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Abstract 

Background: In spite of numerous existing bio-surveillance systems for predicting glioma (GBM) prognosis, 
enhancing the efficacy of immunotherapy remains an ongoing conundrum. The continual scrutiny of the 
dynamic interplay between the sphingolipid metabolic pathway and tumor immunophenotypes has unveiled 
potential implications. However, the intricate orchestration of functional and regulatory mechanisms by long 
non-coding RNAs (lncRNAs) in GBM, particularly in the context of sphingolipid metabolism, remains cryptic. 
Methods: We harnessed established R packages to intersect gene expression profiles of GBM patients within 
the The Cancer Genome Atlas (TCGA) database with the compilation of sphingolipid metabolism genes from 
GeneCards. This enabled us to discern markedly distinct lncRNAs, which were subsequently deployed to 
construct a robust prognostic model utilizing Lasso-Cox regression analysis. We then scrutinized the immune 
microenvironment across various risk strata using the ssGSEA and CIBERSORT algorithms. To evaluate 
mutation patterns and drug resistance profiles within patient subgroups, we devised the "Prophytic" and 
"Maftools" packages, respectively. 
Results: Our investigation scrutinized lncRNAs linked to sphingolipid metabolism, utilizing glioma specimens 
from TCGA. We meticulously curated 1224 sphingolipid-associated genes gleaned from GeneCards and 
pinpointed 272 differentially expressed mRNAs via transcriptomic analysis. Enrichment analyses underscored 
their significance in sphingolipid processes. A prognostic model founded on 17 meticulously selected lncRNAs 
was systematically constructed and validated. This model adeptly stratified GBM patients into high- and low-risk 
categories, yielding highly precise prognostic insights. We also discerned correlations between immune cell 
infiltration and genetic mutation discrepancies, along with distinct therapeutic responses through drug 
sensitivity analysis. Notably, computational findings were corroborated through experimental validation by 
RT-PCR. 
Conclusion: In summation, our exhaustive inquiry underscores the multifaceted utility of the sphingolipid 
metabolic pathway as an autonomous diagnostic and prognostic indicator for glioma patients. Furthermore, we 
amalgamate a profusion of substantiated evidence concerning immune infiltration and gene mutations, thereby 
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reinforcing the proposition that sphingolipid metabolism may function as a pivotal determinant in the panorama 
of immunotherapeutic interventions. 

Keywords: Sphingolipid, lncRNAs, GBM, Precision immunotherapy, Biomarkers 

Introduction 
Glioma, a profoundly invasive and hetero-

geneous neuroepithelial neoplasm originating from 
glial cells within the encephalon and central nervous 
system, poses a formidable quandary in clinical 
settings (1). It predominantly afflicts adults, reaching 
its zenith between the ages of 31 and 40, and 
represents the most prevalent malignancy of the 
cerebral hemisphere. The clinical manifestations of 
glioma encompass a wide spectrum of symptoms, 
encompassing cephalalgia, emesis, visual and 
linguistic impairments, and seizures (2). Gliomas can 
be categorized into diverse subtypes, including 
astrocytoma, glioblastoma, and oligodendroglioma, 
based on cellular differentiation. In 2007, the World 
Health Organization (WHO) standardized the classi-
fication of gliomas into Grades I to IV. Glioblastoma 
(GBM), a Grade IV astrocytoma, epitomizes the most 
malignant and daunting primary intracranial 
neoplasm (3, 4). Histologically, it is characterized as a 
diffusely infiltrating glioma originating from 
astrocytic lineage. GBM accounts for approximately 
50% of all gliomas and exhibits an overall bleak 
prognosis, positioning it as one of the most lethal 
intracranial neoplasms (3, 5). The precise etiological 
mechanisms underlying GBM pathogenesis remain 
incompletely elucidated, however, investigations 
have implicated a multitude of factors, encompassing 
genetic mutations, epigenetic modifications, 
environmental influences, and dysregulation of 
intracellular and extracellular signaling pathways. 
Pertinent genetic alterations encompass mutations in 
the tumor suppressor genes TP53 and PTEN, as well 
as oncogenic activation of EGFR, all of which have 
emerged as pivotal contributors to the development 
of GBM (5). Currently, GBM lacks efficacious 
therapeutic strategies, and the standard therapeutic 
approach entails multimodal interventions aimed at 
protracting patient survival. This typically 
encompasses surgical resection followed by 
radiotherapy and chemotherapy, incorporating the 
administration of temozolomide (TMZ), which 
collectively constitutes the Stupp regimen (6, 7). In 
spite of notable progress in the management of GBM 
in recent decades, the prognosis remains 
disheartening. GBM is characterized by infiltrative 
growth patterns, resulting in both intratumoral and 
extratumoral metastatic lesions (8). Its responsiveness 
to therapy is limited, and it exhibits a high recurrence 

rate. Currently, there are no curative approaches for 
GBM. Metabolomics, an all-encompassing scientific 
field involving the systematic analysis and 
identification of metabolites within an organism using 
high-throughput methods, seeks to unveil the 
metabolic profiles of biological systems and their 
connections to health and disease. Metabolomics has 
gained increasing recognition and has found various 
applications in clinical practice, particularly in 
deciphering the complexities of GBM progression 
through rigorous clinical investigations (9, 10). 

Sphingolipids also referred to as cerebrosides, 
comprise a group of lipid molecules that exhibit wide 
distribution and significant conservation within the 
central nervous system (11). These molecules, predo-
minantly constituted by ceramides, sphingomyelins 
(SM), and glycosphingolipids, represent major lipid 
components in eukaryotic organisms (12). They 
possess a distinct lipid framework consisting of 
sphingosine, an amino alcohol, and a fatty acid 
residue. Sphingolipids have demonstrated pivotal 
involvement in diverse cellular functions (13). 
Glycosphingolipids, highly expressed in the brain, 
serve as integral constituents of cell membranes (13). 
Additionally, they constitute the primary lipid 
constituents of the myelin sheath enveloping neuronal 
axons, playing a critical role in cellular signaling (14). 
Ceramides are recognized regulators of target 
proteins such as protein kinase D (PKD) and p53, 
eliciting pro-apoptotic or cellular senescence effects 
(15, 16). Moreover, ceramides have been shown to 
induce cell apoptosis by facilitating the formation of 
mitochondrial outer membrane pores and the 
subsequent release of cytochrome C (17). Further-
more, sphingosine and ceramide assume essential 
roles in various fundamental cellular physiological 
and biochemical processes, encompassing cell 
apoptosis and autophagy, regulation of inflammation, 
maintenance of vascular endothelial integrity, 
modulation of stress response, and regulation of 
angiogenesis, smooth muscle contraction, and 
relaxation (11). Sphingolipids may likewise 
profoundly impact the immune microenvironment of 
tumors. Specifically, these processes could encompass 
the infiltration, differentiation, and downstream 
cascade effects exerted by immune cells within the 
tumor microenvironment (TME). Conceivably, these 
processes could influence tumor cell proliferation, 
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survival, migration, angiogenesis, invasion, and the 
response to chemotherapeutic and immunothera-
peutic agents (18, 19). As mentioned above, the 
feasibility of sphingolipids, as a class of active 
substances prominently present in the nervous 
ecosystem, whether being able to act as an integral 
part in the formation of neurological tumours, 
deserves to be questioned and is also of considerable 
research value (20, 21). Despite the availability of an 
extensive range of therapies for glioma treatment, the 
effectiveness of current treatments is considerably 
suboptimal. Investigating the involvement of 
sphingolipid metabolism in glioma has the potential 
to provide new insights and avenues for the 
exploration of innovative approaches to glioma 

therapy. 
Given the rapid evolution of bioinformatics 

technology, the tangible utility of sphingolipid 
metabolism in glioma and its associated mechanisms 
within existing data resources can be thoroughly 
explored (22). To this end, we established a 
connection between the sphingolipid metabolic 
pathway and GBM using the available transcriptomic 
data. The genetic model of the sphingolipid metabolic 
pathway aptly reflected patient prognosis, while also 
offering valuable insights into immune infiltration 
and gene mutation profiles, thereby presenting a fresh 
methodology for achieving even greater precision in 
GBM chemotherapy and immunotherapy (Figure 1). 

 
 

 
Figure 1. Outline of the research program. 
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Materials and Methods 
Access to information on GBM patients  

We obtained RNA sequencing datasets and 
relevant clinical characteristics of glioblastoma 
multiforme (GBM) patients from The Cancer Genome 
Atlas (TCGA). A total of 44 normal tissues and 504 
GBM cases were collected. Our inclusion criteria 
entailed comprehensive expression data for long 
non-coding RNAs (lncRNAs), clinical information, 
and a minimum 30-day follow-up period for GBM 
patients. Since we utilized pre-existing data from a 
publicly available database, ethical approval was not 
necessary for this study. 

Selection of Sphingolipid 
Metabolism-Associated LncRNAs 

We retrieved sphingolipid-related genes directly 
from the GeneCards database (https://www 
.genecards.org/). Within this database, we selected 
genes associated with sphingolipids that exhibited a 
correlation score exceeding 10. TCGA provided 
lncRNA profiles of patients, and after normalizing the 
data, we employed the limma software package for 
further analysis. R software facilitated Pearson 
correlation studies between lncRNAs and relevant 
genes in GBM patients. Cytoscape was utilized to 
construct co-expression networks linking 
sphingolipid-related lncRNAs and corresponding 
genes (23). 

Development of Risk Scores 
To identify lncRNAs associated with 

sphingolipid-related genes and their impact on the 
survival of GBM patients, we conducted univariate 
Cox proportional hazard regression analysis on 
clinical data obtained from TCGA. Our analysis 
revealed statistically significant associations (p<0.05) 
between lncRNAs and survival outcomes. To refine 
the selection of relevant lncRNAs, we performed 
10-fold cross-validation using LASSO regression with 
a significance threshold of 0.05, iterating the process 
1000 times to mitigate overfitting. Additionally, we 
employed 1000 instances of random stimulation. 
Through multivariate Cox regression analysis, we 
selected target genes and established an independent 
prognostic feature. We computed risk scores for each 
patient sample by multiplying the expression levels of 
each lncRNA by their respective weights, as defined 
in the multivariate Cox model. 

Validation of Predictive Markers 
Clinical data underwent univariate and 

multivariate Cox regression analysis to assess 
whether the risk score could serve as an independent 

prognostic indicator. Furthermore, c-index and ROC 
curve analysis were employed to verify the 
association between prognostic factors and the risk 
score, thereby validating the predictive biomarkers. 

Construction and Application of Nomination 
Map 

To determine the consistency between predictive 
results and observed data, we utilized the rms R 
package to construct a nomination plot and 
calibration curve. This involved considering various 
factors such as risk score, age, gender, grade, tumor 
size (T), lymph node metastasis (N), and tumor stage. 
Additionally, we employed Kaplan-Meier plot 
analysis to validate the predictive efficacy of the 
nomination plot across different clinical stages. 

Functional Enrichment Analysis 
To evaluate functional enrichment, we utilized 

the Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Gene Ontology (GO), and Genome Set 
Enrichment Analysis (GSEA). 

Analysis of Immune Cell Infiltration 
To determine the relationship between lncRNA 

characteristics and immune cell infiltration, we 
obtained a gene-expression matrix dataset by filtering 
and presenting the data using CIBERSORT (24). This 
method allowed us to deduce the relative proportions 
of 22 immune cell populations in each supplemented 
sample. Comparisons were made to identify 
differences in infiltrating immune cell populations 
between high- and low-risk groups. Furthermore, we 
applied the ssGSEA algorithm, representing Genomic 
Variance Analysis (GSVA) with default parameters, to 
estimate the degree of infiltration of different immune 
cell types outside of the sample. The ssGSEA 
algorithm, a rank-based method, computes a grade 
indicating the absolute enrichment of the genome by 
incorporating genomes from other publications (25). 

Comparison of Mutation Information among 
Subgroups 

We utilized the "maftools" software package to 
profile mutations in high- and low-risk populations, 
determine the tumor mutational burden (TMB) for 
each patient, generate waterfall plots, and explore the 
relationship between the risk score of the prediction 
model and mutated elements such as IDH1 in the 
TCGA dataset (26). 

Drug Sensitivity Assessment 
To assess the role of established genetic markers 

associated with sphingolipid metabolism in response 
to different chemotherapeutic and immunothera-
peutic drugs, we calculated the IC50 values of various 
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drugs for GBM patients based on the Genomics of 
Drug Sensitivity in Cancer (GDSC) database using the 
"prophytic" package. Subsequently, sensitivity 
predictions were performed. 

Cell culturing 
All cell lines authenticated by the STR method 

for human glioma cells NHA, U87, LN229, and LN18 
were purchased from the Cell Bank of the Chinese 
Academy of Sciences. Cultivation of cells was 
performed in a culture system of 10% fetal bovine 
serum mixed with RPMI1640, and the overall 
environment was maintained in a sterile incubator at 
a constant temperature of 37°C. 

RT-PCR 
Manufacturer-recommended RNAiso-Plus 

(Takara) was preferred for total RNA isolation and 
extraction, which was then reverse-transcribed into 
cDNA with the support of a high-capacity gene 
synthesis kit (Takara, China). Referring to the 
standards provided by the reagent supplier, the 
optimal conditions for the reaction were determined, 
GAPDH was adopted as an internal reference for 
abundance assay, and the relative expression was 
determined by the 2-ΔΔΔCt method. Respectively, the 

relative expression was calculated using the 2-ΔΔCt 
method. 

Results 
Characterization of lncRNAs Associated with 
Sphingolipid Metabolism through 
Transcriptomic Analysis 

Glioma samples, comprising both normal and 
tumor tissues, were acquired from the TCGA dataset. 
A total of 1224 genes linked to sphingolipid 
metabolism were extracted from the GeneCards 
website. To visually illustrate the disparities between 
normal and tumor samples, a randomized subset of 50 
genes was depicted in a heatmap (Figure 2 A). By 
scrutinizing the expression patterns of 1020 genes 
associated with sphingolipid metabolism (with a 
correlation score >10) across the samples, we 
discerned a total of 272 differentially expressed 
mRNAs (Figure 2 B, C). Enrichment analysis based on 
KEGG and GO pathways revealed noteworthy 
enrichment in processes such as Sphingolipid 
metabolic process, Membrane lipid metabolic process, 
Sphingolipid signaling pathway, and GnRH signaling 
pathway (Figure 3). 

 

 
Figure 2. The expression of sphingolipid metabolism-related genes was compared between GBM and normal subjects using different visualization techniques. (A) Expression 
levels of these genes were represented through a Heatmap across the two samples. (B) A Volcano plot was used to depict the differential expression of genes associated with 
sphingolipid metabolism in both samples. (C) A Cricket diagram was used to illustrate the differential expression of genes involved in sphingolipid metabolism between the two 
samples. 
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Figure 3. Pathway enrichment analysis based on Differential genes. (A, C, E, G) The predicted results of the KEGG pathway for the differential genes. (B, D, F, H) GO pathway 
prediction results of differential genes. 
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Construction and Validation of a Risk Scoring 
Model for the Prognostic Assessment of 
lncRNAs Associated with Sphingolipid 
Metabolism 

Through correlation analysis, we integrated 
lncRNAs associated with sphingolipid metabolism 
that met the criterion of R > 0.4 and p < 0.001 into the 
gene screening process to construct the risk model 
(Figure 4 A). Ultimately, 17 genes were selected using 
univariate Cox regression, LASSO regression (Figure 
4 B, C), and multivariate Cox regression analyses to 
establish the risk scores. The 17 variables employed in 
the model construction comprised AC048382.5, 
AC007938.1, AC097634.3, AC022784.5, PAXIP1-AS2, 
MYLK-AS1, LINC01433, LNCOG, AL356019.2, 
AL133343.2, FOXD3-AS1, TPRG1-AS1, HOXD-AS2, 
AL117332.1, NDUFB2-AS1, SNAI3-AS1, and 
SOX21-AS1 (Figure 4 D). Based on the median risk 
score, GBM patients from the TCGA study were 
categorized into high-risk or low-risk groups. The 
Kaplan-Meier curve exhibited significant divergence 
in overall survival (OS) between the two groups, with 
the high-risk group displaying poorer OS (Figure 4 E). 
ROC curve analysis demonstrated the risk score's 
efficacy in differentiating outcomes for GBM patients 
at 1, 3, and 5 years, yielding AUC values of 0.889, 
0.939, and 0.890, respectively (Figure 4 F). The risk 
score facilitated the classification of GBM patients into 
distinct risk classes (Figure 4 G), and scatter plots 
depicting the correlation between risk score and 
survival rate, illustrating increased mortality with 
higher risk scores (Figure 4 H, I, J). 

The TCGA data was subsequently divided into 
training and validation groups based on the risk 
model, affirming its significant prognostic value. 
Principal Component Analysis (PCA) and 
t-distributed Stochastic Neighbor Embedding (t-SNE) 
analyses were performed to elucidate the expression 
disparities between the low-risk and high-risk groups 
in both training and test cohorts (Figure 5A-F). 
Clustering analysis validated the ability of risk scores 
based on the 17 lncRNAs associated with 
sphingolipid metabolism to effectively discriminate 
between high-risk and low-risk patients in both 
groups. 

Evaluation of the Prognostic Model's Efficacy 
in lncRNAs Involved in Sphingolipid 
Metabolism 

Univariate and multivariate Cox regression 
analyses identified age, gender, staging, and risk score 
as independent risk factors (HR > 1, p < 0.05) (Figure 6 
A, B). Column line plots were generated to visualize 
the prognostic information of risk score, age, gender, 

and staging (Figure 6 C, D, F). Calibration plots at 1, 3, 
and 5 years accurately predicted overall survival (OS) 
using the prognostic model (Figure 6 E). The C-index 
and ROC analysis revealed the robust prognostic 
ability of the risk score, with an AUC (Risk Score) of 
0.889. Moreover, the line graphs effectively 
differentiated patients at different clinical stages, as 
exemplified by G2 and G3 patients (Figure 6 G, H). 

KEGG and GO enrichment analysis of high- 
and low-risk groups according to Risk Score 

KEGG and GO enrichment analysis based on 
Risk Scores for cohorts with varying levels of risk 
yielded subsequent findings that highlighted 
significant functional disparities. These distinctions 
were predominantly manifested in pathways 
encompassing ECM-receptor interaction, Nicotine 
addiction, Proteoglycans in cancer, Viral myocarditis, 
Phagosome, Focal adhesion, Human papillomavirus 
infection, Proteoglycans in cancer, and Epstein-Barr 
virus infection (Figure 7 A-D). To further elucidate the 
nuanced functional variability of the existing 
prognostic models within diverse risk populations, 
we established a co-expression network that 
integrated risk scores and 17 lncRNAs associated with 
oxidative lipid metabolism (Figure 7 E). The 
utilization of GSEA software facilitated a 
comprehensive examination of the distinct pathway 
information associated with the current prognostic 
model. Notably, high-risk populations demonstrated 
enrichment in Amino sugar and nucleotide sugar 
metabolism, as well as Pyrimidine metabolism and 
Glutathione metabolism. Conversely, the low-risk 
group exhibited enriched pathways in Alanine 
aspartate and glutamate metabolism, Butanoate 
metabolism, and Propanoate metabolism (Figure 7 F, 
G). Consequently, the present Risk Score effectively 
discerns between high and low-risk groups. 

Analysis of immune cell infiltration 
Initially, a comparison of StromalScore, 

ImmuneScore, and ESTIMATEScore between the high 
and low-risk groups, based on Risk Score, unveiled a 
significant divergence, with the high-risk group 
exhibiting elevated Risk Scores (Figure 8 A-C). This 
contrast extended to distinct immune subgroups, 
indicating a close association between the current 
sphingolipid metabolism model and immune 
function (Figure 8 D). Further meticulous analysis of 
immune function was undertaken through 
histograms that illustrated the composition of 22 
immune cells, as well as violin plots that 
demonstrated variations between the high and 
low-risk groups across discrete immune cell 
populations (Figure 8 E, F). Integration of prognostic 
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information revealed that higher proportions of mast 
cells, macrophages, and CD8 T cells were indicative of 
an unfavorable prognosis for patients (Figure 8 G-O). 
Conversely, higher proportions of CD4 T cells and NK 
cells were associated with a favorable prognosis. 
Immune cell and immune function scores exhibited 

variations between the low and high-risk groups 
(Figure 8 P, Q). The overall trend aligned with the 
high and low-risk scores, thereby indicating that 
subgroups with elevated risk scores were more likely 
to exhibit advanced functional characteristics. 

 

 
Figure 4. Identification of lncRNAs associated with sphingolipid metabolism and their prognostic significance in GBM. (A) Prognostic lncRNAs identified by univariate Cox 
proportional hazards regression analysis. (B, C) The LASSO-Cox regression model was used to select lncRNAs associated with sphingolipid metabolism. (D) The heat map 
depicts the expression of 24 lncRNAs in both high-risk to low-risk cohorts. (E, F) Riskscore, survival condition, and survival duration of GBM recipients were distributed. (G) 
ROC curves show the predictive efficacy of risk scores on patient survival at 1, 3, and 5 years. (H, I, J) Kaplan-Meier profiles reflect the survival state or survival duration in higher 
and lower-risk categories of GBM patients. 
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Figure 5. PCA and t-SNE plots are analyzed between low and high-risk groups based on the expression profiles of 17 sphingolipid metabolism-related lncRNAs. (A, B) PCA-3D 
plot analysis of the training and test groups. (C, D) PCA plot analysis between the training and test groups. (E, F) tSNE plot analysis of the training and test groups. 

 

Genetic mutation analysis in populations with 
distinct risk profiles 

To comprehensively characterize gene mutations 
in the high- and low-risk groups, we examined 
significant mutations in genes such as IDH1, TP53, 
ATRX, and CIC, among others. The results yielded 

striking findings: firstly, the mutation rate of IDH in 
the low-risk group reached 91%, whereas, in the 
high-risk group, the mutation rate of IDH1 was less 
than 50%. Another notable distinction was observed 
in the mutation rate of EGFR, which amounted to 19% 
in the high-risk group and 0% in the low-risk group 
(Figure 9 A, B). Additionally, a significantly higher 
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tumor mutational load was observed in the high-risk 
group, further reflecting its prognostic impact, as 
evidenced by a considerable reduction in survival 
time within the high-TMB group (Figure 9 C-E). 

Identification of potential drugs for diverse 
subgroups 

To augment the translational value of the current 
sphingolipid metabolism prognostic model, drug 
prediction analysis was conducted. We judged by 
relying on the index of IC50, the lower IC 50 value 

indicates increased drug sensitivity, and different risk 
groups showed distinct drug applicability intervals, 
specifically, the low-risk group was more sensitive to 
Axitinib, AKT inhibitor, AICAR, and AG.014699. 
While, the high-risk group presented stronger 
sensitivity to drugs such as A.770041, AMG.706, 
AUY922. The above results could more accurately 
guide precision therapy through the current 
risk-prognostic model. (Figure 10 A-E). 

 

 
Figure 6. Validity assessment of sphingolipid metabolism lncRNAs to construct prognostic models. (A, B) Univariate and multivariate Cox regression analysis reveals the 
prognostic value of current risk scores and clinical characteristics. (C) Columnar line graph models are constructed based on risk score, age, gender, and tumor stage. (D) A 
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calibrated plot of overall patient survival at 1 year, 3 years, and 5 years. (E) ROC curves of risk scores and clinical features predicting prognosis. (F) C-index for risk score, grade, 
age, and gender. (G, H) Kaplan-Meier curves for subgroup analysis based on tumor stage. 

 
Figure 7. High and low-risk groups in the pathway enrichment analysis. (A, B, C, D) KEGG analysis of DEGs in two groups with high and low risk. (E) LncRNAs-mRNAs 
co-expression network of GBM. (F) GSEA results reveal significant enrichment of the top 10 pathways in the high-risk group. (G) Top 10 pathways significantly enriched in the 
low-risk group by GSEA analysis 
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Figure 8. Immunological characteristics differences between high and low-risk subgroups based on Risk Score. (A) StromalScore of the two risk groups. (B) ImmuneScore of the 
two risk groups. (C) ESTIMATEScore of the two risk groups. (D) Variation in Risk Score of the different immune subgroups. (E) a histogram showing the proportion of immune 
cells in each of the two groups; (F) a violin plot indicating the difference in the levels of immune cell infiltration between the two groups; (G-O) Kaplan-Meier curves illustrating 
the association between immune infiltrating cells and prognosis; (P, Q) a violin plot displaying the differences in immune cell and immune function scores between the two groups. 
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Figure 9. Prognosis of mutation patterns in high- and low-risk populations. (A) Mutation information for high-risk populations. (B) Mutation profile of the low-risk population. 
(C) TMB in the two risk groups. (D) Prognostic information for patients with high and low TMB scores. (E) Prognostic information for patients with high and low TMB scores in 
risk groups with differing Risk Score definitions. 

 

RT-PCR validation 
We validated our computation in an in-vitro 

manner through the RT-PCR technique. NHA cell line 
served as a control in the present study, the other 4 
cell lines were tumorous cell lines. It was observed 
that in comparison with the NHA cell line, the 
tumorous cell lines expressed LINC01433, 
MYLK-AS1, and LNCOG in a higher ratio, supporting 
our bioinformatic results (Figure 11). 

Discussion 
Considerable attention has been devoted to 

glioblastoma (GBM), adult-onset Considerable 
attention has been devoted to glioblastoma, a 
malignancy affecting the brain, with recent 
investigations focusing on the involvement of long 
non-coding RNAs (lncRNAs) in its pathogenesis (27). 
LncRNAs, a distinctive class of RNA molecules 
exceeding 200 nucleotides in length, exhibit structural 

characteristics analogous to mRNAs. Despite their 
lack of protein-coding capacity, lncRNAs display 
greater functional versatility and tissue specificity 
than mRNAs (28). These molecules exert pivotal 
regulatory roles and govern diverse cellular processes 
implicated in the development and progression of 
glioblastoma, including angiogenesis, drug resistance, 
invasion, metastasis, apoptosis, and proliferation (29). 
Altered expression of specific lncRNAs in 
glioblastoma has been associated with histological 
differentiation, and malignancy indices, and 
identified as potential biomarkers for assessing the 
grade, prognosis, and treatment resistance of 
glioblastoma (30). Furthermore, lncRNAs intricately 
participate in essential signaling pathways and 
molecular mechanisms underlying glioblastoma, such 
as the PI3K/AKT/mTOR pathway, Wnt/β-catenin 
pathway, and epithelial-mesenchymal transition 
(EMT) (30). The exploration of the intricate interplay 
between lncRNAs and glioblastoma demonstrates an 
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exciting promise for unraveling underlying molecular 
mechanisms, as well as identifying novel diagnostic 
markers and therapeutic targets (31). However, a 
comprehensive research endeavor is imperative to 

achieve a profound understanding of the specific 
functional roles and clinical implications of lncRNAs 
in the context of glioblastoma. 

 
Figure 10. Potential drug filter for high and low-risk groups. (A-E) More sensitive medications for the high-risk group. (F-G) Drugs that are more sensitive to the low-risk group. 

 
Sphingolipids possess dual identities, serving as 

pivotal structural constituents of the cell membrane 
surface, thereby influencing the stability of the 
intracellular milieu and the activity of key signaling 
molecules. Additionally, sphingolipids exert 
significant regulatory influence as major lipid 
components of the myelin sheath surrounding nerve 
axons. Consequently, a thorough exploration of 
sphingolipid metabolic processes holds the potential 
to inform future therapeutic strategies for 
glioblastoma (32, 33). Leveraging comprehensive 
transcriptome sequencing data, our study reinforces 
the notion that unraveling the biological significance 
of sphingolipid metabolic pathways could serve as a 
compelling driving force in the current therapeutic 
landscape of glioblastoma. Our investigation 
validates 17 lncRNAs involved in sphingolipid 
metabolism as novel predictive biomarkers for 
glioblastoma. Among these 17 genes, PAXIP1-AS2, 
MYLK-AS1, LINC01433, LNCOG, FOXD3-AS1, 
TPRG1-AS1, HOXD-AS2, SNAI3-AS1, SOX21-AS1 
have already undergone extensive scrutiny within the 
realm of cancer research. Notably, FOXD3-AS1 not 
only exerts oncogenic effects through its influence on 
the transcriptional regulation of FOXD3 but also 
impacts the resistance to temozolomide (TMZ) in 
glioblastoma, thus affecting the long-term prognosis 

of patients (34, 35). Overexpression of HOXD-AS2 is 
indicative of an unfavorable prognosis in glioma 
patients, and its upregulation promotes resistance to 
temozolomide, enhances MGMT expression, and 
reinforces the invasiveness of glioblastoma cells (36, 
37). Recent investigations have also established a close 
association between HOXD-AS2 and the process of 
CTCF with cohesin binding. Diminishing its 
expression level leads to the silencing of other genes 
within the HOXD locus, thereby mediating glioma 
cell death (38). Conversely, SOX21-AS1 likely 
influences miR-144-3p through a competing 
endogenous RNA (ceRNA) mechanism to regulate the 
Wnt/β-connexin pathway, exerting a 
pro-carcinogenic effect (39). Our study collectively 
demonstrates the diagnostic efficacy of these 17 genes, 
supported by evidence from column line graphs and 
the nomogram. Individually, these 17 lncRNAs 
undeniably hold potential as robust markers 
(individually or in combination) for glioblastoma. 

Comparative to preceding investigations, explo-
ratory models based on sphingolipid metabolism 
have demonstrated a marginal advantage, as 
corroborated by an AUC value of 0.889. This 
discovery further bolsters the proposition that the 
sphingolipid metabolic pathway harbors considerable 
potential within the therapeutic paradigm of 
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glioblastoma (40, 41). Indeed, efforts to exploit the 
prognostic diagnostic value of sphingolipid 
metabolism-related genes in diverse tumors, namely, 
to achieve translational medicine value with the aid of 
the exploitation of relevant models, have always been 
made, for example, Pei et al. established a novel 
prognostic model composed of seven SRGs by 
incorporating the transcriptomic as well as the 
single-cell data from datasets such as TCGA, GEO, 
among others, and it reflected well the level of 
immune infiltration in patients with breast cancer and 
the level of immune checkpoint changes (42). In 
addition, sphingolipid metabolism-related genes have 
different roles in the tumor microenvironment of 
patients with oral cancer, renal cancer, hepatocellular 
carcinoma, and osteosarcoma, whichever is the same 
as the biological background information mentioned 
above, sphingolipid metabolism is broadly involved 
in the development of carcinogenesis and may be a 
distinctive label at the pan-cancer level (43-45). 
However, the diagnostic efficacy of the current model 
of LncRNA in the GBM paradigm is superior to all of 
the above, and we tentatively attribute this 
discrepancy to sphingolipids themselves as a unique 
neurologically involved protein. 

Moreover, the patient cohort derived from 
existing models, assessed by the Risk Score, holds 
promise in the field of translational medicine. Upon 
juxtaposing our study population with patients 
afflicted by G2 and G3 grade tumors, a notable 
reduction in prognostic levels was observed among 
the high-risk group. This observation, coupled with 
the overarching trend of escalating disease 
malignancy, implies a plausible association between 
sphingolipid metabolic pathways and the progression 
of glioblastoma. It is worth noting that the current 
Risk Score effectively stratifies the glioblastoma 

population not solely based on PCA and tSNE 
outcomes, but also by taking into account the distinct 
characteristics of both higher and lower-risk groups. 
Pathway enrichment analysis conducted on the 
high-risk cohort accentuates the activation of the 
Amino sugar and nucleotide sugar metabolism 
pathway. Extensive studies have duly documented 
the fundamental role played by nucleotide sugar 
synthesis in governing nutritional sensing, stress 
responses, tumor cell growth, and drug resistance, 
potentially contributing to the observed high-risk 
profile (46). Furthermore, the activation of the cell 
cycle, a widely acknowledged hallmark of tumor 
malignancy, is also manifest in the high-risk 
population (47, 48). 

The divergence in population grouping based on 
the Risk Score appears to be more conspicuous when 
considering the context of the immune 
microenvironment. Although existing studies of 
LncRNAs in the context of GBM immunotherapy are 
more limited, our current study seems to furnish a 
referenceable paradigm for immunotherapy relying 
on non-coding RNAs. Our findings indicate elevated 
StromalScore, ImmuneScore, and ESTIMATEScore 
values within the high-risk groups as compared to the 
low-risk groups. Notably, these elevated indicators 
are associated with heightened infiltration of immune 
cells. Integrating these findings with our analysis, we 
posit that the heightened sphingolipid metabolism is 
concomitant with enhanced immune cell infiltration, 
which, within the framework of escalated glioma 
malignancy, may suggest the potential for 
immunotherapy approaches. This hypothesis builds 
upon prior investigations into the tumor immune 
microenvironment (49, 50). To shed further light on 
this matter, we conducted a meticulous character-
ization of immune cell composition within the 

 
Figure 11. RT-PCR validation. Compared with the NHA cell line, the tumorous cell lines expressed LINC01433, MYLK-AS1, and LNCOG in a higher level. 
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immune microenvironment across diverse groups. 
Our findings unveil a relatively substantial degree of 
infiltration by macrophages and neutrophils in the 
high-risk score group. This dual effect of macrophage 
and neutrophil infiltration poses challenges to the 
long-term prognosis of immunotherapy, introducing 
a degree of uncertainty to ongoing research (51-53). 
However, the activation of NK cells is lower in the 
high-risk population, which provides insights into the 
inferior outcomes observed within this group. 
Moreover, disparities in immune function were 
observed between the two groups, with pivotal 
immune pathways, including immune checkpoints, 
CCR, pro-inflammatory response, and MHC-I, 
exhibiting higher levels of activation in the high-risk 
group. This suggests that the survival prognosis 
within the high-risk group is accompanied by an 
immune response (54). These results bolster our 
existing conclusions and indicate that our signature 
may offer valuable insights for future studies on the 
immune microenvironment of tumors. Prospecting 
the immune microenvironment holds translational 
medical value for the application of immunotherapy, 
which is of utmost importance given the expanding 
population undergoing immunotherapy, often failing 
to meet optimal therapeutic expectations. Hence, the 
identification of a range of biomarkers to predict the 
efficacy of immune checkpoint inhibitors becomes 
imperative (55-58). 

Tumor mutational burden (TMB), along with its 
associated synchronous response to neoantigens, 
emerges as a robust and reliable indicator for 
monitoring the efficacy of immune checkpoint 
inhibitors (ICIs) (59-61). Prior studies on glioblastoma 
(GBM) have established a consensus, indicating that 
elevated TMB levels are intricately linked to 
diminished overall survival, primarily influenced by 
the extent of infiltration of CD8+ T cells and 
macrophages. Our investigation substantiates these 
findings, providing compelling evidence that 
heightened TMB levels in populations stratified based 
on sphingolipid metabolism levels—both in high-risk 
and low-risk categories—are significantly associated 
with a shortened prognosis. This groundbreaking 
revelation paves the way for innovative deliberations 
in future cancer immunotherapy, potentially fostering 
promising synergistic therapeutic approaches that 
integrate chemotherapy and ICIs, with a focus on 
metabolic pathways (62, 63). By shifting the emphasis 
of our study to genetic variations, we made a 
noteworthy observation: a notable frequency of 
mutations in the IDH1 gene within the low-risk 
populations. This observation aligns harmoniously 
with previous conclusions, further affirming the 
reliability and validity of our current model. 

Furthermore, it establishes the groundwork for a fresh 
paradigm in immunotherapy, capitalizing on the 
consensus derived from prior research, which 
identifies a significant correlation between IDH1 and 
TMB (64). To achieve this goal, we diligently pursued 
the establishment of connections with specific 
chemotherapeutic and immunotherapeutic agents, 
thereby fortifying and bolstering the strength of our 
conclusions. 

Conclusion 
To recapitulate, our exhaustive inquiry 

accentuates the versatile applicability of the 
sphingolipid metabolic pathway as an autonomous 
diagnostic and prognostic marker in glioma patients. 
Furthermore, we amalgamate a plethora of substan-
tiated evidence concerning immune infiltration and 
genetic mutations, thereby fortifying the proposition 
that sphingolipid metabolism could function as a 
pivotal determinant in the realm of immuno-
therapeutic interventions. 
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