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Abstract 

Gastric cancer (GC) is one of the most prevalent cancers worldwide. Ferroptosis and the immune status 
of tumor tissue play vital roles in the initiation and progression of GC. However, the role and functional 
mechanisms of ferroptosis- and immunity-related genes (FIRGs) in GC pathogenesis and their 
correlations with GC prognosis have not been elucidated. We aim to establish a prognostic prediction 
model based on the FIRGs signature for GC patients. Differentially expressed genes were screened from 
the Cancer Genome Atlas (TCGA) GC cohorts. The least absolute shrinkage and selection operator 
(LASSO) regression was performed to establish a FIRGs-based risk model. This gene signature with 7 
FIRGs was identified as an independent prognostic factor. A nomogram incorporating clinical parameters 
and the FIRG signature was constructed to individualize outcome predictions. Finally, we provided in vivo 
and in vitro evidence to verify the reliability of FIRG signature for GC prognosis, and validate the 
expression and function of FIRGs contributing to the development and progression of GC. Herein, our 
work represents great therapeutic and prognostic potentials for GC. 

Keywords: Gastric cancer, ferroptosis, immunity, prognosis, risk model 

Introduction 
Gastric cancer (GC) is one of the most common 

cancers worldwide with a poor prognosis [1, 2]. 
Around 1.1 million new cases and 769,000 deaths of 
GC were estimated by the World Health Organization 
(WHO) in 2020. Traditional prognostic approaches, 
such as histopathological diagnosis and tumor staging 
systems, cannot accurately predict the prognosis of 
GC patients. We still need to explore alternative 
approaches to predict the prognosis of patients with 

GC, and guide clinical management for GC treatment. 
Thus, developing a method for accurately stratifying 
risk and new biomarkers for GC patients is essential. 

Ferroptosis, a newly discovered iron-dependent 
form of programmed but non-apoptotic cell death, is 
caused by excessive iron accumulation, lipid 
peroxidation, and the destruction of intracellular 
redox balance [3]. More recently, a growing body of 
research has demonstrated that ferroptosis plays a 
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critical role in a wide range of illnesses, particularly 
cancer [4, 5]. Ferroptosis as a vital feature of tumor 
biology may offer novel strategies for cancer 
diagnosis and therapy [6]. Moreover, ferroptosis is 
acknowledged as a type of immunogenic cell death 
(ICD), suggesting that it may cause an innate or 
adaptive immunological response [7]. Recently, 
researchers revealed the direct crosstalk between the 
immune system and ferroptosis [7]. Clinically, 
ferroptosis is considered to be a promising target for 
cancer immunotherapy. Wang et al. reported that 
immunotherapy-activated CD8+ T cells increase 
tumor cell lipid peroxidation and sensitize tumors to 
ferroptosis [8]. Recently, it has been revealed that 
anti-PD-1/PD-L1 therapy resistance is attributed to 
the suppression of innate immunity and tumoral 
ferroptosis [9]. Therefore, investigating the roles of 
ferroptosis- and immunity-related genes (FIRGs) in 
GC may open up an avenue for the discovery of novel 
therapeutic strategies of GC resistance. 

In this study, we identified prognosis-related 
ferroptosis and immune genes from the Cancer 
Genome Atlas (TCGA) stomach adenocarcinoma 
(STAD) cohorts, one of the most common histological 
subtypes of primary GC. A FIRG signature was 
established, and its prognostic value was validated in 
GC patients. We also constructed a nomogram based 
on the integration of the FIRG signature to predict 
individual overall survival (OS). Furthermore, we 
analyzed and discussed the immune status of 
subgroups with different scores identified by this 
model. Herein, this study suggests that the FIRG is a 
reliable gene signature for predicting prognosis in 
patients with GC and may benefit the understanding 
of GC pathogenesis and the exploration of novel 
targets for GC therapy. 

Materials and methods 
Acquisition of related genes 

Ferroptosis-related and immunity-related genes 
were collected from the GeneCards (https:// 
www.genecards.org/) database [10], which provides 
comprehensive information on human genes. The 
term “ferroptosis” was used as the keyword for the 
search, and genes with relevance scores >1 were 
taken. In the same way, immunity-related genes were 
acquired. 

Collection of datasets 
The RNA-seq data and clinical characteristics of 

the TCGA STAD cohorts were obtained from the 
TCGA website (https://portal.gdc.cancer.gov/) for 
training. The large-scale genome sequencing was 
performed before treatment in those patients, as 
TCGA focuses on untreated primary cancers [11]. 

Participants without detailed expression and clinical 
data or with 0-day follow-up duration were excluded 
[12]. According to these criteria, 348 STAD and 32 
normal samples were obtained and selected for the 
training cohorts. For the validation datasets, we 
downloaded the expression matrices and platforms of 
the GSE84437 (GPL6947), GSE62254 (GPL570), and 
GSE15459 (GPL570) from the GEO website 
(https://www.ncbi.nlm.nih.gov/geo/). Log2 trans-
formation and normalization were employed for the 
expression profiles. The average expression level was 
retained for duplicate genes. The ComBat function of 
the sva package (https://bioconductor.org/ 
packages/release/bioc/html/sva.html) in R software 
4.2.1 (https://www.r-project.org/) was applied to 
remove the batch effects. The detailed clinic 
parameters were listed in Supplementary Table 1. 

Differential expression analysis 
Differential expression analysis of genes 

between TCGA STAD and normal stomach tissue was 
conducted by the edgeR package (https:// 
bioconductor.org/packages/release/bioc/html/edge
R.html) and visualized as volcano plots. P value (p) 
<0.05 and |fold change (FC)|>1 would be considered 
statistically significant for identifying differentially 
expressed genes (DEGs) [13]. The intersection of the 
DEGs, ferroptosis-related genes, and immune-related 
genes, as visualized in a Venn diagram, were selected 
for further analysis. 

Construction and validation of the prognostic 
gene signature 

Univariate Cox proportional hazards regression 
analysis was performed on each FIRG to screen genes 
significantly associated with OS in the TCGA training 
set [14, 15]. Next, the LASSO Cox regression method 
was applied to those identified genes via the R 
software package glmnet [16, 17]. Based on the 
optimal lambda value, the candidate genes were 
selected to construct the model and a risk formula. A 
prognostic risk score was calculated for each patient 
using the following equation: risk score = expression 
level of gene1*y1 + expression level of gene2*y2 + ... + 
expression level of genex*yx, where y represents the 
corresponding regression coefficient. The median risk 
score was considered the cutoff value to categorize 
TCGA STAD patients into high-risk and low-risk 
groups. The same formula and cutoff value were 
applied to three GEO validation datasets for the 
evaluation of model effectiveness. 

Univariate and multivariate Cox proportional 
hazards regression analyses were performed to test 
whether the FIRG-based prognostic model was an 
independent prognostic factor when combined with 
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clinical variables. A Kaplan-Meier (K-M) survival 
curve was constructed, and the log-rank test was used 
to assess the survival differences between groups. The 
sensitivity and specificity of the prognostic perfor-
mance were examined by ROC curve analysis and 
visualized via the R package survivalROC [18]. The 
AUC values indicated discrimination. 

Construction and validation of the nomogram 
A prognostic nomogram was established to 

evaluate the survival probability for STAD patients in 
1, 3, or 5 years via the rms R package. Age, gender, 
pathological stage, pathological T stage, pathological 
N stage, pathological M stage, and risk score were 
independent parameters. The C-index and calibration 
curves were used to calculate the discrimination and 
calibration between the nomogram-predicted value 
and the true survival. 

Gene set enrichment analysis (GSEA) 
GSEA was performed using the R package 

clusterProfiler to determine the related pathways and 
molecular mechanisms of the high-risk and low-risk 
groups in the TCGA STAD cohorts [19]. The whole 
genome of RNA-seq data in TCGA STAD cohorts was 
gene list and the high-risk and low-risk groups were 
used as the phenotype labels. The metric for ranking 
genes parameter was Signal2Noise. The reference 
gene set was “c2.cp.kegg.v7.5.1.entrez.gmt.” Signifi-
cant pathway enrichment was identified by the 
normalized enrichment score (|NES|>1), p<0.05, and 
false discovery rate (FDR) <0.25 [20].  

Functional enrichment analysis  
Gene functional analysis is crucial in converting 

molecular results from high-throughput technologies 
into biological significance [21, 22]. The clusterProfiler 
package in R software was used to perform statistical 
analysis and to visualize the functional profiles of the 
FIRGs, including Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [19]. Adjusted p-value 
(adj. P) <0.05 was considered the cutoff value for 
significance. 

Assessment of immune cell infiltration and 
immune microenvironment 

ESTIMATE is a method that determines the 
fractions of stromal and immune cells based on gene 
expression signatures in tumor samples. It was 
applied to evaluate the tumor microenvironment 
(TME) of each patient with STAD, along with stromal 
score (substrate cells in the tumor tissue), immune 
score (extent of immune cell infiltration), ESTIMATE 
score (the summation of stromal and immune scores 
from individual cases), and tumor purity by the 

estimate R package [23]. CIBERSORT is an analysis 
tool to estimate the abundances of member cell types 
in a mixed cell population based on the expression 
profiles. This deconvolution algorithm was used to 
calculate the proportion of 22 immune cells in each 
patient with STAD [24]. The sum of the 22 immune 
cell type fractions in each sample was 1. By applying 
the single-sample gene set enrichment analysis 
(ssGSEA) method from the R package GSVA [25], we 
calculated the extent of infiltration of 28 immune cell 
types according to the expression levels of genes in 28 
published gene sets for immune cells [26]. 

Cell culture 
Human gastric cancer cell lines, MGC803 cells 

and MKN45 cells, were bought from Procell (Wuhan, 
China), and were cultured in DMEM medium 
(DMEM; Sigma, USA) supplemented with 10% fetal 
bovine serum (Gemini, USA), 100 µg/mL 
streptomycin, and 100 U/mL penicillin at 37 oC in a 
humidified atmosphere containing 5% CO2. The cell 
lines used in the study were authenticated by short 
tandem repeat DNA profiling. 

Production and transmission of lentiviruses 
To produce lentivirus particles, HEK293T cells 

were transfected with the empty vector pLKO.1 with 
targeted shRNA sequences for SPARC, NOX4, GPX3 
knockdown, or pLKO.1 with helper plasmid pMD 
2.G. GP-Transfer-Mate was utilized as a transfection 
reagent for low-scale preps at a ratio of 4:3 
GP-Transfer-Mate/DNA. Additionally, the ratio of 
the lentiviral backbone constructs pSPAX2 and 
pMD2.G was 4:3:1. To eliminate the cells, the viral 
supernatant was collected 24 and 48 hours after 
transfection, spun at 1500 rpm for 5 minutes, flash 
frozen, and stored at 80°C. The MGC803 cells and 
MKN45 cells were transduced with lentivirus when 
they were about 80% confluent. MGC803 cells and 
MKN45 cells were placed in 1.5 ml of media with 250 
μL of lentivirus for 24 hours. 

Cell proliferation 
The experiment was conducted according to the 

Cell Counting Kit-8 Reagent Kit (Beyotime). Usually, 
100 µl of 2000 cells per well for cell proliferation 
assays and 100 µl of 5000 cells per well for cytotoxicity 
assays. Add 10 µl of CCK-8 solution per well. Cell 
proliferation was examined after keeping the cells in a 
5% CO2/37°C humidified incubator for 24 h, 48 h, 72 
h, and 96 h. The absorbance at 450 nm was measured 
using a microplate reader. 

Transwell assay 
For the cell migration assay, the chambers were 

not coated. The chambers were coated with Matrigel 
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(BD Biosciences) for the cell invasion assay. First, 
20,000 cells in 100 μL of medium without serum were 
added to the upper chamber, while medium 
containing serum but no cells were added to the lower 
chamber. The cells were incubated at 37°C for 24 
hours. Cells that did not cross the membrane were 

gently removed with cotton balls, and those that 
crossed the membrane were fixed with 4% 
paraformaldehyde and stained with crystal violet for 
15 minutes. Under a microscope, stained cells were 
counted in five randomly selected areas, and the mean 
value was calculated. 

 

 
Figure 1. The flow chart summarizes the scheme performed to construct prognostic gene signatures of stomach adenocarcinoma (STAD) 
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Wound healing migration assay 
Cells were cultured in 6-well culture dishes in a 

complete medium. When the cells reach 70% to 90% 
confluence, the wound is scraped along the length of 
the culture dish with a pipette tip (200 μl). Cells were 
photographed through a microscope, and the size of 
the wound was measured (s0). After changing the 
medium to serum-free medium, the cells were 
cultured in the incubator for 24 h. After 24 h, the size 
of the wound (s24) was measured and compared with 
s0. 

Statistical analysis 
DEGs were screened using the Wilcoxon test. 

Univariate Cox analysis was performed to screen 
relevant genes with prognostic values. K-M survival 
curves were generated and compared between the 
two groups using the log-rank test. All statistical 
analyses were performed using R version 4.2.1 
(https://www.r-project.org/) and its adequate 
packages. Statistical significance was set at p < 0.05. 

Results 
Identification of differentially expressed FIRGs 
and functional analysis 

The flowchart of this study was illustrated in 
Figure 1. STAD cohort data consisting of 348 STAD 
patients with detailed clinic parameters were 
retrieved from TCGA (Supplementary Table 1). The 
K-M survival curves and log-rank test for 
clinicopathological parameters, including overall 
stage, tumor (T), node (N), and metastasis (M) were 
shown in Figure S1A-D. 4527 STAD differentially 
expressed genes (DEGs) were identified in the TCGA 
cohorts, of which 2192 genes were upregulated, and 
2335 genes were downregulated, as shown in the 
volcano plot (Figure 2A). To identify the gene set 
involved in the process of ferroptosis and immune 
response in Homo sapiens, a total of 302 
ferroptosis-related and 5891 immune-related genes 
with a relevance score of >1, were screened from the 
GeneCards. The intersection of STAD DEGs, 
ferroptosis-related genes, and immune-related genes, 
containing 34 differentially expressed FIRGs, was 
visualized in a Venn diagram (Figure 2B). These 34 
FIRGs were subjected to functional analysis, including 
GO and KEGG analysis. The KEGG pathway analysis 
demonstrated that the FIRGs were mainly enriched in 
signaling pathways of neurodegeneration-multiple 
diseases, ferroptosis, and advanced glycation end 
product (AGE)-receptor for AGE (RAGE) signaling 
pathway in diabetic complications (Figure S2A). As 
revealed by Gene Ontology, these FIRGs were mainly 
enriched in the biological processes (BPs) of tissue 

remodeling, regulation of extracellular matrix 
disassembly, and tissue homeostasis (Figure S2B), in 
the cellular component categories (CCs) of early 
endosome, focal adhesion, and cell-substrate junction 
(Figure S2C), and in the molecular functions (MFs) of 
RNA polymerase II-specific DNA-binding transcrip-
tion factor binding, chaperone binding, and copper 
ion binding (Figure S2D). The univariate Cox 
regression analysis was performed to evaluate the 
prognosis significance of these FIRGs, which 
indicated that 11 FIRGs were remarkably associated 
with OS (Figure 2C). Among them, CDC25A and 
SLC1A5 displayed protective effects against STAD, 
while the rest genes (ATF3, CAV1, CP, DDR2, GPX3, 
JAM3, ZFP36, NOX4, and SPARC) were prognostic 
risk genes for STAD. Furthermore, we analyzed the 
expression levels of these genes in normal subjects 
and STAD patients. As shown in Figure 2D, 
significant downregulation of ATF3, CAV1, DDR2, 
GPX3, JAM3 and ZFP36, and prominent upregulation 
of CDC25A, NOX4, SLC1A5, and SPARC were 
observed in STAD patients. 

Construction and validation of the FIRGs 
prognostic risk evaluation model in the TCGA 
training and GEO cohorts 

Next, these 11 FIRGs were subjected to LASSO 
Cox regression analysis to construct a prognostic risk 
evaluation model in the TCGA training cohort. 
Coefficients of independent variables in LASSO 
regression were shown in Figure 3A. Based on the 
optimal log value of lambda (λ=7), 7 genes (SPARC, 
NOX4, SLC1A5, GPX3, CP, ZFP36, and ATF3) were 
identified (Figure 3B). The features of these 7 FIRGs, 
including biological processes, functions, and 
corresponding coefficients are described in 
Supplementary Table 2. GO analysis indicated that 
they were involved in glucose/energy metabolism 
(SLC1A5, CP, ATF3), extracellular matrix binding 
(SPARC), nucleotide binding (NOX4), RNA binding 
(ZFP36), and transcription factor binding (GPX3), 
respectively (Supplementary Table 2). Next, based on 
their mRNA expression levels and the coefficients 
from LASSO Cox regression analysis, each STAD 
patient in the TCGA database was assigned a risk 
score using the following formula: Risk Score = 
SPARC*0.119965 + NOX4*0.113284 + 
SLC1A5*(-0.102689) + GPX3*0.096876 + CP*0.083136 + 
ZFP36*0.077765 + ATF3*0.031323. To evaluate the 
independent predictive potential of the risk score, we 
performed univariate and multivariate Cox regression 
analysis. Univariate Cox regression analysis revealed 
that the risk score (p<0.001, hazard ratio [HR]=3.453, 
95% confidence interval [CI]=2.133-5.591) and 
clinicopathological parameters, including age 
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(p=0.011, HR=1.022, 95% CI=1.005-1.039), T stage 
(p=0.007, HR=1.331, 95% CI=1.079-1.641), N stage 
(p<0.001, HR=1.324, 95% CI=1.140-1.537), M stage 
(p=0.004, HR=2.340, 95% CI=1.319-4.153), and overall 
stage (p<0.001, HR=1.558, 95% CI=1.265-1.919), were 
significantly associated with OS in the TCGA STAD 
cohorts (Figure 3C). Furthermore, multivariate Cox 
regression analysis confirmed that the risk score 
(p<0.001, HR=3.489, 95% CI=2.036-5.980) and age 
were reliable independent prognostic factors (p<0.05) 
for predicting the OS of STAD patients in the TCGA 
database (Figure 3D). According to the median value 
of risk scores, we subsequently evaluated the 
prognostic value of this 7-FIRG model. Then, the 
TCGA training cohort patients were divided into 
low-risk (174 patients) and high-risk (174 patients) 
groups. Consistently, high-risk patients showed 
higher risk scores (Figure 3E) and shorter survival 
time (Figure 3F), as compared to low-risk individuals. 
The gene-expression profiles of the prognostic risk 
genes showed that ZFP36, ATF3, GPX3, SPARC, 
NOX4, and CP were highly expressed in the high-risk 
group (Figure 3G). In comparison with the high-risk 
group, K-M survival analysis revealed a higher 
survival probability in the low-risk group (p<0.001, 
HR=1.873, 95% CI=1.350-2.598) (Figure 3H). The 
receiver operating characteristic (ROC) analysis 
demonstrated that the area under the ROC curve 
(AUC) values for the survival probability at 1, 2, 3, 4, 
and 5 years were 0.637, 0.660, 0.672, 0.687, and 0.715, 
respectively (Figure 3I). Furthermore, this model was 
also validated in three different GEO cohorts 
(GSE84437, GSE62254 and GSE15459), which showed 
consistent results with the TCGA cohort (Figure 
S3A-O). 

Several prognostic models aimed at predicting 
survival in STAD patients have been reported in 
previous studies [27-31]. We compared the predictive 
performance of the 7-FIRG model obtained in this 
study with five reported models [27-31]. To ensure 
uniformity, gene expression levels involved in each 
model were extracted from the original matrix of the 
TCGA STAD dataset. Risk scores for STAD patients 
were calculated based on the corresponding 
coefficients for each model. Subsequently, we 
performed a comparative analysis of the ROC curves, 
our model based on 7 FIRGs exhibited the optimal 
AUC value (AUC=0.656) when compared to the other 
models (Figure S4A). Also, decision curve analyses 
demonstrated that our model achieved greater net 
benefits for OS probabilities (Figure S4B). Together, 
these results demonstrate that the risk model based on 
these 7 FIRGs presents a reliable accuracy for 
predicting the OS of GC patients. 

Construction and validation of the nomogram 
for OS prediction  

A nomogram is an efficient tool that integrates 
multiple risk factors for predicting the OS of cancer 
patients. Here, we established a nomogram for the 
prediction of 1-year, 3-year, and 5-year OS in the 
TCGA STAD cohorts (Figure 4A). Seven independent 
risk factors, including age, gender, stage, T stage, N 
stage, M stage and the FIRG signature, were included 
in this model (Figure 4A). The total points of risk 
factors indicate their corresponding contribution to 
the survival probability. The concordance index of our 
nomogram was 0.682 (p<0.0001, 95% CI=0.636-0.729). 
We observed that the nomogram-predicted OS 
matched with the actual observed OS at 1-year, 
3-year, and 5-year, as shown by the calibration curves 
(Figure 4B-D), suggesting that this nomograph is 
accurate and reliable for the prediction of the OS of 
STAD patients. 

Exploration of molecular functions and 
signaling pathways related to FIRGs by GSEA, 
GO, and KEGG analyses 

To explore the underlying differences in 
biological functions related to FIRGs between the 
high-risk and low-risk groups, GSEA was performed. 
The details of GSEA results are listed in Supple-
mentary Table 3. Further analysis showed that a total 
of 36 pathways were significantly enriched in the 
high-risk group, parts of which were selected and 
represented, including extracellular matrix (ECM)- 
receptor interaction (normalized enrichment score 
[NES]=2.34, p<0.001), focal adhesion (NES=2.20, 
p<0.001), cell adhesion molecules (CAMs) (NES=2.00, 
p<0.001), vascular smooth muscle contraction (VSMC) 
(NES=1.89, p<0.001), regulation of actin cytoskeleton 
(NES=1.57, p<0.001), mitogen-activated protein 
kinase (MAPK) signaling pathway (NES=1.49, 
p<0.001) (Figure 5A). In contrast, 21 pathways were 
significantly enriched in the low-risk group such as 
DNA replication (NES=-2.83, p<0.001), nitrogen 
metabolism (NES=-2.46, p<0.001), cell cycle 
(NES=-2.20, p<0.001), mismatch repair (NES=-2.18 
p<0.001), steroid biosynthesis (NES=-2.15, p<0.001) 
(Figure 5B). Next, we investigated the differences in 
biological processes and pathways between the two 
risk groups based on the FIRG signature. DEGs 
between the high-risk group and the low-risk group 
were determined by the cut-off of log2|FC|>1 and 
FDR<0.05. Then, the annotation GO enrichment 
analysis and KEGG pathway analysis were performed 
(p<0.05). The GO enrichment analysis obtained 959 
BPs, 134 CCs, and 108 MFs (Supplementary Table 4). 
The top 10 enriched BPs, CCs, and MFs such as 
extracellular matrix organization (BPs), collagen- 
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containing extracellular matrix (CCs), and receptor 
ligand activity (MFs) were presented in Figure 5C. 
The KEGG pathway analysis obtained 61 enriched 
pathways (Supplementary Table 5), showing that the 
DEGs were significantly enriched in the signaling 
pathways of neuroactive ligand-receptor interaction, 

ECM-receptor interaction, calcium signaling, cyclic 
adenosine 3’, 5’-monophosphate (cAMP), cyclic 
guanosine 3’, 5’-monophosphate (cGMP)-protein 
kinase G (cGMP-PKG), transforming growth factor 
(TGF)-beta (TGF-β), phosphatidylinositol-3-kinase 
(PI3K)-Akt, and CAMs (Figure 5D). 

 

 
Figure 2. Identification of differentially expressed ferroptosis- and immunity-related genes (FIRGs) and selection of the FIRGs associated with the survival 
of TCGA STAD patients. (A and B) Volcano plot (A) of the 4527 DEGs and Venn diagram (B) of the 34 differentially expressed FIRGs in the STAD cohorts of the TCGA 
database. (C) Forest plot of the univariate Cox regression analysis with the FIRGs. (D) Expression levels of survival-related genes in tumor and normal tissues. For all, ns: not 
significant, *p<0.05, **p<0.01 and ***p<0.001. 
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Figure 3. Construction and validation of the FIRGs prognostic risk evaluation model in the TCGA training cohort and the evaluation of its independent 
prognostic value. (A) LASSO coefficient profiles of the 11 survival-related genes. (B) Cross-validation for tuning parameter (lambda) screening in the LASSO regression model. 
(C and D) Forest plots of the (C) univariate and (D) multivariate Cox regression analysis in TCGA STAD cohorts. (E and F) The distributions of the risk score, survival time, and 
status of patients in TCGA STAD training cohorts. (G) Heatmap of the gene-expression profiles of the FIRGs signatures in TCGA STAD training cohorts. (H) Kaplan-Meier 
curves of the gene signature in TCGA STAD training cohorts. (I) The time-dependent ROC curves of the prognostic gene signature in TCGA STAD training cohorts. 
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Figure 4. Construction and validation of the nomogram for OS prediction in the TCGA training cohort. (A) The nomogram was constructed based on seven 
independent prognostic factors. (B, C, and D) The calibration plots for the internal validation of the nomogram predicting 1-year (B), 3-year (C), and 5-year (D) OS. The x-axis 
represents the nomogram predicted survival and the y-axis represents the actual survival. 

 

Analysis of immune status for STAD patients 
combined with the prognostic signature 

To investigate the relationship between the risk 
level in STAD patients and immune cell infiltration, 
ESTIMATE, CIBERSORT, and ssGSEA analysis were 
employed in low-risk and high-risk groups. 
ESTIMATE analysis found that the stromal score, 
immune score, and estimate score were markedly 
elevated in the high-risk group (Figures 6A-C), while 
the tumor purity was remarkably decreased (p<0.001) 
(Figure 6D). Furthermore, we evaluated the 
proportion of 22 immune cells in the low-risk and 
high-risk groups using CIBERSORT analysis, which 
showed a significant increase in infiltration levels of 
monocytes (p<0.001), macrophages M2 (p<0.001), 

resting dendritic cells (p<0.05) as well as resting mast 
cells (p<0.001) in the high-risk group (Figure 6E), 
suggesting that risk score was positively correlated 
with the infiltration levels of monocytes, macrophages 
M2, resting dendritic cells, and resting mast cells in 
the high-risk group. In addition, ssGSEA analysis 
demonstrated that the gene expression levels of 23 
immune cell subtypes were significantly upregulated 
in the high-risk group as compared to the low-risk 
group (Figure 6F). These results indicate that the 
high-risk group tends to have a stronger immune 
infiltration than the low-risk group. Next, to figure 
out whether immune checkpoints were altered 
between high-risk and low-risk groups, the expres-
sion levels of 33 immune checkpoint molecules were 
investigated. We found that ADORA2A, BTLA, 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

3466 

CD200, CD200R1, CD274, CD276, CD28, CD40, CD44, 
CD48, CD80, CD86, CTLA4, HAVCR2, IDO1, 
KIR3DL1, LAG3, LAIR1, NRP1, PDCD1, PDCD1LG2, 
TIGIT, TNFRSF18, TNFSF14, TNFSF18, and TNFSF4 

were significantly elevated in high-risk groups, while 
LGALS3, PVR, and TNFRSF25 were remarkably 
decreased in high-risk group (Figure S5A-T and 
S6A-M). 

 

 
Figure 5. Biological function and pathway enrichment analysis of high-risk group and low-risk group based on the FIRGs signature. (A) GSEA of the 
significantly enriched KEGG terms in the high-risk group. (B) GSEA of the significantly enriched KEGG terms in the low-risk group. (C) Go analysis of the DEGs of the two groups. 
(D) KEGG pathway analysis of the DEGs of the two groups. 
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Figure 6. Analysis of immune status for STAD patients combined with the prognostic signature. (A, B, C, and D) Comparison of the stromal score (A), immune 
score (B), ESTIMATE score (C), and tumor purity (D) between the high-risk group and the low-risk group in TCGA STAD cohorts. (E and F) The boxplots for the comparison 
of the proportion of the 22 immune cells (E) and the expression of the 28 immune cells (F) between the high-risk and low-risk groups. For all, ns: no significant, *p<0.05, **p<0.01, 
and ***p<0.001. 
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Mutations of the prognostic FIRGs in cancer 
and predictions of the transcription factors 
(TFs) for the gene signature 

To further validate the strong correlation 
between the prognostic FIRGs and STAD in diverse 
cohorts, we examined the genetic alterations of STAD 
patients in the cBioPortal Cancer Genomics (https:// 
www.cbioportal.org/) database. The Firehose Legacy 
dataset showed that SPARC, NOX4, SLC1A5, GPX3, 
CP, ZFP36 and ATF3 are mutated in 60 (16%) of the 
369 queried patients (Figure 7A). In the dataset of 
Nature 2014 for STAD, including 258 patients, FIRGs 
were altered in 45 (17%) patients (Figure 7B). 
Consistently, in the OncoSG dataset, 26 (18%) of the 
147 queried patients displayed mutations of FIRGs 
(Figure 7C). Moreover, we also investigated the 
genetic alterations of these prognostic genes in other 
four different cancer types, including lung adeno-
carcinoma (LUAD), liver hepatocellular carcinoma 
(LIHC), breast invasive carcinoma (BRCA), cervical 
squamous cell carcinoma and endocervical adeno-
carcinoma (CESC). Intriguingly, frequent mutations 
were also observed in LUAD (16%), LIHC (13%), 
BRCA (15%) patients and CESC (18%) patients in the 
TCGA cohort (Figure S7A-D). These results 
demonstrate that the mutations of these FIRGs were 
strongly associated with the initiation and 
development of cancer. Additionally, we predicted 
the transcription factors (TFs) of these FIRGs 
signatures via the ChEA3 website (https:// 
maayanlab.cloud/chea3/). The top 15 TFs were listed 
in Supplementary Table 6, of which cysteine and 
serine-rich nuclear protein 1 (CSRNP1), FosB 
proto-oncogene, AP-1 transcription factor subunit 
(FOSB), atonal BHLH transcription factor 8 (ATOH8), 
fos proto-oncogene, and AP-1 transcription factor 
subunit (FOS) presented the significant potential as 
TFs to modulate FIRGs expression. The protein- 
protein interaction (PPI) network was also 
constructed by STRING (https://cn.string-db.org/), 
demonstrating that there are 22 nodes and 40 edges in 
the PPI network of FIRGs and TFs (Figure S8A-C). 

In vivo validation of prognostic genes 
expression in gastric cancer 

To confirm that the protein expression levels of 
FIRGs are closely correlated with STAD occurrence, 
we performed the immunohistochemical analysis in 
healthy normal individuals and STAD patients. In 
accordance with the transcriptional levels, immuno-
histochemistry (IHC) staining obtained from the 
Human Protein Atlas (HPA) database indicated that 
the protein expression levels of SPARC, CP, and 
SLC1A5 were increased, while GPX3, ZFP36 and 
ATF3 were reduced in gastric tissue as compared to 

normal group (Figure 8A-F). These results further 
provided in vivo evidence to validate the reliability of 
the FIRGs signatures for the prediction of STAD. 

In vitro validation of the identified prognostic 
genes in gastric cancer cells 

Next, to further validate the roles of FIRGs in the 
development of gastric cancer, we silenced GPX3, 
SPARC and NOX4 in gastric cancer cell lines MGC803 
and MKN45 to examine the effects on the cell 
viability, proliferation and migration/invasion. CCK8 
and cell wound healing assays showed that GPX3 
knockdown significantly enhanced the cell viability 
and proliferation, while SPARC and NOX4 depletion 
promoted cell death and reduced cell proliferation 
capability in MGC803 and MKN45 cell lines (Figure 
9A-F). Furthermore, the transwell assay demonstrated 
that silencing GPX3 markedly induced cell 
migration/invasion, while SPARC and NOX4 
knockdown suppressed the capability of cell 
migration/invasion in MGC803 and MKN45 cells 
(Figure 9G-J). These in vitro results confirmed that 
GPX3 served as a protective gene, and SPARC and 
NOX4 functioned as risk genes for the progression of 
STAD, which is in line with the in vivo findings and 
prognostic risk evaluation. 

Discussion 
With the development of bioinformatics and 

next-generation sequencing technology, numerous 
aberrantly expressed oncogenes have been identified 
and could be employed as prognostic signatures in 
GC [32-35]. Gene signatures based on oncogenes and 
cell processes, including cell death, metabolism, and 
immune response, present a variety of advantages in 
the prognosis prediction of various cancers [36]. 
Ferroptosis, as a newly discovered cell death type, has 
been demonstrated to have great potential for 
overcoming the drug resistance mechanism of 
traditional cancer treatment [37, 38]. Indeed, 
ferroptosis plays a pivotal role in tumor suppression 
via the inhibition of cell proliferation and migration in 
STAD cells [37, 39]. The immune microenvironment is 
closely related to the development and progression of 
STAD [40]. Immunotherapy is a novel treatment for 
STAD that can re-activate the human cellular immune 
response against tumors and has achieved multiple 
satisfactory results [41, 42]. To our knowledge, the 
prognostic gene signatures based on FIRGs have not 
yet been investigated in STAD. The bioinformatics 
analysis of ferroptosis-related genes (FRGs) in the 
prognosis of GC has been previously investigated [12, 
27, 30, 43, 44], whereas our analysis and model with 
different approaches based on FIRGs present novel 
findings. 
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Figure 7. Mutations of the prognostic FIRGs in multiple groups of gastric cancer. Genetic alteration of 7 FIRGs in the Gastric Cancer cohorts (TCGA, Firehose 
Legacy) (A), (TCGA, Nature 2014) (B), (OncoSG, 2018) (C). 
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Figure 8. Immunohistochemistry staining of the prognostic genes in gastric cancer biopsies. Immunohistochemistry images were obtained from the HPA. The 
representative IHC image of SPARC protein (A), CP protein (B), SLC1A5 protein (C), GPX3 protein (D), ZFP36 protein (E), and ATF3 protein (F) in normal tissues and gastric 
cancer tissues. The expression frequency and extent of proteins were defined by staining intensity based on the quantification of the percentage of positively stained cells (none 
cell indicated as “negative”; <25% positive cells indicated as “weak”; 25%-75% positive cells indicated as “moderate”; >75% positive cells indicated as “strong”). 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

3471 

 
Figure 9. Analysis of the effects of the prognostic genes in gastric cancer cell lines. Human gastric cancer cell lines, MGC803 and MKN45 cells were transduced with 
pLKO.1-TRC shRNA as control (Con) or pLKO.1-GPX3, pLKO.1-SPARC, pLKO.1-NOX4 shRNA to silence GPX3, SPARC, NOX4. Proliferation assay (CCK-8) in MGC803 (A) 
and MKN45 cells (B). Wound healing assay in MGC803 (C) and MKN45 cells (E). (D)(F) Quantification of the signals in (C)(E). Migration assay in MGC803 (G) and MKN45 cells 
(I). (H)(J) Quantification of the signals in (G)(I). For all, *p<0.05, **p<0.01, ***p<0.001, Student's t-test. The error bars represent the mean ± SD. 
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We also performed somatic mutation and 
transcription factors prediction to validate the 
reliability of FIRGs signature for the prediction of GC. 
Additionally, the expression levels of FIRGs were 
verified by IHC from the HPA database and the roles 
of FIRGs in the development of GC were further 
validated by in vitro experiments. In this study, we 
identified 34 FIRGs in the TCGA STAD training 
cohorts, 7 of which were significantly associated with 
the survival probability of STAD patients via Cox 
univariate analysis and LASSO regression analysis. A 
new nomogram that integrates multiple risk factors 
for predicting the OS of STAD patients stratified 
clinical outcomes in the TCGA cohorts. Immune 
status analysis indicates that the high-risk STAD 
group exhibits a stronger immune infiltration than the 
low-risk group. In this study, we provided in vivo and 
in vitro evidence to validate the reliability of the FIRG 
signature for the prediction of STAD. Taken together, 
this study suggests that the FIRG signature turned out 
to be a convincible biomarker for prognosis and might 
be used in the future for survival risk stratification 
and personalized management in STAD.  

Here, 7 FIRGs, including SPARC, NOX4, 
SLC1A5, GPX3, CP, ZFP36, and ATF3, were identified 
to construct a prognostic risk evaluation model via the 
LASSO Cox regression analysis, which demonstrates 
a novel gene signature as compared to previous 
studies [12, 27, 30, 43, 44]. Based on the mRNA 
expression levels of FIRGs and the coefficients of 
LASSO Cox regression analysis, the risk score for each 
STAD patient was calculated. Subsequently, we 
established an evaluation model to validate the 
prognostic value of these FIRGs. Intriguingly, in the 
TCGA cohort, high-risk patients showed higher risk 
scores and shorter survival days as compared to 
low-risk individuals. K-M survival analysis indicated 
a higher survival probability and longer survival days 
in the low-risk group in comparison with the 
high-risk group. Furthermore, this model showed 
consistent results with the TCGA cohort in three 
independent GEO cohorts. Moreover, the genetic 
alterations of FIRGs in STAD patients from the 
Firehose Legacy dataset, Nature 2014 dataset, and 
OncoSG dataset further validate the strong correlation 
between the prognostic FIRGs and STAD occurrence 
in diverse cohorts. In addition, a nomogram that 
integrates age, gender, stage, T stage, N stage, M stage 
and the FIRG signature for the prediction of 1-year, 
3-year and 5-year OS in the TCGA STAD cohorts was 
also established. The calibration curves of the 
nomogram showed the predicted OS kept in line with 
the actual observed OS at 1-year, 3-year, and 5-year, 
suggesting that this nomograph is accurate and 
reliable for the prediction of the OS of STAD patients. 

These results demonstrate that the risk model based 
on these 7 FIRGs presents a reliable accuracy for 
predicting the OS of GC patients. Consistently, Song 
et al. demonstrated that a risk model based on 
ferroptosis-related genes (FRGs) was also able to 
accurately predict the prognosis in GC [43]. A ceRNA 
network based on FRGs in the prognostic model also 
showed excellent potential in predicting GC 
prognosis [29]. The identification of the FIRG 
signature shows clinical implications, as it is 
significantly related to the outcomes of STAD 
patients. Gene-targeted therapy is a novel treatment 
that is effective in some gastric cancer patients with 
gene mutations. Compared to traditional treatments, 
patients at high risk might benefit from innovative 
therapies, such as DNA- and RNA-based 
therapeutics, whereas those with low-risk gene 
signatures could temporarily postpone undergoing 
those methods. The prognostic model may help with 
patient categorization, enable specific treatment 
strategies for STAD patients in clinical settings, and 
eventually be beneficial in lowering mortality.  

To elucidate the potential mechanism of FIRGs 
modulating the pathogenesis of GC, the biological 
functions and signaling pathways of FIRGs were 
performed in the high-risk and low-risk groups. 
GSEA and GO enrichment analysis demonstrated that 
the FIRGs were involved in the mediation of ECM, 
CAMs, actin cytoskeleton, and MAPK in the high-risk 
group. Whereas, in the low-risk group, FIRGs 
modulated the cell cycle, DNA replication, mismatch 
repair, nitrogen metabolism, and steroid biosynthesis. 
These results suggest that FIRGs exert different 
functions in the normal and neoplastic gastric tissues. 
KEGG enrichment analysis showed that DEGs were 
mainly enriched in the signaling pathways of 
ECM-receptor interaction, calcium signaling, CAMs, 
cGMP-PKG, TGF-β, and PI3K-Akt. ECM, a dynamic 
and organized tissue structure, has been revealed to 
be an accomplice in promoting the development and 
progression of GC via the regulation of ferroptosis 
[45, 46]. CAMs also have been implicated in the 
development and progression of GC [47]. It’s 
well-accepted that cell adhesion molecules, including 
receptors of the immunoglobulin superfamily and 
integrins, trigger tumor growth and metastases via 
mediating the immune cell-mediated inflammation, 
immune cell infiltration, immune responses as well as 
tumor immune microenvironment [48]. Actin 
cytoskeleton also contributes to the development and 
metastasis of GC through actin cytoskeleton dynamic 
rearrangement [49]. Studies of actin-related primary 
immunodeficiencies have revealed that the actin 
cytoskeleton plays a crucial role in the regulation of 
immune system function, including immune cells 
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proliferation, differentiation, recruitment, migration, 
intracellular signaling transduction, and activation of 
both innate and adaptive immune responses [50]. 
However, whether cell adhesion molecules and actin 
cytoskeleton contribute to GC development still 
requires further investigation. Concerning MAPK, a 
large body of studies has demonstrated that it is 
involved in GC proliferation, invasion, migration, and 
metastasis by mediating ferroptosis processes and the 
immune system through the complex signaling 
pathways [51-53]. Also, cGMP-PKG, TGF-β and 
PI3K-Akt have been implicated with the modulation 
of ferroptosis and immunity, which contributes to the 
development of GC [54-57]. Mechanistically, these 
results disclose that FIRGs may contribute to the 
pathogenesis of GC by regulating ferroptosis and the 
immune system through enriched pathways. 
Additionally, we predicted the TFs of the FIRG 
signature via the ChEA3, and found that CSRNP1, 
FOSB, ATOH8 and FOS were TF candidates to 
modulate FIRGs expression. The PPI network was 
also constructed by STRING, demonstrating that there 
are 22 edges and 40 nodes in the PPI network of FIRGs 
and TFs.  

Immunotherapy is revolutionizing cancer 
therapy, and emerging evidence has clarified that 
targeting our immune system presents great efficacy 
for protecting against cancer [58]. The TME comprises 
various types of cells, such as immune cells, 
fibroblasts, myofibroblasts, neuroendocrine cells, and 
stromal cells [59]. Immune cells infiltrating into TME 
to interact with other immune cells remarkably 
contribute to the development, progression and 
malignancy of GC [60]. To explore the roles of 
immune cell infiltration and ferroptosis in GC, 
ESTIMATE, CIBERSORT, and ssGSEA analysis were 
employed in low-risk and high-risk groups. 
Compared with the low-risk group, GC patients in the 
high-risk group had higher ESTIMATE score, stromal 
score and immune score, while the tumor purity was 
significantly reduced. The increase of infiltrated 
immune cells accompanies stroma activation, which 
could prevent the entry of T cells from the tumor 
parenchyma to the peritumoral stroma [61], thereby 
causing a poor prognosis in the high-risk group [62]. 
Furthermore, we found a significant increase in 
infiltration levels of monocytes, macrophages M2, 
resting dendritic cells as well as resting mast cells in 
the high-risk group evaluated by CIBERSORT 
analysis. Tumor-associated macrophages of the M2 
phenotype have been found to promote tumor 
proliferation and metastasis and to be associated with 
a poor prognosis in GC patients [63, 64]. Besides, 
ssGSEA analysis demonstrated that the gene 
expression levels of immune cells were significantly 

upregulated in the high-risk group as compared to the 
low-risk group. These results prompt us to speculate 
that the elevated infiltrated immune cells in TEM 
accelerate the GC progression, in turn causing the 
poor prognosis in the high-risk group. As abnormal 
TME induces immunosuppression to compromise 
cancer immunotherapy, identifying the immune cells 
in the TME may be beneficial to predict immuno-
therapy responses and improve antitumor activity 
[65]. The immune checkpoints expressed on tumor 
cells protect cancer cells from damage by local 
immune responses [66]. In GC, it is still unclear how 
many immune checkpoints are expressed and 
whether they are useful for predicting the prognosis 
of GC patients. In comparison with previous 
investigations [12, 27, 30, 43, 44], for the first time, we 
found that the expression levels of 26 immune 
checkpoint molecules (ADORA2A, BTLA, CD200, 
CD200R1, CD274, CD276, CD28, CD40, CD44, CD48, 
CD80, CD86, CTLA4, HAVCR2, IDO1, KIR3DL1, 
LAG3, LAIR1, NRP1, PDCD1, PDCD1LG2, TIGIT, 
TNFRSF18, TNFSF14, TNFSF18, and TNFSF4) were 
significantly elevated in the high-risk groups. Among 
them, the roles of CD274, CD276, CD28, CD44, CD48, 
CD86, HAVCR2, KIR3DL1, LAIR1, TNFSF14, and 
TNFSF4 in modulating GC have not been elucidated, 
which still awaits further intensive investigations.  

Finally, our experimental work revealed that the 
silence of SPARC and NOX4 inhibited GC migration 
and proliferation, whereas silencing GPX3 promoted 
GC migration and proliferation, which is in 
accordance with the previous studies. For instance, a 
higher expression level of the SPARC mRNA was 
observed in cancer tissue as compared to adjacent 
normal mucosa [67]. The 3- and 5-year survival of 
patients with lower expression of SPARC was 
significantly better than those with a higher 
expression [67, 68]. Therefore, SPARC is associated 
with GC progression and poor survival of patients, 
which could be useful markers to predict tumor 
progression [69]. Whereas, the role of SPARC in the 
regulation of ferroptosis still remains elusive. 
Nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase 4 (NOX4), a subunit of the NOX 
complex, has been demonstrated to drive reactive 
oxygen species generation, in turn contributing to cell 
proliferation and apoptosis of gastric cancer cells via 
activation of the GLI1 pathway [70]. A study showed 
that NOX4 expression strongly correlated with tumor 
size, lymphatic metastasis, vascular invasion and a 
poor prognosis in GC patients, and suppressed 
cancer-associated fibroblasts-mediated immunothe-
rapy [71]. In Alzheimer's disease, NOX4 promotes the 
ferroptosis of astrocytes by oxidative stress-induced 
lipid peroxidation via the impairment of 
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mitochondrial metabolism [72]. SLC1A5, a suppressor 
gene against ferroptosis, was found to be upregulated 
in GC cell lines [73]. Knockdown of SLC1A5 in GCs 
suppressed cell proliferation, invasion as well as 
migration partly through the inactivated mTOR/p- 
70S6K1 signaling pathway in vitro [74]. CP can induce 
human GC apoptosis via activation of the ERK1/2 
signaling pathway [75]. Furthermore, the inhibition of 
CP loop can promote ferroptosis and radiosensitivity 
by disrupting Cu-Fe homeostasis, demonstrating that 
CP may be a new target and treatment strategy for 
overcoming tumor radioresistance [76]. GPX3 has 
been reported to inhibit GC migration and invasion 
by targeting NFкB/Wnt5a/JNK signaling [77]. 
Accordingly, GPX3 is required for the tumor- 
polarized immunosuppressive function of AT2 cells 
[78]. ATF3, a common stress sensor, can inhibit GC 
proliferation, colony formation, cell migration and 
invasion and tumorigenesis in a mouse xenograft 
model [79]. Moreover, ATF3 can sensitize GC cells to 
cisplatin by induction of ferroptosis via blocking 
Nrf2/Keap1/xCT signaling, supporting a promising 
therapeutic approach for overcoming chemoresis-
tance in GC [80]. The gene ZFP36 also shows 
tumor-specific functions, but its biological roles in GC 
remain largely unknown. A study reported that 
ZFP36 is correlated with the impairment of erastin- or 
sorafenib-induced HSC ferroptosis [81]. Moreover, 
ZFP36 RBPs play a critical role in restraining T cell 
expansion and effector functions, and suggest ZFP36 
inhibition as a strategy to enhance immune-based 
therapies [82]. Taken together, these results strongly 
support the notion that the identified FIRGs can 
predict the development and progression of GC.  

Conclusion 
In summary, we identified a reliable prognostic 

FIRG signature based on the analysis of ferroptosis- 
and immunity-related genes in different training 
cohorts. The risk model based on FIRGs is reliable and 
accurate in predicting the prognosis of GC. This study 
may provide new insights into the molecular 
mechanism of how ferroptosis and immunity 
contribute to the pathogenesis and prognosis of GC, 
and may uncover novel prognostic strategies and 
therapeutical targets for GC therapy.  
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