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Abstract 

Purpose: Cancers often display disorder metabolism, which closely related to the poor outcome of patients. 
We aimed to establish prognostic models using metabolism-associated genes, and identify the key factor 
involved in metabolism in lung squamous cell carcinoma (LUSC).  
Materials and Methods: R package ‘TCGA biolinks’ was used to download the mRNA sequencing data of 
LUSC from TCGA. The clusterProfiler package was performed to analyze biological pathways. The online tool 
GEPIA2 and cox regression method were applied to identify the two gene lists associated with metabolism and 
prognosis of LUSC. The lasso modeling was conducted to establish prognostic models. The quantiseq method 
was used to identify the cellular abundance of expression matrix in TCGA-LUSC dataset. 
Immunohistochemistry and western blotting were done to evaluate the STXBP1 expression in LUSC samples. 
Lactate assay and ATP detection were performed to assess metabolic effect, and CCK8 assay was done to test 
cell proliferation in the LUSC cells with overexpression and suppression of STXBP1.  
Results: Two lists of survival-metabolism-associated genes (11 and 28 genes) were identified and applied in the 
prognostic model 1 and model 2 construction from TCGA-LUSC dataset. High-risk LUSC patients associated 
with poor survival in the training cohort and the test cohort of both model 1 and model 2. Higher ROC values 
for 10- year survival was shown in model 2 than in model 1. In addition, macrophage M1, macrophage M2, 
neutrophil, and T regulatory cell were enriched in the high-risk group of model 2. STXBP1 was the only 
optimized gene in both model 1 and model 2, and related to the poor outcome of LUSC patients. Furthermore, 
STXBP1 associated with infiltrating immune cells, and increased lactate, ATP levels, and cell proliferation. 
Conclusion: Our finding provides the metabolism-associated models to predict prognosis of LUSC patients. 
STXBP1, as the key optimized gene in the model, promotes metabolic progress to increase lactate and ATP 
levels in LUSC cells. 
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Introduction 
Lung cancer has become one of leading cause of 

cancer-related death worldwide [1]. Almost 85% of 
lung cancer is non-small cell lung cancer (NSCLC) 
including the major types of lung adenocarcinoma 
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(LUAD) and lung squamous cell carcinoma (LUSC) 
[2, 3]. As the mostly common targeted therapy, EGFR 
tyrosine kinase inhibitors (EGFR-TKIs) have mainly 
showed effective therapy for the LUAD patients with 
activating EGFR mutations [4-6]. However, the 
patients with LUSC are lack of the effective targets 
and show poor prognosis, compared to the LUAD 
patients. The essential targets for progression and 
development of LUSC are required.  

 Metabolic reprogramming has been known as a 
hallmark in several cancer types including NSCLC [7, 
8]. Compared to normal cells, cancer cell metabolism 
(CCM) shows specific properties and altered 
signaling, which associate with proliferation, progres-
sion and metastasis [9]. There are increasing studies 
on glycolysis metabolism in the tumor environment, 
of which cancer cells undergo glycolysis and produce 
lactate to provide ATP [10-12]. In addition, lactate is 
considered as byproduct under glycolysis response, 
which can influence the surrounding tumor cells and 
the infiltrating immune cells [13, 14].  

 In current study, we aimed to establish the 
prognostic model associated with CCM in LUSC. 
Based on lasso modeling, the CCM-prognostic models 
were constructed. In addition, the relation between 
optimal model and infiltrating immune cells was 
analyzed. Furthermore, we identified biological 
function for the important gene in the 
CCM-prognostic models. 

Materials and Methods  
Data collection and clinical data 

The data of mRNA expression for LUSC was 
downloaded from the TCGA database including 501 
cases (493 cases eligible for survival analysis) using R 
package ‘TCGA biolinks’. The downloaded data from 
LUSC patients were included, and then the cases 
without overall survival (OS) information were 
excluded. The CCM genes were obtained from the 
CCM Gene DataBase (https://bioinfo.uth.edu/ 
ccmGDB/) [15]. Kaplan-Meier survival analyses of 
CCM genes were obtained from GEPIA 2 
(Gepia2.cancer-pku.cn).  

117 cases of tumor tissues were obtained the 
LUSC patients who received surgical resection 
between 2010 to 2014 from Peking university cancer 
hospital. The cases with pathological evaluation of 
LUSC were included, and then the cases without 
information including disease free survival (DFS) and 
OS were excluded.  

Pathway enrichment  
Pathway enrichment analysis was performed 

using the clusterProfiler package to identify 
overrepresented biological pathways. Gene ontology 

(GO) analysis was conducted to identify enriched 
biological processes (BP) with a p-value cutoff of 0.01 
and a q-value cutoff of 0.05. KEGG analysis was 
conducted with a p-value cutoff of 0.01 and a q-value 
cutoff of 0.05. To correct for multiple comparisons, we 
used the "BH" method for both GO and KEGG 
enrichment.  

Identification of survival metabolic genes 
We constructed two lists of survival genes. The 

first list was derived from the most differential 
survival genes (DSG) provided by the online tool 
GEPIA2 (Gepia2.cancer-pku.cn). Alternatively, the 
second list was obtained by Cox regression. Median 
expression value was used to stratify patients into 
high expression group and low expression group. 
Uni-variate cox regression was performed for each 
gene. The hazard ratio and p-value for each gene were 
derived. Genes with p-value smaller than 0.05 were 
considered as median derived survival genes 
(MDSG). The most differential survival genes have 
the most significant association with patient overall 
survival. CCM associated gene list was obtained from 
the previous study [15]. The overlap gene list between 
MDSG and CCM, as well as the overlap gene list 
between DSG and CCM were determined. 

Lasso Modeling 
To construct predictive models with lasso 

modeling, the survival metabolic genes were used as 
model input. The number of metabolic genes is 11 for 
DSG and 28 for MDSG. Predictive model was then 
constructed on the most frequent geneset with 
effective coefficients in the lasso regression using the 
R package 'glmnet' for 1000 iterations on the training 
dataset, which consisted of 70% of the patients. The 
risk score was calculated as the sum of the normalized 
expression of genes multiplied by their coefficients in 
the geneset. The receiver operating characteristic 
(ROC) curve was utilized to determine the cutoff of 
risk scores as a predictor of three, five, and ten-year 
survival in LUSC patients prior to death. Patients 
were divided into two groups based on their risk 
scores, and survival analysis was conducted using 
'Survminer' for both the training and testing datasets. 

Inference of immune infiltration 
To estimate the cellular composition of the 

TCGA-LUSC dataset, deconvolution of cellular 
composition was performed using “immunedeconv” 
package. The quantiseq method was employed to 
infer the cellular abundance using the expression 
matrix of TCGA-LUSC dataset. The absolute fractions 
of ten immune cell subtypes were quantified from 
bulk RNA-seq data. The risk score calculated by lasso 
model was used to stratify patients into high risk and 
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low risk groups. The statistical significance of 
differential immune cell subtype percentage was 
tested using “wilcox” method. 

Immunohistochemistry and Kaplan-Meier 
survival analysis 

The immunohistochemistry was done on the 
paraffin-embedded sections from tumor tissues of 
LUSC patients in Peking University Cancer Hospital 
(n=117). The paraffin-embedded sections were 
dewaxed and hydrated by xylene and gradient 
alcohol. The endogenous peroxidase enzymes were 
blocked with H2O2. STXBP1 (Proteintech, 11459-1-AP) 
antibody was stained on the sections at 4 ℃ 
overnight. HRP-conjugated secondary antibody 
(ZSGB-BIO, PV-6000) was added on the sections at 
room temperature for 30 minutes. Then, DAB kit 
(ZSGB-BIO, ZLI-9017) was used to visualize the 
brown color. The sections were analyzed by the 
pathologists independently. Based on the evaluation 
of immunohistochemistry variables in our previous 
study [16] and Allred et al. ’paper [17], 0–1 and >1 were 
considered low expression and high expression, 
respectively. 

 The χ2 test and Fisher’s exact test were used to 
analyze the correlation between the expression of 
STXBP1 and patients’ clinical variables. The 
Kaplan-Meier method and the log-rank test were used 
to examine the DFS and OS of LUSC patients. 

Construction of STXBP1 network and 
infiltrated immune cells  

The STXBP1 network was built with 
GeneMANIA (http://genemania.org). The infiltrated 
immune cells of LUSC samples with STXBP1 was 
analyzed by TIMER (https://cistrome.shinyapps.io/ 
timer/).  

Cell culture and cell transfection 
The human LUSC cell lines H1703, H2170, H226, 

and H520, and normal lung epithelial cell line 
BEAS-2B were cultivated in the 1640 medium with 
10% FBS at 37 ˚C with 5% CO2. The lentivirus with 
ectopic STBXP1 was infected with the LUSC cells. The 
shRNAs of STBXP1 (shRNA1-STXBP1: GGACTCCG 
ATTATCAAGGA, shRNA2-STXBP1: CAAGCTCGAT 
GCCTATAAA, shRNA3-STXBP1: GGACAAACTTG 
ACACCAAA) were transfected into the cells.  

Western blotting  
The protein was lysed with RIPA buffer 

(Solarbio Life Sciences, R0010) added with 
cOmpleteTM, EDTA-free Protease Inhibitor Cocktail 
(Roche, 4693132001). The lysate was added with 2 x 
loading buffer (Solarbio Life Sciences, P1019) and 
measured by the BCA regent (Beijing Applygen 

Technologies Inc., P1511). The equal protein was 
resolved on the 10% SDS-PAGE gel and transferred to 
the Immobilon®-P PVDF membrane (Merck Millipore, 
IPVH00010). The membrane was blocked with 5% 
Skim Milk (Solarbio Life Sciences, D8340) for 1 hour at 
room temperature. The primary antibody of STXBP1 
(Proteintech, 11459-1-AP) and GAPDH (Proteintech, 
60004-1-Ig) were added at 4 ℃ overnight, followed by 
the corresponding secondary antibody 1 hour at room 
temperature. The signals were visualized using 
NcmECL Ultra Stabilized Peroxide Reagent (New Cell 
& Molecular Biotech, P10300).  

Lactate assay 
 According to the previous studies [18, 19] , the 

cells were planted into the 96-well plates. The cells’ 
supernatant was collected and diluted with sterile 
water. Lactate Assay Kit-WST (Dojindo, L256) was 
used to detect the lactate level. Based on the 
concentrations of 10%, 88%, and 2%, the reagents 
including Dye Mixture Stick Solution, Assay Buffer 
and Enzyme Solution were mixed. After cultivation 
for 30 minutes at 37 ℃ condition, the mixture was 
evaluated at the 450 nm absorbance. P<0.05 was 
considered as the significant difference. 

ATP analysis  
The levels of intracellular ATP were detected 

using a firefly luciferase-based ATP assay kit 
(Beyotime Biotechnology, Shanghai, China). In brief, 
the cells were dissociated using the lysing buffer. 
Then, the lysates were centrifugated by 12000 × g for 5 
minutes at 37 ℃ and were mixed with the ATP 
detection reagent in the dilution buffer for 5 munities 
at room temperature. The luminance signaling was 
measured using the multi-functional microplate 
reader (Infinite 200 Pro, Tecan, Switzerland). Base on 
the standard curve, the ATP level was calculated. 
P<0.05 was determined as the significant difference. 

CCK8 assay 
100 μL/well cell suspensions were seeded in the 

96-well plates. After cell culture for 24, 48, 72, and 96 
hours, cell supernatants were removed, and 90 μL 
fresh medium and 10 μL reagent from CCK-8 Kit 
(Dojindo Laboratories) was added. After one hour 
cultivation, 450 nm absorbance was used to examine 
cell proliferation.  

Results 
Identification of CCM genes in LUSC 

Since the altered cell metabolism is considered a 
hallmark of cancer, we analyzed status of the CCM 
related genes in the LUSC. According to the previous 
study [15], 514 CCM genes were listed in the Stable 1. 
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These genes were enriched in the GO pathways 
including nucleoside, purine, ribose, and glycerolipid, 
and KEGG signaling pathways including phospho-
lipase D, platelet activation, apelin, and thyroid 
hormone, and growth hormone synthesis secretion 
and action (Figure 1A and B). 

The association of CCM genes with prognosis 
in LUSC  

Next, we screened the genes related to the 
survival in the LUSC with survival information from 
TCGA database. 500 of DSG and 1065 of MDSG were 
identified in LUSC using the previous method [20] 
and median-dependent method, of which 11 and 28 
genes were overlapped with CCM, respectively 
(Figure 1C, Stable 2, 3, 4 and 5). Both 11 and 28 genes 
groups contained F10, STXBP1, HAS2, PTEN and 
MDH1. Among the 11 genes, high expressions of F10, 
RXRA, PDE1B, ASL, STXBP1, HAS2, PTEN and FHIT 
were related to shorter survival, and high expressions 

of MDH1, HPRT1 and LSM2 were related to longer 
survival (Sfigure 1). Besides, high expressions of 
ADCY7, CANT1, DPP4, EXT1, FBXW5, SDC4 and 
SEC31A were associated with shorter survival, and 
high expressions of UPF3B and CHST7 were 
associated with longer survival within the 28 genes 
(Sfigure 2).  

Predictive model of CCM  
The predictive model for prognosis of LUSC was 

established on the CCM genes by the lasso regression. 
Those 11 genes and 28 genes were used to create 
prognostic model 1 and model 2 with the 0.47 and 
-0.23 as the cutoff value, respectively (Figure 2 A and 
B). The ROC curve of model 1 was 0.680 for 3 years, 
0.618 for 5 years, 0.572 for 10 years, and the ROC 
curve of model 2 was 0.656 for 3 years, 0.617 for 5 
years, 0.702 for 10 years (Figure 2 C and D). The 
model 1 included ASL, STXBP1, PTEN and HPRT1, 
and the model 2 contained DGKA, STXBP1, ACP1, 

 

 
Figure 1. Cancer cell metabolism (CCM) associated pathways. (A) bubble diagram of GO pathway. (B) bubble diagram of KEGG pathway. (C) The gene numbers in the groups 
including different signature genes (DSG), median DSG (MDSG), CCM, and the numbers of common genes between different groups. 
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PHKG2, EIF4A2, and HIF1A (Figure 2 E and F). The 
risk scores for model 1 and model 2 were identified as 
(0.00083 × ASL) + (0.015 × STXBP1) + (0.011 × PTEN) 
+ (-0.00074  ×  HPRT1) and (-0.001  × DGKA) + 
(0.0049 × STXBP1) + (-0.00086 × ACP1) + (-0.0079 × 
PHKG2) + (-0.0002 × EIF4A2) + (-0.00011 × HIF1A) 
(Stable 6).  

High-risk LUSC patients showed a poorer 
survival in the training cohort of both model 1 and 
model 2 (Figure 3 A and B). Furthermore, high-risk 
patients had a poorer survival in the test cohort of 
both model 1 and model 2 (Figure 3 C and D).  

 Together, these models could predict outcome 
of LUSC patients and the model 2 showed better ROC 
effect. 

The correlation of predictive model with 
immune infiltration 

Next, we investigated the tumor-infiltrating 
immune cells including B cell, macrophage M1, 

macrophage M2, monocyte, myeloid dendritic cell, 
neutrophil, NK cell, T cell (CD4+), T cell (CD8+), T 
regulatory cell, and uncharacterized cell in the high 
and low risks of the prognostic model 2 (Figure 4A). B 
cell, macrophage M1, macrophage M2, myeloid 
dendritic cell, neutrophil, NK cell, T cell (CD8+), T 
regulatory cell, and uncharacterized cell types were 
identified in both high risk and low risk groups 
(Figure 4B). The enrichments of macrophage M1, 
macrophage M2, neutrophil, and T regulatory cell 
types were higher in the high-risk group than the 
low-risk group. The uncharacterized cell type was less 
in the high-risk group than the low-risk group.  

STXBP1 was associated with poor outcome of 
LUSC 

As shown in the figure 2 E and F, only STXBP1 
included in the optimized genes of both model 1 and 
2. Then, we analyzed the role of STXBP1 in the clinical 
significance of LUSC by immunohistochemistry. As 

 

 
Figure 2. Predictive model for prognosis of LUSC. (A-B) Optimal cutoff determining for patient stratification for model 1 (DSG-CCM, 11 genes as input) (A) and model 2 
(MDSG-CCM, 28 genes as input) (B), accordingly. (C-D) ROC curves to evaluate the prognostic value of lasso model derived risk score for model 1 (C) and model 2 (D), 
accordingly. (E-F) The heatmaps showing the expression of prognostic genes remained in the final models of high risk and low risk groups for model 1 (E) and model 2 (F), 
accordingly. 
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shown in the Figure 5A, the representative images of 
low and high STXBP1 expression were demonstrated. 
Then, these samples were divided into two groups 
including low and high expression of STXBP1. 
Furthermore, we analyzed the relationship between 
this protein expression and clinical characteristics 
(Table 1). No significant differences were detected 
between STXBP1 expression and gender, age, or 
smoking. As we expected, high expression of STXBP1 
was related to the advanced stage with significant 
difference. The Kaplan-Meier curves showed high 
STXBP1 expression was associated with shorter DFS 
and OS of LUSC (Figure 5B and C), indicating that 
STXBP1 could be a predict factor for poor outcome of 
LUSC.  

 

Table 1. Clinical variables and STXBP1 expression in LUSC 
patients (n=117) 

 Variable Case no. (%) STXBP1 P value 
Low expression 
(%) 

High expression 
(%) 

Gender    0.727 
 Male 109 (93.2) 50 (42.7) 59 (50.4)  
 Female 8 (6.8) 3 (2.6) 5 (4.3)  
Age (years)    1 
≤60 53 (45.3) 24 (20.5) 29 (24.8)  
>60 64 (54.7) 29 (24.8) 35 (29.9)  
Smoking history    0.071 
Yes 109 (93.2) 52 (44.4) 57 (48.7)  
No 8 (6.8) 1 (0.9) 7 (6.0)  
TNM stage    0.014 
I/II 45 (38.5) 27 (23.1) 18 (15.4)  
III 72 (61.5) 26 (22.2) 46 (39.3)  

 

 
 

 
Figure 3. Survival analysis to evaluate model performance in LUSC. (A-B) Survival analysis of the training dataset for model 1 (A) and model 2 (B) of LUSC. (C-D) Survival analysis 
of the testing dataset for model 1 (C) and model 2 (D) of LUSC. 
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Figure 4. Tumor-infiltrating immune cells in prognostic model 2 in LUSC. (A) Screen of the tumor-infiltrating immune cells in high risk and low risk groups. (B) Distribution of 
B cell, macrophage M1, macrophage M2, monocyte, myeloid dendritic cell, neutrophil, NK cell, T cell (CD4+), T cell (CD8+), T regulatory cell, and uncharacterized cell in the high 
and low risks of the model 2.  

 

STXBP1 related to metabolism and infiltrated 
immune cells 

Then, we found that the genes including STX1A, 
STX2, STX3, SNAP25, SNCA, and KCTD3 et al. 

interacted with STXBP1 by GeneMANIA analysis 
(Figure 6A). STXBP1 involved the pathways including 
metabolism, integration of energy metabolism, 
regulation of insulin secretion, neuronal system, and 
protein-protein interaction at synapses by 
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GeneMANIA analysis (Figure 6B). In addition, 
STXBP1 was related to the infiltrated immune cells 
including B cell, CD4+ T cell, CD8+ T cell, 
macrophage, neutrophil, dendritic cell (Figure 6C).  

 

STXBP1 promoted lactate production, ATP 
level and cell proliferation of LUSC cells 

 We analyzed relationships between STXBP1 and 
the glycolytic metabolism related signals including 
lactate dehydrogenase (LDH) and facilitative sugar 

transporter (GLUT) [21, 22]. Positive relations were 
found between STXBP1 and LDHA, GLUT1, and 
GLUT3 in the LUSC (SFigure 3). There was no 
significant difference between STXBP1 and LDHB. 
Furthermore, we investigated the role of STXBP1 in 
metabolism of lactate and ATP. We screened STXBP1 
expression in the LUSC cell lines H1703, H2170, H226, 
and H520. Compared to the human normal lung 
epithelial cell line (BEAS-2B), relatively higher 
expression of this protein was shown in the LUSC cell 
lines H1703, H2170, H226, and H520 (Figure 7A). 

 

 
Figure 5. Association of STXBP1 expression with survival of LUSC. (A) Representative images for low (n=53) and high (n=64) STXBP1 expression in tumor tissues from LUSC 
patients. Scale bar: 50 μM. (B-C) Kaplan-Meier survival curves show the relation between STXBP1 expression levels and disease-free survival (DFS, B) and overall survival (OS, 
C) in LUSC.  

 
Figure 6. STXBP1 network and infiltrating immune cells in LUSC. (A) Network of STXBP1 and the interacted genes using GeneMANIA. (B) The STXBP1 involved pathways 
using GeneMANIA. (C) STXBP1 and the tumor-infiltrating immune cells using TIMER.  
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Relatively higher expression of STXBP1 were shown 
in the H1703 and H226 cells, and relatively lower 
expression of this protein in the H2170 and H520 cells 
with significant difference (Figure 7A). The H2170 
and H520 cells were transfected using lentivirus with 
overexpression of STXBP1 (Figure 7B). Higher level of 
lactate and ATP were observed in the H2170 and 
H520 cells with overexpression of STXBP1 (Figure 7C 
and D). The shRNA1, 2 and 3 were used to 
downregulate STXBP1 in the H1703 and H226 cells 
(Figure 7E). Relatively lower expression of STXBP1 

were detected in the cells with shRNA2 and 3 
plasmids. Furthermore, lower levels of lactate and 
ATP were demonstrated in the H1703 and H226 cells 
with knock-down of STXBP1 (Figure 7F and G). 
Proliferation was promoted in the H2170 and H520 
cells with overexpression of STXBP1 (Figure 7H). 
Proliferation was inhibited in the H1703 and H226 
cells with knock-down of STXBP1 (Figure 7I).  

These results suggest STXBP1 involves in the 
proliferation and metabolism such as lactate and 
energy production in LUSC. 

 
 

 
Figure 7. The role of STXBP1 in metabolism and proliferation of LUSC cells. (A) Western blots show STXBP1 in the LUSC cell lines H1703, H2170, H226, and H520, and the 
human normal lung epithelial cell line BEAS-2B. (B) Western blots show STXBP1 in the H2170 and H520 LUSC cells with overexpression of STXBP1. (C-D) The histograms show 
the lactate level (C) and ATP level (D) in the H2170 and H520 cells with overexpression of STXBP1. (E) Western blots show STXBP1 in the H1703 and H226 LUSC cells with 
knock-down of STXBP1 (shRNA1, 2 and 3 targeting this gene). (F-G) The histograms demonstrate the lactate level (F) and ATP level (G) in the H1703 and H226 cells with 
knock-down of STXBP1. (H-I) The histograms show proliferation of H2170 and H520 cells with overexpression of STXBP1 (H), and H1703 and H226 cells with knock-down of 
STXBP1 (I).  
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Discussion 
Cancer cells display specific metabolism that can 

be considered as therapeutic target [23, 24]. It has been 
reported that not only the tumor itself, but also a 
metabolic disorder called cancer-associated cachexia 
drives death for 30% of patients with the advanced 
cancers [25-27]. In current study, the novel findings 
were as following: ① Based on the lasso modeling, 
we established the CCM-prognostic model in LUSC; 
② Both model 1 and model 2 contained STXBP1 as 
optimized gene, which was verified to associate with 
survival of LUSC in our cohort; ③ STXBP1 related to 
the immune cells including CD4+ T cell, macrophage, 
and dendritic cell et al., and had the ability to promote 
lactate and ATP levels, which mainly involved in the 
cancer metabolism.  

For the LUAD, the signature associated with 
metabolism was constructed to predict prognosis [28]. 
The lasso-based model was used to predict prognosis 
of LUAD in the immune-associated signatures [29]. In 
the TCGA, we identified 500 genes (DSG) and 1065 
genes (MDSG) associated with survival of LUSC 
using two methods. Among these survival-associated 
genes, 11 and 28 genes were related to the CCM in 
DSG and MDSG, respectively. Using Lasso Modeling, 
these 11 and 28 genes were used to establish 
CMM-prognostic model 1 and model 2, respectively. 
For both model 1 and model 2, high-risk patients was 
related to the shorter survival in the training cohort 
and the test cohort of LUSC. Furthermore, the ROC 
curve for 10-year survival of model 2 demonstrated 
better effect than the model 1, showing an optimal 
CCM-prognostic model was constructed in LUSC.  

The genes including ASL, STXBP1, PTEN and 
HPRT1 were showed in the model 1, and the genes 
containing DGKA, STXBP1, ACP1, PHKG2, EIF4A2, 
and HIF1A were demonstrated in the model 2. 
STXBP1 was the only one gene in both model 1 and 
model 2. STXBP1 has been reported to associate with 
exocytosis like vesicle fusion, priming, docking and 
membrane fusion [30]. In LUAD, high expression of 
STXBP1 was associated with poor outcome [31]. In 
present study, high expression of this protein was 
related to poor prognosis (DFS and OS) of LUSC.  

Increasing evidences show that the feature and 
function of immune cells within tumor 
microenvironment relate with metabolite [10, 13, 32, 
33]. In the CCM-model 2, more macrophage M1, 
macrophage M2, neutrophil, and T regulatory cells 
were enriched in the high-risk group, compared to the 
low-risk group. Wentao Zhang et al. identified the 
immune-related gene including CD79B, PEBP1, 
PTK2B, STXBP1, and ZNF671, which were used to 
establish a proportional hazards regression model in 

LUAD [34]. In glioma, m7G-related genes contained 
six hub genes including STXBP1, CPLX1, PAB3A, 
APBA1, RIMS1, and GRIN2B in immune 
microenvironment [35]. These literatures indicated 
that STXBP1 involved in the immune-related 
signature. In current study, STXBP1 was found to 
associate with the infiltrated immune cells including B 
cell, CD4+ T cell, CD8+ T cell, macrophage, 
neutrophil, and dendritic cell, suggesting that this 
gene may play an essential role in regulating immune 
response.  

 Under hypoxia condition, the tumor cells likely 
undergo the essential metabolic progress-glycolysis, 
that has been known as ‘‘Warburg effect’’ with 
increasing lactate [36]. LDH is an important enzyme 
to regulate the conversion between pyruvate and 
lactate [21]. Since the role of GLUT in glucose 
metabolism, it is an essential regulator for glycolytic 
pathway [22]. We found positive relation between 
STXBP1 expression and LDHA, GLUT1, and GLUT3 
in the LUSC. Higher levels of lactate and ATP were 
observed in the STXBP1 overexpressed cells, 
compared to the control cells. Low levels of lactate 
and ATP were seen in the LUSC cells with 
knock-down of STXBP1. Our results indicate that 
STXBP1 induces ATP energy, that is associated with 
glycolytic metabolism.  

 Here, certain limitations were shown. The 
prognostic model constructions including the training 
and test cohorts were derived from the TCGA 
database. Since the scarcity of clinical samples for the 
LUSC patients, only one key gene-STXBP1 was 
validated in the clinical samples. Finally, 
metabolism-associated experiments are limited, more 
molecular studies are required.  

 In summary, this study establishes the 
CCM-associated models to predict prognosis in 
TCGA LUSC database using lasso multivariable 
analysis. The CCM-associated model 1 and model 2 
could predict survival of LUSC in both training and 
test cohort. In addition, model 2 showed higher ROC 
values than model 1, suggesting better effect for 
predicting. STXBP1, as the only gene in both the 
model 1 and model 2, was associated with poor 
survivals of LUSC patients. STXBP1 had positive 
correlation to the infiltrating immune cells, and 
promoted the metabolic activities, leading to 
increased levels of ATP and lactate.  
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