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Abstract 

Background: This study aimed to construct a preoperative model predicting lymph node metastasis 
(LNM) in IB1-IIA2 stage cervical squamous cell cancer (CSCC) based on hematological indexes. 
Merhods: Between February 2011 and February 2022, 463 patients with IB1-IIA2 stage CSCC 
underwent radical resection. Patients were allocated to either a model-development cohort (n=337) or 
a validation cohort (n=126). The final model was determined by comparing different methods of variable 
selection, and then its discrimination and calibration metrics were evaluated. A predicted probability of 
LNM < 5% was defined as low risk. ROC curves were used to define high risk. 
Results: Age, lactate dehydrogenase level, FIGO stage, squamous cell carcinoma antigen, cancer antigen 
125, and cancer antigen 199 were identified as critical factors for the construction of the model. The 
model demonstrated good discrimination and calibration (concordance index, 0.761; 95% confidence 
interval, 0.666–0.884). In the validation cohort the discrimination accuracy was 0.821 (95% confidence 
interval, 0.714 – 0.927). In the model-development cohort, 11.9% were classified as low risk with a 
negative predictive value of 95.0%, and 24.9% were classified as high risk with a positive predictive value 
of 39.3%.  
Conclusion: A predictive model was developed and validated for LNM in IB1-IIA2 stage CSCC. The 
model will assist physicians in appraising the risk of LNM in preoperative patients and could aid in patient 
counseling and individualized clinical decision-making. 
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Introduction 
Cervical cancer (CC) is the most common 

malignant tumor of the female reproductive system, 
and the fourth most common malignant tumor in 
women [1]. With the benefit of cervical cancer screen-
ing programs, early detection of CC has increased 
worldwide [2]. The squamous cell type accounts for > 
85% of CC [3]. Lymph node metastasis (LNM) is an 
important prognostic factor in patients with CC [4]. 

The International Federation of Gynecology and 
Obstetrics (FIGO) clinical staging system was revised 
in 2018 to include reassessment of lymph node status 
and tumor size. According to the 2018 FIGO clinical 
staging system, LNM is classified as stage IIIC, 
regardless of size or parametrial invasion, and 
requires concurrent chemoradiotherapy (CCRT). For 
patients with stage IB1-IIA2 CC, radical hysterectomy 
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with pelvic ± para-aortic lymphadenectomy (RHPL) is 
considered the standard surgical treatment [5]. 
However, many people who underwent RHPL have 
been found to suffer from RHPL-related morbidities, 
including lymphedema, urinary dysfunction, and 
nerve-site injury, which seriously affect patients’ 
quality of life [6]. However, only 10 – 30% of all 
patients with early stage CC have LNM [7, 8], and 
cervical squamous cell carcinoma (CSCC) is less likely 
to progress to LNM than adenocarcinoma [9]. This 
prompts the question of whether CC patients are 
being subjected to excessive treatment. Therefore, 
accurate assessment of patients with a risk of LNM is 
crucial for developing individualized treatment 
regimens, improving prognosis, and reducing 
RHPL-related morbidity and mortality [10]. 

Preoperative assessment of LNM has received 
much attention in the past decade. Traditionally, 
assessment of LNM in CC patients is performed using 
computed tomography (CT) or magnetic resonance 
imaging (MRI), and determination of metastasis is 
mainly based on lymph node size [11]. However, 
these are not accurate tools for evaluating LNM [12]. 
Positron emission tomography/computed tomogra-
phy (PET/CT) scan is more sensitive than CT or MRI 
alone [12], but it is also more costly and not available 
everywhere. Because imaging technology is not 
entirely accurate for evaluating LNM, other indices 
(e.g., nomograms, risk groups) must be applied to 
comprehensively judge LNM. 

In recent years, nomograms have proven reliable 
for stratifying LNM risk and prognosis by 
incorporating valuable factors for oncological 
outcomes [12-18]. Factors found to be particularly 
valuable for predicting LNM and prognosis include 
hematological data, age, FIGO stage, and tumor size 
[14-18]. Hematological indices, including neutrophil 
percentage (NE%), lymphocyte percentage (LY%), 
hemoglobin level (HB), platelet count (PLT), and 
squamous cell carcinoma antigen (SCC-Ag), are not 
only closely related to the prognosis of CC patients 
[14-16], but also cheaper and more accessible. Other 
hematological indices are less commonly reported, 
especially in LNM of CSCC. These measures include 
white blood cell (WBC) count, lactate dehydrogenase 
(LDH), cancer antigen 125 (Ca125), cancer antigen 
19-9 (Ca19-9), and alpha fetoprotein (AFP). 

Therefore, the present study aimed to explore 
the factors that influence LNM in CSCC patients, 
evaluate the usefulness of additional hematological 
indices, and construct a predictive model for LNM in 
preoperative patients. Additionally, this study aimed 
to stratify LNM risk based on a predictive model to 
provide a reference for individualized clinical 
decision-making in early CSCC. 

Methods  
Study participants 

Patients with stage IB1-IIA2 CSCC who 
underwent surgical treatment at Fujian Maternity and 
Child Health Hospital between February 2011 and 
February 2022 were included. Inclusion criteria were 
as follows: (1) RHPL were performed by the same 
doctor group; (2) patients were pathologically 
diagnosed with stage IB1-IIA2 primary CSCC 
according to the 2009 FIGO clinical staging system; (3) 
complete clinical data were available, including 
lymph node dissection; (4) patients did not take 
antiplatelet agents or receive anticoagulation therapy 
within 1 month before examination; (5) patients had 
no history of malignant tumors or immune system 
diseases. In total, 463 patients satisfied the eligibility 
criteria. Patients who were diagnosed between 
February 2011 and October 2018 were assigned to a 
model-development cohort (n=337), and patients who 
were diagnosed between November 2018 and 
February 2022 were assigned to a validation cohort 
(n=126). In the validation cohort, the 2009 FIGO 
staging of patients referred to the 2018 FIGO clinical 
staging (Fig. 1A). 

Data collection  
Clinical information, LNM status, preoperative 

hematological data were collected for all patients. 
Clinical information included patient age, FIGO stage, 
tumor size, hypertension, diabetes mellitus, and 
neoadjuvant chemotherapy (NACT). Pathological 
features mainly included LNM. According to the 
surgical pathology of LNM, patients were divided 
into positive and negative groups. The hematological 
data were collected one week before treatment and 
included WBC count, NE%, LY%, HB, hematocrit 
(HCT), PLT, Ca153, Ca19-9, Ca125, AFP, and SCC-Ag.  

The hematological data of the model-develop-
ment cohort were partially missing (Fig. S1), and the 
data of the validation group were complete. Multiple 
imputation [19] was conducted using the mice 
package in R based on 3 replications. A complete-case 
analysis was used to assess the sensitivity of the 
results to bias. All analyses were repeated with the 
full cohort of data for comparison (Table S1). Age, 
WBC, NE, LY, HB, HCT, PLT, and LDH, were 
considered as continuous variables. Other continuous 
variables (Ca19-9, Ca125, Ca153, AFP) were converted 
to categorical variables using positive reference 
ranges. The cut-off values of SCC-Ag were deter-
mined by the smooth package in R software [20, 21]. 
Ca153, Ca19-9, Ca125, AFP, SCC-Ag, FIGO stage, 
hypertension, diabetes mellitus, tumor size, LNM, 
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and NACT were considered as categorical variables 
(Table S2). 

Statistical analysis 
The classification variables were compared using 

the chi-square test or Fisher's exact probability 
method. Pearson’s chi-squared test was used to test 
categorical variables of different risk groups.  

Variables included in the model were selected in 
three steps. First, a multivariate and univariate 
regression analysis was conducted to identify features 
significantly related to LNM. Second, to avoid 
over-fitting or under-fitting of the model, three 
advanced statistical methods, including forward 
stepwise regression (FSR), best subset regression 
(BSR) and least absolute shrinkage and selection 
operator (LASSO), were adopted to select variables in 
the primary cohort. The criteria for variable selection 
with FSR and BSR were determined by the Bayesian 
information criterion (BIC) [22]. Cross-validation was 
used to confirm suitable tuning parameters (λ) for 
LASSO logistic regression. The most significant 
features were selected by LASSO [23]. Based on 
results obtained from the univariate and multivariate 
regression analysis, the FSR, BSR, and LASSO 
variables were incorporated into the new model. 
Third, the model was evaluated using receiver 
operating characteristic (ROC) curves, Harrell’s 
concordance index (C-index), net reclassification 
index (NRI), and integrated discrimination index (IDI) 
[24]. The final model was selected according to the 
optimal results of the above analyses.  

To assess the fit of the final model, the C-index 

was used to measure discrimination by calculating the 
area under the ROC curve, and the Hosmer–
Lemeshow test was used to assess calibration. 
Decision curve analysis (DCA) was used to assess the 
clinical usefulness of the model and to calculate a net 
benefit for diverse prediction models at different 
threshold probabilities by adding the benefits and 
minimizing the harms [17]. The model was evaluated 
using K-fold cross-validation, which divided the 
entire data set into six equal segments. The model was 
fitted to 83.3% of the data (training set) and tested on 
16.7% of the data (test set), a process that was 
repeated six times [25]. For external validation, the 
model was applied on a validation cohort. Using the 
same methods described above, the discrimination 
and calibration of the model were tested. as defined in 
the previous article, a predicted probability of LNM＜

5% was defined as low risk [17]. ROC curve was used 
to determine a specific cutoff value of high risk. 

Results 
Clinical characteristics 

A total of 463 patients were included in this 
study. Patients diagnosed between February 2011 and 
October 2018 were assigned to a model-development 
cohort (n = 337) and patients diagnosed between 
November 2018 and February 2022 were assigned to a 
validation cohort (n = 126). Characteristics of the 
model-development and validation cohorts are 
shown in Table 1. LNM frequencies for the 
model-development and validation cohorts were 
15.4% and 19.0%, respectively (p = 0.35).  

 

Table 1. Characteristics of the model-development and validation cohorts 

Characteristics Total (n = 463) the develop-model cohort (n = 337) the validation cohort (n = 126) P statistic 
FIGO, n (%)    0.062 7.347 
IB1 237 (51.2) 162 (48.1) 75 (59.5)   
IB2 86 (18.6) 62 (18.4) 24 (19)   
IIA1 73 (15.8) 57 (16.9) 16 (12.7)   
IIA2 67 (14.5) 56 (16.6) 11 (8.7)   
Age, Median (IQR) 48.0 (42.0, 54.0) 47.0 (42.0, 53.0) 50.0 (43.0, 58.0) 0.011 6.396 
LNM, n (%)    0.35 0.875 
negative 387 (83.6) 285 (84.6) 102 (81)   
positive 76 (16.4) 52 (15.4) 24 (19)   
LDH,Median (IQR) 165.9(141.8, 203.1) 162.4 (138.0, 208.8) 169.9 (150.2, 200.0) 0.284 1.147 
Ca125, n (%)    0.595 0.283 
 < 35U/ml 431 (93.1) 315 (93.5) 116 (92.1)   
 ≥ 35U/ml 32 (6.9) 22 (6.5) 10 (7.9)   
Ca19-9, n (%)    0.776 Fisher 
 < 37U/ml 447 (96.5) 326 (96.7) 121 (96)   
 ≥ 37U/ml 16 (3.5) 11 (3.3) 5 (4)   
SCC-Ag, n (%)    0.513 0.427 
 < 3.75ng/ml 348 (75.2) 256 (76) 92 (73)   
 ≥ 3.75ng/m 115 (24.8) 81 (24) 34 (27)   
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Figure 1. (A) The 2009 FIGO staging compared to the 2018 FIGO clinical staging in a validation cohort. (B) Effects of SCC-Ag on LNM are modeled with a P-spline expansion, 
with SCC-Ag as a continuous variable. The blue shaded area represents the number of cases. Estimated logarithm hazard ratios (solid lines) with 95% confidence intervals (gray 
shaded area) for the association of SCC-Ag with LNM according to P-splines smoothing. FIGO, the International Federation of Gynecology and Obstetrics; SCC-Ag, squamous 
cell carcinoma antigen. 

 

Table 2. Effectiveness of the four models 

 C-index (95% CI) △C-index 
(P value) 

NRI (95% CI) △NRI (P 
value) 

IDI (95% CI) △IDI (P 
value) 

Model1 0.761 (0.685, 0.836) - -  -  
Model2 0.670 (0.593, 0.746) 0.004 -0.144 (-0.291, 0.004) 0.057 -0.0407 (-0.068, -0.0135) 0.003 
Model3 0.767 (0.694, 0.839) 0.694 0.0018 (-0.079, 0.083) 0.965 0.022 (0.002 ,0.04) 0.169 
Model4 0.741 (0.664, 0.819) 0.381 -0.072 (-0.168, 0.024) 0.143 0.011 (-0.015, 0.037) 0.399 
Model1: FIGO, age, LDH, Ca19-9, Ca125, SCC-Ag 
Model2, with variables selected by FSR: Ca19-9, Ca125, SCC-Ag 
Model3, with variables selected by BSR: FIGO, age, tumor size, LDH, HCT, Ca19-9, Ca125, SCC-Ag 
Model4, with variables selected by LASSO: FIGO, age, diabetes mellitus, LY%, HCT, Ca19-9, Ca125, SCC-Ag 

 

Value-dependent effects of SCC-Ag on LNM 
To quantify the effect and optimal cut-off value 

of SCC-Ag on LNM, a multivariate logistic regression 
analysis was conducted using P-splines in smoothHR 
of the R software. The analysis indicated that the risk 
of LNM increased sharply when SCC-Ag was greater 
than 3.75 ng/ml (Fig. 1B). These findings confirmed 
an SCC-Ag-dependent effect, and an SCC-Ag cutoff of 
3.75 ng/ml was used to stratify patients into two 
sub-groups depending on whether their SCC-Ag 
value was less than or greater than the cutoff. 

Univariate and multivariate analysis for LNM 
The univariate analysis indicated that SCC-Ag, 

Ca125, Ca19-9, HCT, FIGO stage, and LDH were all 
linked to LNM. Multivariate analysis confirmed the 
following as independent factors for LNM: SCC-Ag, 
Ca19-9, and Ca125. The findings of the univariate and 

multivariate logistic regression analysis are shown in 
Table S3 (all P < 0.05).  

Variable Selection 
Three common methods (FSR, BSR, and LASSO) 

were used to select variables. FSR yielded three 
variables: SCC-Ag, Ca19-9, and Ca125. The minimum 
BIC was −12.1 because there was an inflection point in 
the broken line (Fig. 2A, B). BSR yielded eight 
variables: FIGO, age, tumor size, LDH, CA125, HCT, 
Ca19-9, and SCC-Ag. The maximum adjusted 
R−squared value was 0.121 (Fig. 2C, D). All selected 
variables had significant statistical difference (all P < 
0.05). LASSO yielded eight statistically significant 
variables: FIGO, age, tumor size, LDH, HCT, Ca19-9, 
Ca125, and SCC-Ag (lambda value 0.015). As shown 
in Figure 2E, F, a coefficient profile figure was 
produced against the ln (λ) sequence.  
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Figure 2. Methods of variable selection. (A, B) Variable selection using the FSR method. (A) The minimum BIC was −12.1 when there was an inflection point in the broken line. 
(B) The ordinate represents BIC, and the abscissa represents the variable. (C, D) Variable selection using the BSR method. (C) The maximum adjusted R−squared was 0.121 when 
there was an inflection point in the broken line. (D)The ordinate represents adjusted R-squared, and the abscissa represents the variable. (E) Cross-validation was applied for 
tuning parameter (λ) selection. (F) The LASSO coefficient profile of LNM-related variables in the model-development cohort. BIC, Bayesian information criterion; FSR, forward 
stepwise regression; BSR, best subsets regression; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; Ca19-9, cancer antigen 199; Ca125, 
cancer antigen 125; LY%, lymphocyte percentage (LY%); HCT, hematocrit. 

 

Development of the final model 
Based on the results of the univariate and 

multivariate regression analysis, the FSR, BSR, and 
LASSO, six variables were incorporated into model1: 
FIGO, age, LDH, SCC-Ag, Ca19-9, and Ca125 (Fig. 
3A). Model2, model3, and model4 were built 
separately according to the results of FSR, BSR, and 

LASSO. The choice of the final model was determined 
by ROC curve, C-index, and NRI and IDI, which were 
also used to evaluate the efficiency of the models 
(Table 3 and Fig. S2A-C). 

Model2 showed the smallest C-index (0.670, 95% 
CI: 0.593, 0.746) among the four models, and fit most 
poorly (P < 0.05). Model1, model3, and model4 had 
similar discriminative ability, but model3 and model4 
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used more variables (P > 0.05). Using an appropriate 
number of variables, model1 showed good 
discrimination. Therefore, model1 was used for the 
final model.  

Model performance  
Suitable calibration was verified for the model 

development and validation cohorts. The calculation 
of points and linear predictors is shown in Table S4. In 
the development cohort, the discrimination accuracy 
of the model was 0.775 (95% CI: 0.666, 0.884; Fig. 3A, 
B). A good prediction model would have a close fit to 

the dashed line (Fig. 3C). Brier Scores closer to 0 
indicate better calibration. The Hosmer-Lemeshow 
test indicated a satisfactory fit for the model (Brier = 
0.114, X2 = 4.765, P = 0.782), and a DCA of the model is 
shown in Figure S3A. Internal and external 
verification of the model involved discrimination and 
calibration. Internal verification is shown in 
Supplemental Figure 3B (C-index = 0.761, Brier = 
0.112, X2 = 2.554, P = 0.388). External verification is 
shown in Figure 3C and Figure S3C (C-index = 0.821, 
Brier = 0.125, X2 = 11.703, P = 0.165).  

 

 
Figure 3. (A) A nomogram predicting LNM in IB1-IIA2 stage cervical squamous cell cancer. A total score of 66.7 was assigned a value of 0.05 and defined as low risk for LNM. 
A total score of 140.1 was assigned a value of 0.18 and defined as high risk for LNM. (B)  Discr iminat ion plots for the model-development cohort. (C) The solid 45-degree 
line represents the ideal prediction, and the broken line shows the observed results of the model. A good prediction model is one that has a close fit to the solid line. (D) 
Discrimination plots for the validation cohort. 
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Table 3. LNM risk groups in the model-development and validation cohorts. 

Characteristics the model-development cohort  the validation cohort 
 negative positive  negative positive 
Total  285 (84.6) 52 (15.4)  102 (81.0) 24 (19.0) 
low risk group 38 (95) 2 (5)  24 (96) 1 (4) 
middle risk group 194 (92.4) 16 (7.6)  72 (87.8) 10 (12.2) 
high risk group 53 (60.9) 34 (39.1)  6 (31.6) 13 (68.4) 

 
 

LNM risk groups  
A predicted probability of LNM < 5% was 

defined as low risk. ROC curves confirmed this to be 
an optimal cut-off (Fig. S4). Using linear-predictors of 
the model, a predicted probability of LNM > 18% was 
defined as high risk (Fig. 3A). In a multivariate 
analysis, the risk groups were confirmed as the most 
important predictors (Table S5). In the 
model-development cohort, 11.9% were classified as 
low risk, with a negative predictive value (NPV) of 
95.0%; 24.9% were classified as high risk, with a 
positive predictive value (PPV) of 39.3%. In the 
validation cohort, 19.8% were identified as low risk, 
with a NPV of 96.0%, and 15.1% were identified as 
high risk, with a PPV of 68.4% (Fig. 3A). Table S6 
shows the three patients with LNM falsely identified 
as low risk. Table 3 shows the different LNM risk 
groups in the model-development and validation 
cohorts. 

Discussion 
The present study identified FIGO, age, LDH, 

SCC-Ag, and Ca19-9 as significant variables for 
predicting LNM in CSCC. Notably, this is the first 
known report of LDH and Ca19-9 being used in this 
context. The predictive model was developed and 
validated using both internal and external 
verification. It demonstrated good discrimination and 
calibration (C-index = 0.775, Brier = 0.114, P = 0.782). 
In the validation cohort, the discrimination accuracy 
was 0.821 (Brier = 0.125, P = 0.165). The predictive 
model correctly stratified LNM risk: the rate of was 
remarkably low in the low-risk group and relatively 
high in the high-risk group. The model provides a 
clinical reference for the individualized treatment of 
patients with early stage CSCC. 

LNM is an important prognostic factor in 
patients with CC [5]. In this study, the LNM freq-
uencies for the model-development and validation 
cohorts were 15.4% and 19.0%, respectively (P = 0.35). 
This finding is consistent with that of other 
investigators who reported that 10 - 30% of patients 
with early-stage CC have LNM [7, 8]. 

Before structuring the model it was necessary to 
determine whether the hematological data should be 
expressed as continuous or categorical variables and, 

if categorical, which cutoff values to use. In the 
univariate model, all variables were initially 
considered as both continuous and categorical. From 
this analysis it became clear that Ca19-9, Ca125, and 
SCC-Ag were more meaningful as continuous 
variables, and LDH, NE, LY, and HCT were more 
meaningful as categorical variables (Fig. S5). Some 
studies have shown that hematological indices, 
including NE, LY, HB, PLT, and SCC-Ag, are closely 
related to LNM risk and prognosis of CC patients 
[14-16]. The cutoff values of hematological indices 
were selected based on ROC curve and positive 
reference values of the instruments. In the present 
univariate and multivariate analyses, Ca153, Ca19-9, 
Ca125, and AFP were significantly related to LNM 
risk, but SCC-Ag was not. P-splines smooth was used 
to determine the optimal cutoff values [21] because it 
is based on a non-linear relationship between the 
continuous variable and LNM [20, 26]. The risk of 
LNM declined sharply when SCC-Ag was greater 
than 20 ng/mmol, but there were fewer patients in 
this range, so this cutoff offers only low specificity. 
The risk of LNM increased sharply for SCC-Ag values 
greater than 3.75 ng/mmol, so this cutoff was selected 
as an optimal cutoff value for LNM.  

In order to ensure the reliability of the model, 
four variable selection methods were used to identify 
possible combinations of potential predictors [22, 23]. 
The efficiency and discrimination of each model were 
examined by ROC curve, C-index, NRI, and IDI. 
FIGO, age, SCC-Ag, LDH, Ca125, and Ca19-9 were 
incorporated into the final model. This was in good 
agreement with previous studies that incorporated 
FIGO, age, and SCC-Ag into the nomogram. Those 
studies showed that young age, late stage, and 
elevated levels of Ca125, Ca19-9, and SCC-Ag were 
significantly associated with LNM in CC, as well as 
poor prognosis [17, 18, 27]. In addition, elevated LDH 
was predictive of an aggressive phenotype, heavy 
tumor burden, and higher likelihood of lymphovas-
cular space invasion (LVSI), LNM, and poor 
prognosis [28]. In contradiction to earlier findings, 
this is the first study, to our knowledge, that 
investigates the predictive model of LNM in CC using 
LDH and Ca19-9. It is important that variables be 
selected with care to combine tumor markers and 
LDH.  
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For both internal and external validation, the 
model was evaluated in terms of its discrimination 
and calibration. The original model showed good 
measures of discrimination and calibration (C-index = 
0.775, Brier = 0.114, X2 = 4.765, P = 0.782). Overall 
similarities were noted in the internal verification 
(C-index = 0.761, Brier = 0.112, X2 = 2.554, P = 0.388). 
For external validation, data were collected from 
November 2018 to February 2022. The FIGO clinical 
staging system was revised in 2018 to include 
reassessment of lymph node status and tumor size by 
imaging technology rather than physical examination 
[5, 11]. The 2009 FIGO clinical staging of patients was 
compared to the 2018 FIGO clinical staging in a 
validation cohort (Fig. S1). Compared with the 
model-development cohort, discrimination was 
slightly better and model-fit slightly poorer in the 
validation cohort (C-index=0.821, Brier=0.125, X2 = 
11.703, P = 0.165). There are several possible reasons 
for this deviation. First, with the updated FIGO 
clinical staging, imaging technology rather than 
physical examination might have provided better 
differentiation and efficiency as compared to physical 
examination. Second, there was a significant differ-
ence in median age between the model-development 
and validation cohorts (47.0 vs. 50.0, P = 0.011). Other 
variables included in the model had no significant 
differences between cohorts (all P > 0.05). Age showed 
borderline significance for LNM in the multivariate 
analysis (P = 0.059). This is likely due to increased 
screening for CC in older women in the past decade 
[29] and might result in poor model fit. With regard to 
internal and external validation, the model showed 
good discrimination and calibration for the 2009 FIGO 
staging criteria, and extrapolation to the 2018 FIGO 
staging criteria might be reasonably approximated. 

Patients were classified based on different risk 
levels for LNM. In the multivariate analysis, risk 
group was confirmed as the most important predictor. 
The predicted probability for a low-risk group was < 
5%, with a NPV greater than 95.0%. The predicted 
probability for a low-risk group with > 18% risk 
yielded a PPV of 39.3% in model-development 
cohorts. The PPV was even higher (68.4%) in 
validation cohorts. This suggests that the model is 
also applicable to the 2018 FIGO staging system, and 
that imaging technology rather than physical 
examination provided more accurate information for 
staging [5]. Notably, a total of three patients were 
incorrectly classified as low risk by our model. Two 
patients had LVSI or deep stromal invasion upon final 
pathologic examination. LVSI and deep stromal 
invasion could not be assessed in the majority of 
preoperative patients because most patients 
underwent punch biopsies; only a minority of patients 

underwent conization biopsies. One patient was 
incorrectly classified as low risk because of 
discrepancies between the 2009 and 2018 FIGO 
staging systems. The patient was initially classified as 
IB1 stage with endogenous tumor (size > 4cm), but 
according to 2018 FIGO staging the patient would 
have been classified as IB3 stage (equivalent to 2009 
FIGO stage IB2). LVSI, deep stromal invasion, and 
tumor size are all known to be powerful predictors of 
LNM in CC patients [30]. It has also been reported 
that preoperative prediction of LNM in CC can be 
improved by including radiomics in the nomogram 
[12, 17]. The risk of LNM may be more accurately 
predicted by incorporating radiomics into the 
preoperative nomogram, especially for the 
endogenous tumor. 

The most important benefit of the present model 
is that it allows for preoperative risk assessment using 
hematological indices. This makes it a useful tool for 
individualized clinical decision-making by physicians 
and patients. Theoretically, after complete LN 
removal, patients who are truly negative for LNM 
would not benefit from RHPL. RHPL can result in 
morbidities such as vessel injuries, nerve injuries, 
infection, lymphocysts, and lymphedema, and should 
not be performed unless necessary [6]. Recent data 
suggest that sentinel LN (SLN) biopsy could be 
established as a method of LN staging in patients with 
early CC, but SLN biopsy is not routinely performed 
[31]. After combining the model-development and 
validation cohorts, the NPV of the low-risk group was 
greater than 95.0%. Therefore, the model could 
provide a reference for when SLN biopsy should be 
performed instead of RHPL. Furthermore, the model 
also provided a basis that it was necessary to 
comprehensively assess lymph node status in the 
high-risk group. For example, PET/CT, SLN biopsy, 
SLN imaging, and especially ultrasound-guided fine 
needle aspiration cytology offered better sensitivity 
and specificity [31, 32]. Patients with LNM are 
assigned to stage IIIC, for which CCRT is the standard 
treatment [5]. Comprehensive assessment of lymph 
node status would help to avoid the double blow of 
surgery and CCRT. Overall, the model described here 
may help clinicians to design individualized 
treatment for patients with early stage CSCC. 

There were some limitations in this study. First, 
the data were of limited size, retrospective, and 
derived from a single institution, introducing the 
potential for selection and confounding biases. 
Prospective, multicenter studies are still required to 
confirm the predictive value of the model in a clinical 
practice environment. Second, because of the 
difference in age and the updating of FIGO stages in 
2018, discrimination and calibration metrics were 
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slightly different across the validation cohorts. 
Furthermore, a total of three patients were incorrectly 
classified as low risk. The performance index of the 
model may increase by incorporating radiomics, 
punch biopsies, and other indices (such as detection of 
human papilloma virus) into the nomogram. 

Conclusion 
In conclusion, a preoperative model based on 

hematological indices was developed and validated to 
predict LNM in IB1-IIA2-staged CSCC patients. The 
predictive model was able to accurately stratify LNM 
risk. Based on model output, clinicians may be 
assisted in decisions such as whether to perform 
RHPL in low-risk patients, or to pursue more 
aggressive examination and treatment in high-risk 
patients. Overall, the model promises to help 
clinicians strategize individualized treatment for 
patients with early stage CSCC. 
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