutamate, α-KG, ATP, and GSH, while reducing the 
levels of ROS in both A2780 and OVCAR3 cells 
(Figure 9A-E, Figure S7A-E). In contrast, the 
knockdown of AAK1 significantly inhibited the levels 

 

 
Figure 7. Evaluation of immunotherapy. (A) Survival analysis of IMvigor210 cohort established on risk model. (B-C) Survival analysis combined risk score with the 
expression of CTLA4 (B) or PDCD1 (C) in IMvigor210 cohort, respectively. (D) Immunotherapy response in diverse groups. (E) Evaluation of the IPS score to CTLA-4 and PD-1 
between the low- and high-risk groups. * P < 0.05, ** P < 0.01, ***P < 0.001. 
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of Glu, α-KG, ATP, and GSH, while leading to an 
increase in ROS levels in both A2780 and OVCAR3 
cells (Figure 9A-E, Figure S7A-E). Prior research 
showed that blocking the Notch pathway suppressed 
GLS expression and resulted in reducing intracellular 
glutamate levels in glioblastoma cells [38]. GLS is a 
critical enzyme that controls the glutaminolysis 
pathway, which assumes a vital function in the 
conversion of glutamine to glutamate [15]. Previous 
study had shown that highly expression of GLS 
indicated poor prognosis of OV patients [39]. 
Considering the previous exploration, we examined 
the AAK1 abnormal expression effect on Notch3-GLS 
pathway. As displayed in Figure 9F, elevating the 
expression of AAK1 resulted in an escalation of 
Notch3 and GLS expression in A2780 and OVCAR3 
cells. Conversely, hindering AAK1 expression 
considerably diminished the expression of Notch3 
and GLS in A2780 and OVCAR3 cells. These results 
suggested that AAK1 promotes glutamine 
metabolism and malignant progression of OV via 
activating Notch3/GLS pathway. 

Therapeutic knockdown of AAK1 inhibits OV 
progression in vivo 

To further confirm the therapeutic potential of 
targeting AAK1 in OV in vivo, we created xenograft 
tumor models and tumor metastasis assays. As 
illustrated in Figure 10A-F, knockdown of AAK1 
substantially suppressed tumor growth, tumor 
weight, as well as the expression of AKK1, Notch3, 
GLS, MMP-2, MMP-9, and Ki-67 percentage. 
Additionally, it resulted in decreased lung metastatic 
counts and extended survival. Collectively, these 
findings indicated that AAK1 drives the malignancy 
progression of OV by stimulating the Notch3 
pathway, and AAK1 could represent an innovative 
and promising therapeutic target for OV patients. 

Discussion  
Chemotherapy resistance and recurrence were 

the mainly determinants of poor prognosis in OV [40]. 
Studies have revealed that metabolic reprogramming 
in OV was intimately associated with the malignant 
progression and chemotherapy resistance [13, 41]. 
Many studies have verified different metabolic related 
prognostic models for OV to evaluate outcome and 
guide treatment [42, 43]. However, considering the 
importance of glycolysis and glutamine metabolism 
in tumor progression and prognosis of OV patients, it 
is of great value to evaluate the prognosis of OV based 
on the differential genes between two metabolic 
subtypes. Unfortunately, there is still a lack of 
relevant research in OV. 

In our analysis, we constructed a prognostic 
signature characterized by differentially expressed 
genes between glutaminolytic and glycolysis 
metabolic subtypes for the first time, which could 
effectively evaluate OV patient outcome. We selected 
eight AGGRGs (AAK1, GJB6, HMGN5, LPIN3, 
INTS6L, PPOX, SPAG4, and ZNF316) as the pertinent 
genes for building the risk gene signature. Previous 
study has confirmed that AAK1 could activate the 
Notch pathway [33], while Notch signaling deeply 
involved in OV invasion and metastasis, angiogenesis 
and chemotherapy resistance [44, 45]. In addition, 
Notch signaling pathway was also implicated in 
glycolysis and glutaminolytic [46, 47]. Our results 
suggested that AAK1 could promote the malignant 
progression and glutamine metabolism of OV by 
activating the Notch3 and GLS expression. 
Additionally, a recent study revealed that AAK1 
could interact with MHC Class I molecules and inhibit 
cytotoxic T lymphocyte (CTL) response against 
respiratory syncytial virus (RSV) infection [48]. On the 
other hand, increased glycolysis levels inhibited the 
MHC Class I protein levels in cancer cells [49]. Those 
investigations indicated that the unfavorable 
prognosis of OV may be correlated with immune 
escape due to metabolic reprogramming on account of 
high AAK1 expression. GJB6 encoded one of the 
connexin proteins, which was an important 
biomarkers of invasion and metastasis in lung 
adenocarcinoma [50]. This might be responsible for 
poor prognosis of OV patients with increasing GJB6 
expression. Study had shown that HMGN5, a member 
of the high-mobility group N (HMGN) protein family, 
participated in malignant progression of various 
tumors [51]. Regrettably, there has been no research 
shown to clarify the mechanism involved in HMGN5 
regulated the OV progression until now. LPIN3 
played a crucial role in regulating lipid metabolism, 
and variable splicing of LPIN3 regulates pyruvate and 
fatty acid metabolism in cervical cancer [52]. 
However, the roles of LPIN3 in OV progression 
remains elusive. INTS6, as a tumor suppressor gene, 
could inhibit the malignant progression of certain 
cancers by down-regulating Wnt/β-catenin signaling 
[53, 54]. Our study also found that INTS6 was a 
favorable prognosis gene for OV. SPAG4, was also 
defined as a novel potential cancer marker [55], 
however, the level of SPAG4 expression was 
decreased in glioma cells treated by glutamine 
deprivation [56]. ZNF316 has been identified as a 
transcription factor, although its specific role in OV 
remains uncertain. 
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Figure 8. AAK1 promotes OV progression via Notch3 pathway in vitro. (A) Representative immunohistochemical staining images of AAK1 in normal ovary and OV 
tissue from The Human Protein Atlas (THPA) database. (B-C) Relative expression of AAK1 between IOSE-80 cell lines and five OV line were tested by RT-qPCR (B) (n = 3) and 
western blot (C) (n = 3), respectively. (D) Immunofluorescence staining showing the subcellular localization of AAK1 protein in A2780 and OVCAR3 cells (Scale bar: 10 µm). 
(E-G) CCK8 assay (E), Edu assays (F, Scale bar: 100 µm), and invasion assays (G) revealing the cell viability, proliferation, and invasion of A2780 and OVCAR3 cells stably 
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transfected as indicated, respectively (n = 3). (H) Western blotting showing the protein levels of AAK1, Notch3, MMP-2, and MMP-9 in A2780 and OVCAR3 cells stably 
transfected as indicated, respectively (n = 3). * P < 0.05, ** P < 0.01, ***P < 0.001. 

 
Figure 9. AAK1 promotes glutamine metabolism of OV via Notch pathway in A2780 cells. (A-E) The cellular Glu (A), α-KG (B), ATP (C), GSH (D), and ROS levels 
(E, Scale bar: 100 µm) of A2780 cells stably transfected as indicated (n = 3). (F) Western blot indicating the protein levels of AAK1, Notch3, and GLS in A2780 and OVCAR3 cells 
stably transfected as indicated (n = 3). (G) Schematic diagram of AAK1 promots glutamine metabolism and malignant progression through the Notch3 pathway in ovarian cancer. 
* P < 0.05, ** P < 0.01, ***P < 0.001. 

 
Study has shown that metabolic reprogramming 

was strongly correlated with tumor immune microen-
vironment and the efficacy of immunotherapy in OV 
[57]. For instance, elevated uptake of glutamine by 
tumor cells led to limited uptake of glutamine by 
immune cells and resulted in immune escape by 
regulating PD-L1 expression [58]. Aerobic glycolysis 
provided energy for malignant progression of tumor, 
while specific acid TME inhibited T cell function, 
leading to immune escape and promoting malignancy 
progression [59]. These findings proposed that 
metabolic reprogramming, especially glutamine and 
glycolytic metabolism, played a crucial function in the 
modification of tumor microenvironment and 
immunotherapy response. In our investigation, we 
created a prognostic model established on differential 
expression genes between glutamine and glycolytic 
metabolism. Results have shown that up-regulated 
expression of several immune checkpoints is 
correlated to poor prognosis in high-risk OV patients. 
Additional analysis found that OV patients with 

elevated risk responded more effectively to 
immunotherapy compared to patients with low-risk. 
One research had demonstrated that combining 
glucose or glutamine metabolic pathway targeted 
therapy with PD-1/ PD-L1 checkpoint inhibition 
immunotherapy was a novel anti-tumor strategy [59]. 
Our findings were beneficial in guiding the indivi-
dualized treatment according to the prognosis model.  

Additionally, to establish the efficacy of the 
AGGRGs signature, AAK1 was selected for function 
and mechanism validation. Our experiments 
confirmed that AAK1 expression was elevated in OV, 
and silencing of AAK1 decreased the cell viability, 
proliferation, invasion, and glutamine metabolism by 
inhibiting Notch3 signaling pathway. The results of in 
vivo experiments further supported the potential of 
targeting AAK1 as a viable therapeutic strategy for 
OV. In short, these findings further supported the 
validity of prognostic models based on genetic 
characteristics of glycolysis and glutamine 
metabolism.  
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Figure 10. Therapeutic knockdown of AAK1 suppresses OV progression and metastasis in vivo. (A) The representative images, (B) tumor growth, (C) tumor 
weight, (D) the representative IHC images and statistical analysis results of AAK1, Notch3, GLS, MMP-2, MMP-9, and Ki-67 of xenograft tumors established by subcutaneous 
injection of OVCAR3 cells that were stably transfected as indicated, respectively, respectively (n = 5 per group). Scale bar: 50 μm. (E) The lung metastasis images (left panel) and 
metastatic counts (right panel) of tumor lung metastasis assay formed by tail vein injection of OVCAR3 cells that were stably transfected as indicated, respectively (n = 5 per 
group). Scale bar: 100 μm. (G) K-M curves were employed to display the survival of nude mice with distinct treatments in the tumor lung metastasis assay. * P < 0.05, ** P < 0.01, 
***P < 0.001. 

 
However, there are several limitations to our 

study. The precise functions of model-related genes 
involved in the tumor metabolism and immunity of 
OV have not yet been extensively explored. Although 
the mechanism of AKK1 involved in the malignant 
progression in OV has been explored, other model- 
related genes remain needed further verification. 
Those limitations will be further investigated in our 
later research. 

Conclusions 
In conclusion, OV patients were separated into 

four metabolic subtypes: quiescent type, glycolytic 
type, glutaminolytic type and mixed type. Notable 
differences existed in prognosis, tumor microenviron-
ment, and response to immunotherapy across these 
subtypes. Our prognostic model based on glutamino-
lytic-glycolysis subtypes associated genes could 
accurately assess the survival outcome and immuno-
therapy response of OV patients. In a nutshell, our 
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findings might be beneficial for assessing prognosis 
and guiding individualized therapy for OV patients. 
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