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Abstract 

Introduction: Esophageal adenocarcinoma (EAC) often recurs systemically despite therapy with a 
curative aim. New diagnostic and therapeutic approaches are urgently needed. A promising field is liquid 
biopsy, meaning the investigation of tumor-associated cells in the peripheral blood, for example 
cancer-associated macrophage-like cells (CAML). The aim of this multicentric study was to investigate the 
presence and cytomorphological appearance of CAML in patients with non-metastatic and operable 
esophageal cancer.  
Methods: Blood samples from 252 patients with locally advanced EAC were obtained before starting 
curative treatment including surgery, and then processed using ScreenCell® filtration devices. 
Cytological analysis was performed via May-Grünwald-Giemsa staining. CAML were defined by their 
morphological characteristics. We also performed immunofluorescence staining with the mesenchymal 
marker vimentin on a subset of our study cohort.  
Results: We detected cytomorphologically heterogeneous CAML in 31.8% (n=80) patients. Their 
presence and cell count did not correlate significantly with pretherapeutic cTNM. Even in patients with 
small tumors and no lymph-node infiltration, cell counts were high. CAML showed heterogenous staining 
patterns for vimentin.  
Conclusion: This is one of the first studies demonstrating the presence and phenotype of CAML in a 
uniquely broad cohort of EAC patients. As they are believed to be representatives of the inflammatory 
tumor microenvironment shed into the bloodstream, their presence in non-metastatic EAC is a 
promising finding. 

Keywords: cancer-associated macrophage-like cell; CAML; esophageal adenocarcinoma; cytopathology; liquid biopsy; liquid 
biomarker 

Introduction 
Esophageal carcinoma is the world’s seventh 

most common cancer and the sixth most common 
cause of cancer death worldwide [1]. Esophageal 
adenocarcinoma (EAC) is a particular problem in the 
western world due to its increasing incidence and still 

poor prognosis despite multimodal therapy 
approaches [2,3]. EAC is usually diagnosed at already 
advanced stages because of its unspecific clinical 
presentation [4]. When there is no clinical sign of 
metastasis, patients undergo neoadjuvant treatment 
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and esophageal resection [5]. Unfortunately, around 
50% of patients who undergo an initially curatively- 
intended resection of a clinically non-metastatic 
primary tumor develop distant metastases [6–10]. 
Diagnosis and follow-up are currently carried out via 
computer tomography and endoscopy, but there are 
no sensitive and specific tumor markers [11,12]. Since 
metastases develop so often in curatively treated 
patients [7], we must assume that micro-metastatic 
disease is being missed by the current staging tools - 
potentially resulting in unnecessary surgery. We 
therefore urgently need novel diagnostic tools that 
can detect metastatic disease and assess the treatment 
response or early progression in EAC patients [3,13]. 

Liquid biopsy offers great potential in helping us 
understand tumor biology and metastasis better. 
Circulating tumor cells (CTC) are the oldest and most 
well-known liquid biomarkers [14]. In the case of 
esophageal cancer, the presence of CTC determined 
by the CellSearch® system correlates with poor 
prognosis [15]. We already reported the presence of 
CTC detected by ScreenCell® in patients with EAC 
during the course of multimodal treatment [16]. As 
the CTC detection rate is low in EAC, especially at 
operable, non-metastatic stages [17,18] we urgently 
need other liquid biomarkers. 

With increasing knowledge about the complex 
interaction between tumorous and body tissue, other 
tumor-associated cells originating from the tumor 
microenvironment have recently come into focus in 
addition to CTC, for example cancer-associated 
macrophage-like cells (CAML) [19,20]. These are 
believed to be disseminated tumor-associated 
macrophages (TAM) that internalize tumor debris at 
the primary tumor site and then spread into 
bloodstream [19,21]. Other authors have even claimed 
that CAML may be a fusion product between tumor 
cells and TAM [22,23]. CAML have been identified in 
patients with many different entities of solid tumors, 
but not in healthy individuals [19,21,24–26]. The first 
studies examining their clinical significance delivered 
promising results: In patients with metastatic breast 
cancer, the presence of CAML before treatment was 
associated with worse progression-free survival (PFS) 
and overall survival (OS) [27]. Furthermore, the 
presence of CAML ≥50 µm after completing 
chemoradiotherapy in patients with Non-Small-Cell 
Lung Cancer (NSCLC) was associated with develop-
ing metastatic disease and worse survival [28].  

In EAC terms, there are only few reports on the 
existence of CAML. In a recently published paper on 
CAML in EC patients (EAC and SCC), the authors 
reported superior 2-year PFS and OS in patients with 
CAML < 50 μm after chemoradiation compared to 
patients with CAML ≥ 50 μm [17]. Although these 

initial results relied on a small and mixed patient 
collective, they nevertheless reveal the potential 
“predictive marker” quality of CAML in EAC patients 
– a finding justifying further investigations.  

The aim of this study was to assess the presence 
and cytomorphological appearance of CAML in a 
large collective of therapy-naive patients suffering 
from locally advanced, non-metastatic EAC.  

Materials and Methods 
Patient selection 

We enrolled 252 patients from 18 centers all over 
Germany (Freiburg, Magdeburg, Würzburg, Münster, 
Aachen, Leipzig, Mainz, München (LMU), Hamburg 
Eppendorf, Dresden, Offenbach, Berlin (CVK), 
Minden, Köln, Berlin (CBF), Dortmund, Erlangen, 
Stuttgart RBK) between 2016 and 2020. Our inclusion 
criteria were: (a) histologically confirmed esophageal 
adenocarcinoma according to UICC TNM7 definition 
[29] or Siewert classification AEG type 1 and type 2 or 
3 in case of esophageal infiltration. (b) Pretherapeutic 
stage cT1 N+ M0 or cT2-4a N0/N+ M0. (c) No prior 
chemotherapy for gastrointestinal cancer, and no 
prior abdominal or thoracic radiotherapy. Patients 
with esophageal tumors other than adenocarcinoma 
were excluded, as were patients with metastatic 
tumors or not curatively-resectable tumors. The 
clinical staging was assessed identically in all study 
centres. All patients underwent thoracic and abdo-
minal CT scans, gastro-esophageal endoscopy and 
endosonography. All patients gave full informed 
consent for material, data acquisition and the 
following experiments. This study was approved by 
the Ethics Committee of Albert-Ludwigs-University 
Freiburg (315/15 FF-MC), Freiburg, Germany. 

Cell analysis 
To detect CAML, peripheral venous blood 

samples were taken before initiating any neoadjuvant 
treatment. Blood specimens were collected using 
transfix tubes (Circulating Tumor Cell TransFix/ 
EDTA Vacuum Blood Collection Tubes 9ml, 
Cytomark, Caltag Medsystems Ltd, Buckingham, 
UK). The tubes were sent within 24 hours after blood 
draw to the CTC laboratory at the Department of 
Surgery, University Medical Center Freiburg.  

After 4 hours to 5 days of storage at room 
temperature, the blood specimens were processed 
using ScreenCell® Cyto-R devices (ScreenCell, 
Sarcelles, France) according to the manufacturer’s 
instructions and as reported previously [16,30,31]. 
ScreenCell® is a surface marker independent 
enrichment technology using microfilters through 
which almost all red and white blood cells are 
removed via low-pressure vacuum-filtration. 
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Enlarged cells remain on the filter membrane and can 
subsequently be stained and analyzed cytologically 
(Figure 1). At least one filter was created for every 
patient using 3 ml of blood for each filter. 

After being processed with the ScreenCell® 
device, the filters were first stored at 4°C and later at 
minus 20°C, as it became clear to us that storage at 
minus 20°C was yielding better staining results. For 
staining, filters were dried at 38°C for 60 minutes. 
They were stained with standard May-Grünwald- 
Giemsa-staining for cytological analysis. Stained 
filters were analyzed by two trained readers blinded 
to the diagnosis of the patients on brightfield using an 
Olympus BX16 microscope. CAML were identified by 
their cytomorphological characteristics as described 
before [17,19,27,28], which are (a) extraordinary large 
cells with a relatively low nucleo-cytoplasmic ratio, 
(b) enlarged multilobulated nuclei, and (c) volu-
minous cytoplasm. Every CAML was photographed 
and documented. Questionable interpretations were 
re-evaluated until a consensus was reached and 
analyzed by a cytopathologist for verification. 

Statistics 
All statistical analyses were performed using 

SAS/STAT Software Version 9.3 (SAS Institute Inc., 
Cary, NC, USA). No formal sample size calculation 
was done. Data were analyzed descriptively. Cate-

gorial data were summarized by absolute and relative 
frequencies. Continuous data were summarized by 
mean, standard deviation, median, quartiles and 
range. The association between CAML and clinical T- 
and N-stage was compared using chi-square tests at a 
two-sided significance level alpha of 5%. Therefore, 
the probability of any CAML was compared between 
patients with small tumors (cT1-2) versus large 
tumors (cT3-4) and between patients with cN0 versus 
cN+. The probability of any CAML was estimated 
with 95% confidence intervals in the whole study 
population and in subgroups defined by cT and cN. 
P-values of p<0.05 were considered significant.  

Immunofluorescence staining 
For some patients presenting CAML on the first 

filter in Giemsa staining, we had access to a second 
ScreenCell® filter for immunofluorescence staining.  

Before staining, filters that had been stored at 
minus 20°C were dried at 38°C for 60 minutes or left 
to dry at room temperature overnight. Then they were 
washed with 500µl of Phosphat buffered saline (PBS) 
for 5 minutes. Cell membranes were lysed with 500µl 
of permeabilization buffer (PBS.T, 0.5% Triton in PBS, 
Sigma-Aldrich, Merck, Germany). Filters were 
washed again three times with 500µl of PBS for 5 
minutes and blocked with 500µl of normal goat serum 
(NGS, 2% in PBS) for 30 minutes. Afterwards, they 

 
Figure 1. Isolation method of CAML and CTC via ScreenCell®. (a) Normal blood cells. (b) Example of CAML in patients with EAC.  
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were incubated with anti-vimentin monoclonal 
antibody (rabbit, GTX 16700, GeneTex, Irvine, USA; 
diluted 1:1000 in 2% NGS) overnight at 4°C in a 
humidity chamber. Filters were washed again four 
times with 500µl PBS for 5 minutes and incubated 
with the secondary antibody anti-rabbit Cy3 (A-10520, 
ThermoFisher Scientific Inc., Waltham, USA; diluted 
1:1000 in 2% NGS) for 60 minutes at room 
temperature. Then they were washed twice with 500µl 
PBS for 5 minutes. For nuclear staining, Hoechst 33342 
(ThermoFisher Scientific Inc., Waltham, USA; diluted 
1:1000 in H2O) was added for 3 minutes and washed 
again twice with PBS for 5 minutes and then H2O. 
After drying at room temperature, the filters were 
analyzed using Olympus BX61 microscope and 
suspicious cells were photographed. 

To verify the suspicious cells, standard 
hemotoxylin-eosin (HE) staining was performed 
subsequently using Hemacolor rapid staining kit 
(Sigma-Aldrich, Merck, Darmstadt, Germany) 
without having washed off the immunofluorescence 
stain. Hemacolor solutions were filtered before usage 
to prevent impurity with large staining particles. Cells 
that had been photographed in immunofluorescence 
staining were subjected to brightfield microscopy and 
photographed again.  

Only filters stored at minus 20°C were included 
for our immunofluorescence assessments as this 
resulted in better staining results than storage at 4°C. 

Results 
Study population 

Our study cohort contained 252 patients. Patient 
characteristics are illustrated in Table 1. 88.5% 
(n=223/252) of patients were male. Their average age 
was 63 years. Most had a tumor at clinical T3 stage 
(74.6%, n=188/252). Lymph node infiltration (cN+) 
was detectable in 79% (n=199/252) during 
pre-therapeutic imaging. No patient showed clinical 
signs of distant metastasis (cM0). 

 

Table 1. Patient characteristics and TNM stage 

Number of patients (n) 252 
Gender (male/female), n (%) 223 (88.5%)/ 29 (11.5%) 
Age in years, mean (range) 63.0 (37-86) 
BMI in kg/ m², mean (range) 27.5 (14.5-57.1) 
Clinical TNM stage, n (%)  
cT1 3 (1.2) 
cT2 47 (18.7) 
cT3 188 (74.6) 
cT4 14 (5.6) 
cN0 53 (21.0) 
cN+ 199 (79.0) 
cM0 252 (100.0) 

cT-Stage: size of primary tumor; cN-Stage: degree of spread in regional lymph 
nodes; cM-Stage: presence of distant metastases; BMI: body mass index 

 

CAML 

Cytomorphological characterization of CAML 
CAML were highly heterogenous in terms of size 

range, nuclear profile, and cytoplasmic configuration, 
even in a single patient. Some CAML were quite small 
and round or oval shaped. Other CAML were 
remarkably large (up to more than 100 µm), rod 
shaped, or revealing a wide variety of cytoplasm 
“tails” (Figure 2). All CAML were much larger than 
normal blood cells (Figure 2b). CAML tended to 
exhibit multilobulated nuclei, and some even had 
several separate nuclei. 

Quantity of CAML and Correlation with TNM 
A minimum of one CAML per filter (3 ml of 

patient blood) was detected in 31.8% (n=80/252) of 
patients (CI: 26.1%; 37.9%). The mean number from 
the entire study cohort was 2.7 CAML per filter (Table 
2). When patients were positive for CAML, the cell 
count was rather high: In CAML-positive patients, the 
mean number was 8.4 cells per filter. The range here 
was very high: while most patients had no CAML at 
all, some had up to 47 CAML on one filter.  

The CAML count showed no association with 
the clinical T- and N-stages (Table 2). The highest 
CAML number per filter (n=47) was identified in a 
patient suffering from advanced local spread (cT3) 
and lymph node infiltration (cN+), whereas the 
second highest CAML count (n=44) was found in a 
patient presenting a smaller local tumor stage (cT2) 
and no signs of lymph node infiltration (cN0).  

CAML-positivity, regardless of the cell count, 
also failed to demonstrate any significant association 
with the tumor stage (Table 3) (T1-2: 36.0%, 95%CI= 
22.9-50.8% versus T3-4: 30.7%, 95%CI=24.4-37.6%, 
p=0.4704), nor with lymph node invasion (N0: 39.6%, 
95% KI=26.4-54.0% versus N+: 29.7%, 95% 
KI=23.4-36.6%, p=0.17). 

In addition to CAML, we detected CTC in 65.5% 
(n=165/252) of patients. To clarify the difference 
between CAML, CTC, and normal blood cells, Figure 
2b illustrates them all in one diagram. The defining 
criteria we used can be found in detail in our previous 
publication [31]. 

Immunofluorescence staining 
CAML revealed heterogeneous cytoplasmic 

staining patterns in conjunction with the mesen-
chymal marker vimentin. Vimentin is expressed by 
leukocytes, but also by cancer cells following 
epithelial-mesenchymal transition (EMT), which is 
why it is commonly used as marker for mesenchymal 
phenotypes in EMT studies [32]. Most CAML 
expressed vimentin, but the intensity of marker 
expression varied between no expression at all to very 
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strong vimentin signals (Figure 3), even in the same 
patient. One exemplary patient at stage cT4cN+cM0, 
who presented 12 CAML on the first Giemsa staining 
filter, showed 10 CAML on the second filter. Of those 
CAML, five exhibited no or very weak vimentin 
expression, whereas the other five CAML were 
moderately to strongly vimentin-positive. CAMLs’ 

vimentin staining patterns were usually inhomo-
geneous and punctual, or filamentous compared to 
the leukocytes’ staining pattern (Figure 3b) or that of 
CTC-Clusters, which also stained positive for 
vimentin. Single-cell CTC never stained positive for 
vimentin in our study participants. 

 

 
Figure 2. Cytomorphological heterogeneity of CAML on ScreenCell® filters, Giemsa staining (20x magnified). Pores are exemplarily marked by black arrowheads (pore size: 
7,5µm). (a) Different cytoplasmic and nuclear configurations of CAML. Left: Smaller CAML with round or oval shaped cytoplasm. Right: Large CAML with long cytoplasmic 
“tails”. (b) Cytological comparison between CAML (1 and 2) versus CTC (3) and eosinophil granulocyte (marked with black arrow). CAML were defined as extraordinary large 
cells with a relatively low nucleo-cytoplasmic ratio, enlarged multilobulated nuclei and voluminous cytoplasm. CTC were defined as cells with enlarged (≥ 16µm) and 
hyperchromatic nuclei with irregular nuclear borders and increased nucleo-cytoplasmic ratio.  

 

Table 2. Quantity of CAML per filter (3ml of patient blood) associated with tumor stage 

  n Mean SD Minimum Lower Quartile Median Upper Quartile Maximum 
Total 252 2.7 6.977 0 0 0 1 47 
 cT-stage         
 T1-2 50 3.0 7.941 0 0 0 2 44 
 T3-4 202 2.6 6.736 0 0 0 1 47 
 cN-stage         
 N0 53 3.2 7.376 0 0 0 2 44 
 N+ 199 2.5 6.878 0 0 0 1 47 
CAML-positive patients 80 8.4 10.318 1 1 4 10.5 47 
 cT -stage         
 T1-2 18 8.3 11.606 1 1 4 9 44 
 T3-4 62 8.4 10.017 1 1 4 11 47 
 cN-stage         
 N0 21 8.1 9.995 1 2 4 9 44 
 N+ 59 8.4 10.513 1 1 4 12 47 

cT-Stage: size of pimary tumor, cN-Stage: degree of spread in regional lymph nodes, n: number of patients, SD: standard deviation. The upper section includes all patients, 
meaning samples with CAML and without CAML. The lower section shows only patients with at least one CAML per filter. 
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Table 3. Association of CAML-positivity and clinical TNM-stage.  

 n n (CAML positive) % CI p 
cT-stage      
T1-2 50 18 36.0 22.9%; 50.8% 0.47 
T3-4 202 62 30.7 24.4%; 37.6% 
cN-stage      
N0 53 21 39.6 26.5%; 54,0% 0.17 
N+ 199 59 29.7 23.4%; 36.5% 

cT-Stage: size of primary tumor, cN-Stage: degree of spread in regional lymph nodes, n: number of patients, CI: confidence interval, p: p-value 
 

 

 
Figure 3. Examples of CAML immunofluorescence staining, 20x magnified. Row (a) CAML with strong vimentin-positive cytoplasm. Row (b) CAML with moderate positive 
cytoplasm (orange arrow) next to a leukocyte with strong vimentin-positive cytoplasm (blue arrow). Row (c) CAML with moderate vimentin-positive cytoplasm. Pores appeared 
auto-immunofluorescent, highlighted here with a white arrow (pore size 7.5µm). HE: hemotoxylin-eosin staining 

 

Discussion 
This multicentric study demonstrates the 

presence and cytomorphological features of CAML in 
patients diagnosed with locally advanced esophageal 
adenocarcinoma (EAC) prior to multimodal treatment 
including surgery. Since esophageal cancer is a 
comparatively rare tumor entity [33] our study 
cohort’s large size (over 250 patients) is particularly 
valuable and unique. Our patients enable initial 
insights into the presence of a promising new liquid 
biopsy marker in a tumor entity that because of its 
poor prognosis urgently requires new diagnostic 
approaches. 

Most of our patients were male (n=223/252, 
88.5%) which is consistent with the known gender 
distribution in EAC. The patients’ tumors were 
mostly at locally advanced stages: 74.4% showed 
extensive local infiltration (cT3) and 79% had positive 

local lymph node infiltration (N+) (Table 1). 
Importantly, although no patient presented any signs 
of distant metastasis, we detected CAML in the 
peripheral blood samples in 31.8% (n=80) of patients. 

Interestingly, the presence and quantity of 
CAML displayed no association with the clinical 
TNM stage. CAML were also observed in conjunction 
with small local tumors and in patients without 
lymph-node infiltration (N0). This evidence might 
indicate early, systemic spread of tumor-associated 
cells that go undetected via conventional diagnostic 
methods. Other authors have also described detecting 
CAML at early cancer stages, for example in breast 
[19,26], pancreatic [19] and esophageal cancer [17]. 

Little is known about the clinical significance of 
CAML, especially in EAC. Recently, Gironda et al. 
published a prospective pilot study of 32 patients with 
locally advanced esophageal cancer, including ESCC 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

2158 

and EAC, in which they described the sequential 
presence of CAML during chemoradiotherapy [17]. 
CAML were identified using CellSieve microfilters in 
88% of all patient samples (n=28/32) and in 76% of 
patient samples prior to therapy (n=22/29). 
Interestingly, CAML size ≥ 50 μm at the completion of 
chemoradiotherapy was associated with poorer PFS 
(HR=12.0; 95%CI=2.7-54.1; p=0.004) and OS (HR=9.0; 
95%CI=1.9-43.5; p=0.019). These results might 
demonstrate the potential of relying on CAML in 
disease surveillance to identify more aggressive EC 
subtypes and monitor the treatment response [17].  

In the aforementioned study 76% of patient 
samples prior to therapy (n=22/29) showed at least 
one CAML [17] whereas in our cohort, only 31.7% of 
samples (n=80/252) were CAML-positive before 
neoadjuvant treatment. This discrepancy could be 
attributable to differences in study design and patient 
selection: Our study included only EAC patients, 
while Gironda et al. also included ESCC patients. 
Moreover, their patients received chemoradiation, 
whereas in our cohorts, all tumors were considered 
operable, and all patients were scheduled for 
multimodal treatment including surgery. Employing 
different detection methods can also affect detection 
rates.  

Recent studies measuring CAML size reinforce 
the theory that larger CAML correlate with more 
aggressive disease: the presence of CAML ≥50μm is 
considered a predictor of poor prognosis [21]. In our 
study, precise size measurements were not feasible 
which represents a limitation of our study design. 

There is to date neither a standardized definition 
nor specific markers for CAML [27]. Other authors 
defined CAML by a combination of cytomorpho-
logical appearance and marker expression [19,24–
26,34]. Due to their large size and heterogeneous 
marker expression profile, size-based enrichment 
technologies are regarded as the gold standard for 
CAML detection [20,21]. CellSieve® microfilters were 
used in most studies. CellSieve® is a filtration-based 
enrichment technology using immunofluorescence 
staining with cytokeratin, CD45 and DAPI to identify 
cells [19,34]. Since the main distinguishing feature of 
CAML lies in their phenotype, and this phenotype is 
also visible in brightfield microscopy, we do not 
believe that immunofluorescence staining must be 
used to identify CAML. We therefore used 
ScreenCell®, which is also a filtration-based CTC 
enrichment technology [31,35,36] that our group 
already used in other CTC studies [16,30,36]. It 
preserves cytomorphological cell features, thus 
allowing cytomorphological analysis. The Screen-
Cell® Cyto device also enabled our multicentric study 
design, as it allowed the transportation and 

time-delayed processing of blood samples.  
To gain more insights into the cellular character-

istics and EMT status of CAML, we conducted 
immunofluorescence staining with the mesenchymal 
marker vimentin in patients from whom a second 
filter was available and who showed CAML on the 
first filter in Giemsa staining. CAML revealed 
heterogeneous staining patterns for vimentin. This 
finding is consistent with previous reports of CAML 
expressing a broad spectrum of markers at highly 
variable levels, including epithelial, macrophage, and 
endothelial markers [19,20,26,37]. The rather 
inhomogeneous and punctual staining pattern for 
vimentin may be attributable to phagocytic tumor 
material from the tumor site. This theory of ingested 
tumor debris has been reinforced by other investi-
gators who demonstrated tumor-specific marker 
expression (for example PDX-1 for pancreatic cancer) 
within CAML [19]. CAMLs’ varying differentiation 
stages is another potential explanation for hetero-
genous staining patterns [38], as are variations in 
transportation and storage due to our multicentric 
study design. 

The heterogeneity in marker expression and 
phenotype makes investigating CAML properties in 
terms of single-cell analysis more challenging. Future 
investigation is needed to clarify their marker 
expression profile. Nevertheless, the latest studies 
indicate that using CAML as biomarker improves the 
clinical application of cell-based liquid biopsy 
[17,21,23,28,39]. Because of their heterogeneous 
appearance, filtration-based enrichment technologies 
are particularly well-suited for gaining initial insights 
into the occurrence of CAML in cancer patients.  

CAML are believed to be representatives of the 
local inflammatory tumor microenvironment [28]. 
Inflammation plays a major role in tumor progression 
and metastasis [40]. The detection of possible 
biomarkers for the interplay between tumor and 
immune system is thus of great interest, especially in a 
tumor entity like EAC which is known to be a 
paradigm of inflammation-induced cancer through its 
association with gastroesophageal reflux [13,41]. 

Our study illustrates the presence and 
heterogeneity of CAML in a uniquely broad cohort of 
therapy-naive EAC patients. Showing the fact, that 
CAML occur also in patients with localized tumor 
stages might support others establishing effective 
CAML isolation protocols; thus our data might pave 
the way for deeper analysis of genetic and molecular 
features of CAML in EAC. CAML surveillance over 
treatment time, like the CTC-analyses we already 
published in a pilot study [16], is planned and will be 
published when follow-up data are available. 
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Conclusion 
CAML are present in patients with non-meta-

static, locally advanced esophageal adenocarcinoma 
(EAC). They exhibit heterogeneous cytomorpholo-
gical features in terms of size, cytoplasmic 
configuration, nuclear shape and marker expression. 
The role of CAML as a predictive marker in EAC is 
yet to be determined. 
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