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Abstract 

Background: Immunotherapy has greatly changed the treatment of advanced non-small cell lung cancer 
(NSCLC). Anoikis is a programmed cell death process associated with cancer. However, the correlation 
between anoikis-related genes and the tumor microenvironment (TME) features and immunotherapeutic 
outcome in NSCLC has not been fully explored. 
Methods: The bulk and single-cell transcriptome data of NSCLC were downloaded from TCGA and 
GEO databases. The distribution of anoikis-related genes on different cell types at the single-cell level was 
analyzed, and these genes specifically expressed by tumor cells and immunotherapy-related were further 
extracted. Next, the candidate gene CTNND1 was identified and its correlations with the TME features 
and immunotherapeutic outcome in NSCLC were explored in multiple public cohorts. Finally, an 
in-house cohort was used to determine the CTNND1 expression and immuno-correlation in NSCLC. 
Results: At single-cell atlas, we found that anoikis-related genes expressed specifically in tumor cells of 
NSCLC. By intersecting anoikis-related genes, immunotherapy-associated genes, and the genes 
expressed in tumor cells, we obtained a special biomarker CTNND1. In addition, cell-cell communication 
analysis revealed that CTNND1+ tumor cells communicated with immune subpopulations frequently. 
Moreover, we found that high expression of CTNND1 was related to immuno-suppressive status of 
NSCLC. The expression of CTNND1 and its immuno-correlation were also validated, and the results 
showed that CTNND1 was highly expressed in NSCLC tissues and tumors with high CTNND1 
expression accompanied with low CD8+ T cells infiltration. 
Conclusions: Overall, our study reported that CTNND1 can be considered as a novel biomarker for 
the predication of immunotherapeutic responses and a potential target for NSCLC therapy. 
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Introduction 
Early detection of lung cancer is challenging, 

leading to decreased survival rates. Lung cancer is the 
primary cause of cancer mortality globally, and it has 
the highest incidence rate in China [1]. Non-small cell 
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lung cancer (NSCLC) represents the majority (80-90%) 
of all lung cancers, with lung adenocarcinoma and 
lung squamous cell carcinoma being the most 
common subtypes [2]. Smoking, including primary 
and second-hand exposure, accounts for over 80% of 
lung cancer cases. Unfortunately, most patients have 
already progressed to advanced stages at the time of 
diagnosis. Platinum chemotherapy is the standard 
treatment method, however, the response to these 
drugs is typically not significant, and the disease 
progresses rapidly [3, 4]. 

Recently, immunotherapy has become an 
exciting treatment option for patients without driving 
mutations, and it has greatly changed the treatment of 
advanced NSCLC. Cancer immunotherapy involves 
the application of strategies aimed at enhancing the 
body’s immune system to recognize and eradicate 
tumor cells [5, 6]. Under normal circumstances, it is 
generally believed that the immune cells in the tumor 
microenvironment (TME) can distinguish and 
eliminate cancer cells, which is called immune 
surveillance [7-10]. However, the advantages in cell 
and tumor can regulate the immune system to evade 
immune surveillance by recruiting immunosup-
pressive cells and acquiring immunosuppressive [11]. 
In the process of tumor progression, even though 
antigen specific T cells can stimulate adaptive 
immune response, immune selection will also 
produce tumor cell variants, which will make tumor 
cells lose major histocompatibility complex (MHC) 
class I and II antigens expression on their surface as an 
immune escape mechanism [12]. Thus, although 
immune checkpoint blockade (ICB) has significant 
survival benefits for a proportion of advanced NSCLC 
patients, a large number of patients still exhibit 
primary drug resistance [13, 14].  

Normal cells will gather together and adhere to 
the cell basement membrane (ECM), surviving 
through mutual material and signal transduction. 
Once they lose contact with the ECM, the cells 
undergo programmed death or apoptosis. This form 
of cell death was first named anoikis in 1994 [15, 16]. 
The triggering of anoikis mainly occurs through the 
interaction of two apoptosis pathways, including the 
activation of cellular death receptors or through the 
mitochondria-driven activation of caspase-3 [17-19]. 
Resistance to anoikis is a characteristic of tumor 
metastasis, which allows tumor cells to spread to 
distant organs through the circulatory system. After 
detachment from the extracellular matrix and 
intercellular contact, tumor cells survive by resisting 
apoptosis through paracrine and autocrine mecha-
nisms, and regain the ability to adhere, spread, and 
invade [20]. Some tumor cells can resist anoikis 
through oxidative stress. For example, ROS is a key 

molecule that triggers cell survival signals. ROS 
activates downstream signaling pathways of ERK and 
Akt through oxidative activation of tyrosine kinases, 
leading to Bim degradation and preventing anoikis 
[21]. 

In this study, we first investigated the expression 
of anoikis-related genes in NSCLC, by analyzing the 
distribution of various genes on different cell types at 
the single-cell level, and identified the gene set 
specifically expressed by tumor cells. Secondly, we 
screened the gene set related to the efficacy of 
immunotherapy. Based on the above research, we 
found that the CTNND1 expression can guide 
immunotherapy as a powerful prognostic marker for 
NSCLC. Finally, we explored the relationship 
between the expression of CTNND1 and the TME 
features, as well as immune regulation biological 
processes. Exploring the expression patterns of genes 
related to anoikis not only expands our under-
standing of the invasiveness of NSCLC, but also helps 
to develop more personalized and precise treatment 
strategies. 

Materials and methods 
Dataset acquisition 

The normalized RNA-sequencing profile and 
clinical annotations of patients in TCGA-NSCLC 
cohort were downloaded from the UCSC Xena 
website (https://xenabrowser.net/datapages/). 
GSE42127 [22], the validation cohort, were 
downloaded from the Gene Expression Omnibus 
(GEO) portal (https://www.ncbi.nlm.nih.gov/geo/). 
Furthermore, the normalized gene expression profile 
of NSCLC clinical cohorts with anti-PD-1 therapy 
(GSE126044 [23] and GSE135222 [24]) were also 
obtained from the GEO database. Also, 
immunotherapy cohorts of other epithelial tumors, 
including breast cancer (breast cancer: GSE173839 
[25]), melanoma (PRJEB23709 [26]), and gastric 
carcinoma (PRJEB25780 [27]), were also obtained from 
public database. Samples with overall survival (OS) 
above zero-day were included in this research. For the 
immunotherapy cohort, diagnostic patients who 
received immunotherapy were selected for further 
analysis. In addition, the the anoikis-related genes 
were obtained from the Harmonizome portals [28] 
(https://maayanlab.cloud/Harmonizome/, accessed 
on 12 October 2022). The information of datasets used 
in this study was listed in Table S1. 

Single-cell RNA sequencing datasets analysis 
The single-cell RNA sequencing datasets of 12 

patients with NSCLC from the GSE150660 [29], 
GSE127465 [30] and GSE117570 [31] were 
downloaded. All additional analyses were performed 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

319 

using the Seurat (4.0.4, http://satijalab.org/seurat/) 
R toolkit [32], including quality control and all 
subsequent analyses. To eliminate the influence of 
abnormal cells and technical background noise on 
downstream analysis, cells were reserved if the 
expression of mitochondrial genes was greater than 
10% or with detected genes less than 200 or greater 
than 5,000. Finally, a total of 47,359 cells were used for 
further analysis. 

In order to minimize the technical batch effects 
among individuals and experiments, we used the 
“RunHarmony” function in R package harmony [33] 
to integrate 47,359 cells from 12 NSCLC patients. The 
top 4,000 variable genes were used for principal 
component analysis (PCA) to reduce dimensionality. 
The dimensionality of the scaled integrated data 
matrix was further reduced to two-dimensional space 
based on the first 30 principal components (PCs) and 
visualized by t-Distributed Stochastic Neighbor 
Embedding (t-SNE). The cell clusters were identified 
based on a shared nearest neighbor (SNN) modularity 
optimization-based clustering algorithm with a 
resolution of 1, and all cells were divided into 26 
clusters (Figure 1B). In order to recognize the types of 
these cells, some known markers, such as VWF for 
endothelial cells, EPCAM for epithelial cells, DCN for 
fibroblasts, CD3D for T cells, were used to verify the 
annotation of cell types (Figure 1C). 

 To validate the results found from the integrated 
scRNA-seq datasets of the GSE150660 [29], GSE127465 
[30] and GSE117570 [31], another scRNA-seq datasets 
(GSE131907 [34]) including 11 NSCLC patients were 
downloaded from the GEO website. Cell filtration, 
integration, and annotation were followed the criteria 
used above. 

Identification of differential expressed genes 
(DEG) 

To identify the tumor cell-specific genes, 
“FindAllMarkers” function was performed. Genes 
with the |fold-change (FC)| ≥ 1.2, pct.1 ≥ 0.4, pct.2 ≤ 
0.1, and adjusted P-values < 0.05 were identified as 
the tumor cell-specific genes.  

In order to recognized the immunotherapeutic- 
related genes, the the R package “limma” [35] was 
used to perform the differential expression analysis 
between the NSCLC patients who received (R) and 
not received remission (NR) after immunotherapy in 
the GSE126044 cohort. Genes with the | FC| ≥ 1.5 and 
adjusted P-values < 0.05 were identified as the 
immunotherapeutic-related genes. 

In order to identify the DEGs for CTNND1-high 
and low groups respectively, the R package “limma” 
[35] was used to perform the differential expression 
analysis. Genes with the FC ≥ 1.5 and adjusted 

P-values < 0.05 were defined as up-regulated genes 
for CTNND1-high group, while genes with the FC ≤ 
-1.5 and adjusted P-values < 0.05 were recognized as 
up-regulated for CTNND1-low group. 

Assessment of immunological characteristics 
of the TME 

The associations between CTNND1 and the 
immunological features of the TME was evaluated 
[36]. In order to assess the immunological 
characteristics of the TME, the ESTIMATE algorithm 
[37], a method inferring tumor purity and stromal and 
immune cell from tumor samples based on bulk 
transcriptomic profile, was performed to assess tumor 
purity, ESTIMATE score, immune score, and stromal 
score. Besides, the information of immunomodulators 
including MHC signatures, receptors, chemokines, 
and immune-stimulators was collected from the 
previous studies [38]. To further deconstruct the 
immunological status of each patient, a set of 
signature genes of 29 immune cell types and 
immune-related pathways [39] was used to estimate 
the infiltration levels of different immune cell 
populations and the activities of immune-related 
pathways and functions of each patient were 
calculated by utilizing the single-sample gene sets 
enrichment analysis (ssGSEA) in the R package 
“GSVA” [40].  

Cell-cell communication analysis 
Cell-cell communications mediated by ligand- 

receptor complexes were critical to diverse biological 
processes, such as inflammation and tumorigenesis. 
To investigate the molecular interaction networks 
between different cell types, we used “CellPhoneDB” 
[41], a software to infer cell-cell communication from 
the combined expression of multi-subunit ligand- 
receptor complexes, to analyze the interactions 
between tumor cells and microenvironment cell 
subpopulations. The ligand-receptor pairs with a P 
value < 0.05 were remained for the assessment of 
relationship among different cell clusters. 

Immunohistochemistry and semi-quantitative 
analysis 

Lung cancer tumor microarray (TMA) 
HLugC120PT01, which was purchased from Outdo 
BioTech, contained 60 paired tumor and para-tumor 
samples. A total of 58 tumor samples were included in 
our research after removing the samples separated 
from the TMA, and the detailed clinic parameters of 
enrolled in-house patients were exhibited in Table S2. 
The use of the TMA was approved by the Clinical 
Research Ethics Committee in Outdo Biotech 
(Shanghai, China). The TMA was submitted for 
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immunohistochemistry (IHC) assay to define the 
protein expression of CTNND1 in tumor and 
para-tumor tissues. The sections were then washed 
with xylene for three 5-min. The sections were 
rehydrated by successive washes in 100, 90 and 70% 
graded ethanol. Hydrogen peroxidase (0.3%) was 
used to block endogenous peroxidase activity for 20 
min. The EDTA antigen repair solution was used for 
antigen repair. The primary antibody utilized in the 
study was anti-CTNND1 (1:200 dilution, Cat. 
sc-23873, Santa Cruz) and anti-CD8A (ready-to-use, 
Cat. PA577, Abcarta). Antibody staining was 
visualized with DAB and hematoxylin counterstain. 
Stained TMA was evaluated to define CTNND1 
expression by two independent senior pathologists 
according to the immunoreactivity score standard 
[42]. For the assessment of tumor-infiltrating CD8+ T 
cells, two senior pathologists estimated the CD8 score 
according to the criterion established by The Cancer 
Genome Atlas Network [43]. A CD8 score defined as 
the sum of the distribution and density scores (0-6) 
was calculated for each case. Samples with the CD8 
score ≥ 3 (3, 4, 5, 6) are considered to be immune-hot, 
and samples with the CD8 score ≤ 2 (0, 2) are 
considered to be immune-cold. 

Statistical analysis 
All statistical analyses were handled using R 

software (version 4.0.4). The significant difference in 
continuous variables between the two groups was 
assessed using the Wilcoxon rank-sum test, while 
fisher exact test was used to measure the difference 
among categorical variables. For all analyses, a 
two-paired p-value < 0.05 was deemed to be 
statistically significant, and labeled with *p-value < 
0.05, **p-value < 0.01, ***p-value < 0.001, and 
****p-value < 0.0001. 

Results 
Anoikis-related genes expressed specifically in 
tumor cells of NSCLC at single-cell atlas 

Using the “Seurat” package to preprocess the 
single cell transcriptome data, a total of 47,359 cells 
were obtained (Figure 1A-1B). Markers of various cell 
types of NSCLC were collected, and the cells were 
annotated. The cells were divided into epithelial cells 
(EPCAM), T cells (CD3E), B cells (CD19), fibroblasts 
(COL1A1), endothelial cells (VWF), myeloid cells 
(CD14), and plasma cell (SLAMF7) (Figure 1C). 
Perform feature recognition on each annotated cluster 
of cell subpopulations to verify the accuracy of our 
cell type annotation (Figure 1D-1E). Furthermore, we 
used the ssGSEA algorithm to calculate the ANOIKIS 
score for the genes related to anoikis, and compared 

their differences between tumor cells and non-tumor 
cells identified previously. The results showed that 
the ANOIKIS score was significantly higher in tumor 
cells than in non-tumor cells (Figure 2A), thus 
confirming that anoikis is an important feature of 
tumor cells of NSCLC. 

CTNND1 was identified as a tumor specific 
biomarker of immunotherapy for NSCLC 

In order to explore the characteristic markers, 
and remodeling effect of tumor anoikis on the 
immune microenvironment of NSCLC, we analyzed 
the immune cohort data GSE126044. We obtained 
3979 differential genes significantly related to the 
efficacy of immunotherapy through differential 
analysis. Next, we intersected immunotherapy- 
associated differential genes with anoikis-related 
genes, and the genes significantly expressed in tumor 
cells, obtaining a special biomarker: CTNND1, which 
can be inferred as an immunotherapy and tumor 
anoikis related biomarker (Figure 2B). The CTNND1 
gene was validated in single cell atlas, and the results 
showed that its expression in tumor cells was 
significantly higher than that in non-tumor cells 
(Figure 2C-D). We binarized tumor cells based on 
whether the expression of CTNND1 was greater than 
0, and compared the proportion of positive and 
negative cell rates in tumor and non-tumor cells. The 
results showed that the rate of CTNND1+ cells was 
significantly higher in the tumor cells than in 
non-tumor cells (Figure 2E). Finally, in the GSE126044 
data, the expression of CTNND1 in the 
immunotherapy sensitive group was significantly 
higher than that in the ineffective group (Figure 2F). 

 Furthermore, another scRNA-seq dataset 
(GSE131907) including 11 NSCLC patients was used 
to validate the results found at the single-cell levels. 
Unsupervised clustering and cell annotation, we 
classified the cells into eight cell types (Figure 3A-3B, 
Supplementary Figure 1A-1B). Consistently, 
CTNND1 almost expressed on tumor cells (Figure 
3C-3D). Meanwhile, after binarizing the cells into 
CTNND1+ and CTNND1- groups, the rate of 
CTNND1+ cells were significantly higher in the 
tumor cells than in non-tumor cells (Figure 3E), 
further supporting the viewpoint that CTNND1 was 
the biomarker of tumor cells. 

CTNND1+ tumor cells communicated with 
microenvironment subpopulations frequently 

Having observed that the expression of 
CTNND1 in the immunotherapy sensitive group was 
significantly lower than that in the ineffective group, 
we next sought to investigate the correlations between 
CTNND1 expression and the TME status of the 
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NSCLC patients. Benefiting from the advantages of 
scRNA-seq technology, we could perform a 
high-resolution dissection of interactions among 
various subgroups of CTNND1+/- tumor cells and 
microenvironment subpopulation in the NSCLC 
patients based on the combining expression of 
multi-subunit ligand-receptor complexes. The 
number of interactions among different subpopula-
tions was compared between CTNND1+ and 
CTNND1- tumor cells. Results showed that the 
CTNND1+ tumor cells presented significantly more 
interactions than CTNND1- tumor cells (Figure 
4A-4B). Notably, we calculated the difference in 

interaction numbers among various CTNND1+/- 
tumor cells and microenvironment subpopulations. 
The CTNND1+ tumor cells showed more frequently 
crosstalk with other subpopulations, especially the 
immune subsets (Figure 4C). Results from the 
GSE131907 scRNA-seq dataset was in-kept with these 
findings (Supplementary Figure 2). These results 
collectively suggested that compared with CTNND1- 
tumor cells, CTNND1+ tumor cells had activated 
cell-cell communications, especially interactions with 
immune cells, which potentially take part in the 
formation of an immunosuppressive TME [44].  

 

 
Figure 1. Integrated scRNA-seq analysis of tumor tissues from NSCLC patients. (A) t-SNE visualization of 47,359 single cells passed quality controls, colored by 12 
NSCLC patients. (B) The unsupervised clustering of 47,359 cells. (C) Expression levels of known markers for specific cell types overlaid on the t-SNE representation. (D) t-SNE 
visualization of cell types annotated by classical gene markers. (E) Heatmap for gene expression levels of top ten cell-type-specific genes. The data in Figure 1 were downloaded 
from the GSE150660, the GSE127465, and the GSE117570 datasets. 
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Figure 2. Identification of the tumor cell-specific anoikis-related genes. (A) Boxplot showing the anoikis scores between tumor and non-tumor cells. (B) Venn diagram 
of overlapping genes in tumor cell-upregulated genes identified in the scRNA-seq datasets, anoikis-related genes from the Harmonizome database, and 
immunotherapeutic-related genes recognized in the GSE126044 cohort. (C) Expression levels of CTNND1 overlaid on the t-SNE representation. (D) Comparing the expression 
levels of CTNND1 between tumor and non-tumor cells. (E) Stacking bar chart showing the fraction of cells expressed or not expressed CTNND1. (F) Comparing the expression 
levels of CTNND1 between NSCLC patients who received (R) or not received remission after immunotherapy (NR) in the GSE126044 cohort. Wilcoxon rank-sum test was 
performed to measure the difference between the two groups. The data in Figure 2A-E were downloaded from the GSE150660, the GSE127465, and the GSE117570 datasets. 
The data in Figure 2F were downloaded from the GSE126044 dataset. 

 
We further identified the significant ligand- 

receptor interactions between CTNND1+ tumor cells 
and immune subsets using the “CellphoneDB” tool 
[41] (Figure 4D-4E). Results showed that CTNND1+ 
tumor cells communicated with myeloid cells via 
ANXA1-FPR1/3, SIRPA-CD47, and LGALS9-CD44, 
which have been reported to involve in the inhibition 
of anti-tumor response [45-47]. In addition, the 
CTNND+ tumor cells mediated the dysfunction of T 
cells via inhibitory ligand-receptor pairs, such as 
ANXA1-FPR3 [48, 49]. In addition, compared with 
CTNND1- tumor cells, CTNND1+ tumor cells showed 
the highest cell-cell communication strength with 
stromal cells (fibroblasts and endothelial cells) (Figure 
4B-4C), and presented significantly more specific 
interactions with stromal cells (Supplementary Figure 

2A-2B). For example, CTNND1+ tumor cells commu-
nicated with stromal cells via many ligand-receptor 
pairs, such as COL1A1_a1b1 complex, which involved 
in the activation and differentiation of endothelial and 
fibroblasts [50, 51], suggesting that the accumulation 
of CTNND1+ tumor cells will be accompanied by the 
enrichment of stromal cells, leading to the formation 
of desert TME. Besides, our results also showed that 
some interactions associated with tumor stemness, 
chemoresistance, and angiogenesis, such as 
WNT7B-FZD4 and NOTHC1-JAG1 [52, 53], were 
detected between CTNND1+ tumor cells and stromal 
cells (Supplementary Figure 3A-3B). Some studies 
proved that selectively blocking JAG/NOTCH can 
disrupt angiogenesis by unique mechanisms to inhibit 
tumor growth [54, 55]. Totally, compared with 
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CTNND1- tumor cells, CTNND1+ tumor cells 
interacted with microenvironment subpopulations 
frequently, suggesting that the complex crosstalk 
between CTNND1+ tumor cells and other 
subpopulations will contribute to the formation of 
TME.  

High expression of CTNND1 was related to 
immunosuppressive status of NSCLC 

Next, we explored the effect of CTNND1 on the 
remodeling of immune microenvironment of NSCLC. 
As shown in Supplementary Figure 4A-4D, we found 
that CTNND1 expression showed no significant 
differences between patients with different clinic 
parameters, suggesting that clinical parameters did 
not influence the expression levels of CTNND1. Then, 
we calculated the tumor purity and immune 
infiltration score in each sample through ESTIMATE, 

and carried out correlation analysis with the 
expression of CTNND1. The results showed that the 
expression of CTNND1 was significantly positively 
correlated with the tumor purity, and significantly 
negatively with tumor purity (Figure 5A-B). The 
samples were divided into high and low expression 
groups based on the median expression of CTNND1, 
and the results showed that the immune infiltration 
score of the high expression patients was significantly 
lower than that of the low expression patients (Figure 
5C-D). Furthermore, we investigated the relationship 
between CTNND1 and the degree of infiltration of 
various types of immune cells, which showed that the 
infiltration degree of immune cells was negatively 
correlated with CTNND1 expression (Figure 5E). 
Meanwhile, patients with high expression of 
CTNND1 showed resistance to immunotherapy, 
while 62.5% of patients with low expression showed 

 

 
Figure 3. Integrated scRNA-seq analysis of tumor tissues from NSCLC patients in the GSE131907 datasets. (A) t-SNE visualization of cell types annotated by 
classical gene markers. (B) Expression levels of known markers for specific cell types overlaid on the t-SNE representation. (C) Expression levels of CTNND1 overlaid on the 
t-SNE representation. (D) Comparing the expression levels of CTNND1 between tumor and non-tumor cells. (E) Stacking bar chart showing the fraction of cells expressed or 
not expressed CTNND1. The data in Figure 3 were downloaded from the GSE131907 dataset. 
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sensitivity (Figure 5F). The results of the GSE135222 
dataset also confirmed this conclusion (Figure 5G-H), 
and survival analysis showed that patients with high 
CTNND1 expression had poorer progression-free 
survival compared to those with low expression 
(Figure 5I). In addition, in other epithelial cell 
carcinomas, such as gastric carcinoma, breast cancer 
and melanoma, patients in the CTNND1-high group 
also showed poor immunotherapeutic response than 
those in the CTNND1-low group (Supplementary 
Figure 5A-5C). 

The median expression value of CTNND1 in 
NSCLC cases in TCGA was used as the threshold to 
divide the samples into two groups: CTNND1 high 
and CTNND1 low, and then performed differential 
analysis. The volcano plot shows up-regulated and 
down-regulated genes. The results of functional 

enrichment analysis showed that the ANOIKIS- 
related pathway in the CTNND1 high groups were 
significantly upregulated (Figure 6A-B). The samples 
from TCGA also showed the feature of low immune 
infiltration in the CTNND1 high expression group 
(Figure 6C). The levels of immune receptor activation, 
antigen presentation, immune activation, and 
cytokine between high- and low-CTNND1 expression 
groups were then compared by ssGSEA scores, in 
order to further investigate the relationship between 
CTNND1 and immune function. The results showed 
that the immune function of the CTNND1 high group 
was significantly lower than patients of the low 
expression (Figure 6E). Comparing the activation 
levels of various types of immune cells between the 
two groups, we found that the abundance of all 
immune cells was lower in high CTNND1 group, 

 

 
Figure 4. Cell-cell communications between CTNND1+/- tumor cells and microenvironment subpopulations. (A) The interaction number of CTNND1+/- 
tumor cells and microenvironment subpopulations. The thickness of the line represents the interaction number between the subpopulations estimated by CellPhoneDB. (B) 
Heatmap showing the interactions among these cell types. (C) The difference of the number of ligand-receptor interactions between CTNND1+ and CTNND1- tumor 
cells. (D) The inhibitory interactions between CTNND1+ tumor cells and myeloid cells. (E) The inhibitory interactions between CTNND1+ tumor cells and T cells. The data in 
Figure 4 were downloaded from the GSE150660, GSE127465, and GSE117570 dataset. 
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especially CD8+T cells (Figure 6F, Supplementary 
Figure 6 and Figure 7). To further investigate the role 
of this marker in immune suppression, we 
investigated the relationship between CTNND1 and 
various immune checkpoints, and the results showed 
a negative correlation with most immune checkpoints, 
indicating that high expression patients were 
ineffective in immunotherapy (Figure 6G). Finally, we 
compared the enrichment scores of various steps in 
the cancer immune cycle between CTNND1 high and 
low groups, our finding suggested a significant 
negative correlation between CTNND1 expression 

and various processes of the immune cycle (Figure 4I). 
To validate our conclusion, we conducted further 
analysis on the validation set GSE42127 (Figure 7). 
Our results indicate that CTNND1 expression is 
significantly negatively correlated with immune cells 
abundance and immune-related signaling pathways. 
Additionally, we observed that the expression of 
immune checkpoints in the high expression group is 
significantly lower than that in the low expression 
group, which may indicate ineffective immuno-
therapy. 

 
 

 
Figure 5. Correlation between CTNND1 expression and immunological characteristics. (A-B) Correlation between CTNND1 expression and ImmuneScore (A) 
and tumor purity (B) in the GSE126044 cohort. (C-D) Comparing the ImmuneScore (C) and tumor purity (D) between CTNND1-high and low groups in the GSE126044 cohort. 
(E) Correlation between CTNND1 expression and levels of immunological characteristics in the GSE126044 cohort. (F) Stacking bar chart showing the fraction of R and NR 
patients in the CTNND1-high and low groups. (G) Correlation between CTNND1 expression and ImmuneScore (left) and tumor purity (right) in the GSE135222 cohort. (H) 
Comparing the ImmuneScore (left) and tumor purity (right) between CTNND1-high and low groups in the GSE135222 cohort. (I) Kaplan-Meier analysis in term of 
progression-free survival (PFS) in the GSE135222 cohort. Patients were divided into two groups based on the median expression of CTNND1. Wilcoxon rank-sum test was 
performed to measure the difference between the two groups. 
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Figure 6. Immunological characteristics between CTNND1-high and CTNND1-low groups in the TCGA cohort. (A) Volcano plot showing the up-regulated 
(brown) and down-regulated (blue) genes of the CTNND1-high group in the TCGA-NSCLC cohort. (B) A representative gene set enrichment analysis plot showing significant 
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upregulated ANOIKIS-related genes in the CTNND1-high group versus the CTNND1-low group in the TCGA cohort. (C-D) Comparing the ImmuneScore (C) and tumor purity 
(D) between CTNND1-high and low groups in the TCGA cohort. (E) Comparison of the enrichment scores of receptors, MHC, immunostimulator, and chemokine between 
CTNND1-high and CTNND1-low groups. (F) Heatmap showing the enrichment scores of immune subpopulations and immune-related signaling pathways. (G) The correlation 
between CTNND1 expression and some conventional immune checkpoint inhibitors in the TCGA cohort. (H) Comparing the enrichment scores of each step in the cancer 
immunity cycle between CTNND1-high and low groups. Wilcoxon rank-sum test was performed to measure the difference between ang two groups. 

 
Figure 7. Immunological characteristics between CTNND1-high and CTNND1-low groups in the GSE42127 cohort. (A) Comparison of the enrichment scores 
of receptors, MHC, immunostimulator, and chemokine between CTNND1-high and CTNND1-low groups. (B) The correlation between CTNND1 expression and the 
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enrichment scores of immune subpopulations and immune-related signaling pathways. (C-D) Heatmap showing the expression levels of conventional markers of immune cells (C) 
and immune checkpoint inhibitors (D). (E) Comparing the enrichment scores of each step in the cancer immunity cycle between CTNND1-high and low groups. Wilcoxon 
rank-sum test was performed to measure the difference between the two groups. 

 
Figure 8. Validation of CTNND1 expression and its correlations with the TME features in the in-house cohort. (A) Representative images uncovering the 
expression patterns in para-tumor and tumor tissues. (B) Semi-quantitative analysis for (A). (C) Representative images uncovering the expression patterns in NSCLC and SCLC 
tumor tissues. (D) Semi-quantitative analysis for (C). (E) Representative images uncovering the expression patterns in immuno-cold and immuno-hot tumor tissues. (F) 
Semi-quantitative analysis for (E). (G) Correlation between CTNND1 expression and CD8 score. 

 
Last but not least, given of the importance of 

genomic variants in diagnosis and therapeutic 
guidance, we compared the mutations between the 
CTNND1-high and low groups (Table S3). Results 
showed that some genomic variants, such as TP53 [56] 
and KMT2D [57], associated with worse clinical 
outcomes and tumor invasion were enriched in 
CTNND1-high group, while CTNND1-low groups 
had higher mutant frequency of some gene associated 
with immune infiltration and favorable outcomes, 
such as CACNA1C [58] and LMO7 [59] (Supple-
mentary Figure 8). These results were consistent with 
the phenotypes found at the transcriptional levels, 
and further indicated that for those patients in the 
CTNND1-high group, targeting some mutations, such 
as TP53 can benefit patients.  

Validation of CTNND1 expression and 
immuno-correlation in NSCLC 

We next validated the expression patterns of 
CTNND1 in the in-house cohort. We found that 
CTNND1 was highly expressed in tumor tissues 
compared with para-tumor tissues (Figure 8A-8B) and 

CTNND1 was specifically expressed in NSCLC 
(Figure 8C-8D). We also divided NSCLC as 
immuno-hot and immune cold tumors based on the 
CD8 score. Obviously, CTNND1 was decreased in 
immuno-hot tumors (Figure 8E-8F) and negatively 
correlated with the CD8 score (Figure 8G). Overall, 
the negative correlation between CTNND1 expression 
and T cell infiltration could be validated in the 
in-house cohort, which largely increases the 
credibility of results by public cohorts. 

Discussion 
NSCLC is a common malignant tumor with a 

high incidence rate, and predilection to metastasize. 
As we all know, blocking immunosuppressive 
checkpoint inhibitors such as CTLA-4, programmed 
cell death protein-1 (PD-1) and related programmed 
death ligand 1 (PD-L1) has revolutionized the 
first-line treatment of advanced NSCLC. Both the 
Food and Drug Administration (FDA) and the 
National Medical Products Administration (NMPA) 
of China have approved multiple indications for ICI 
in clinical practice of NSCLC, including PD-1 
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inhibitors, PD-L1 inhibitors, and CTLA-4 inhibitors. 
Most of them are immunotherapy combinations 
[60-63]. Although this new treatment method has 
brought survival benefits to some patients, there are 
still some patients who cannot achieve effective relief. 
Thus, biomarkers that could distinguish patients 
benefitting from immunotherapy are critical to the 
precise application of immunotherapy [64-66]. 

Apoptosis of tumor cells can lead to drug 
resistance, thereby mediating the survival of tumor 
cells during circulation in the bloodstream, which is 
crucial for the progression of metastasis. Jin et al. 
found that the PLAG1 GDH1 axis promotes resistance 
to apoptosis and tumor metastasis in LKB1 deficient 
cancers through the CamKK2 AMPK signaling 
pathway [67]. Meanwhile, studies have shown that 
CPT1A mediated fatty acid oxidation can promote 
metastasis of colorectal cancer cells by inhibiting nest 
loss apoptosis [68]. In the gastric cancer cohort, Ye et 
al. found that nuclear MYH9 induced CTNNB1 
transcription promotes anti nesting apoptosis and 
metastasis in gastric cancer cells [69]. Anoikis has 
done a lot of research on tumor proliferation and 
metastasis [70-72], but its role in remodeling the TME 
and thus mediating tumor progression has not been 
in-depth studied. We focus on the role of anoikis play 
in tumor microenvironment and explore whether 
anoikis could mediate the regulation of 
immunization, thus affecting tumor proliferation and 
metastasis.  

We distinguish malignant tumor cells from TME 
cells, including immune cells and stromal cells 
through single cell transcriptome data and cell 
annotation, and obtain specific markers of malignant 
tumor cells through differential expression analysis. 
Through the NSCLC immunotherapy queue, we 
screened biomarkers related to the efficacy of 
immunotherapy. The two gene sets were intersected 
with anoikis related genes to obtain CTNND1, which 
was identified as an immune regulation related 
anoikis tumor marker. We suspect that CTNND1 
could reshape the TME by regulating anoikis, thus 
affecting the efficacy of immunotherapy. CTNND1 
has been proved by many studies to be closely related 
to tumor proliferation and metastasis, such as 
colorectal cancer [73-75], breast cancer [76, 77], gastric 
cancer [78], liver cancer [79], etc. In addition, 
CTNND1 drives butyrophilin-like molecule loss and 
γδ T-cell exclusion, indicating the immuno- 
suppressive role of CTNND1 In colon cancer [80]. 
However, there is no research on the regulation of this 
gene on TME in NSCLC at present, which could be a 
research hotspot in the future. 

In order to explore its regulation on immune 
cells, we use a variety of algorithms to evaluate the 

immune infiltration of each sample, the activation of 
various types of immune cells, and the biological 
processes of immune action. Subsequently, 
correlation analysis was conducted between CTNND1 
and them, and the results showed that the expression 
level of CTNND1 was significantly negatively 
correlated with the degree of immune infiltration, and 
all immune cells were inhibited by CTNND1. The 
above results suggested that CTNND1 has a 
comprehensive impact on immunosuppression, 
which runs through every stage of the immune 
response. Furthermore, patients with high expression 
of CTNND1 showed ineffective immunotherapy and 
poor progression free survival. Immune cell 
deficiency has been recognized as an important 
reason for ineffective immunotherapy [81, 82]. 
Therefore, patients with high expression of CTNND1 
performed the scarcity of immune cells may be the 
reason for ineffective immunotherapy. There is now 
evidence that immunotherapy can benefit NSCLC 
patients; However, due to the lack of full 
understanding of the Tumor microenvironment and 
immune cell infiltration in NSCLC, patients received 
immunotherapy without obtaining effective results. 
Thus, we conducted a comprehensive study on 
anoikis-related genes and delved into the prognosis 
and the TME characteristics of NSCLC. The study 
found that CTNND1 can be considered as a regulating 
upstream gene, targeting which is expected to activate 
the patient’s immune system coincident with tumor 
cell killing.  

Conclusion 
In this study, we investigated the expression of 

anoikis-related genes in NSCLC and identified genes 
specifically expressed in tumor cells. And we found 
that the expression of CTNND1 can guide 
immunotherapy, as a powerful prognostic marker for 
NSCLC. Finally, we explored the relationship 
between the expression of CTNND1 and the tumor 
immune microenvironment as well as immune 
regulatory biological processes. We found that the 
expression pattern of anoikis-related genes is closely 
related to the invasiveness of NSCLC, especially the 
CTNND1 gene, the expression of which can help to 
develop more personalized and precise treatment 
strategies in clinical practice. 
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