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Abstract 

Background: The basement membrane (BM), as a critical component of the extracellular matrix, plays 
a role in cancer progression. However, the role of the BM in lung adenocarcinoma (LUAD) remains 
unclear.  
Methods: A total of 1383 patients from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) cohorts were enrolled in the study, and BM-related differentially expressed genes 
(BM-DEGs) were screened using weighted gene coexpression network analysis (WGCNA) and 
differential expression analysis. We next built a prognostic model using Cox regression analysis and 
separated patients into two groups based on the median risk score. This signature was validated with in 
vitro experiments, and its mechanism was investigated by enrichment and tumour microenvironment 
analyses. We also evaluated whether this signature could predict sensitivity to chemotherapy and 
immunotherapy. Finally, single-cell RNA sequencing analysis was utilized to analyse the expression of 
signature genes in different cells. 
Results: Thirsty-seven BM-DEGs were discovered, and a prognostic signature based on 4 BM-DEGs 
(HMCN2, FBLN5, ADAMTS15 and LAD1) was obtained in the TCGA cohort and validated in GEO cohorts. 
Survival curves and ROC curve analysis demonstrated that the risk score was a significant predictor of 
survival in all cohorts even when considering the effect of other clinical indexes. Low-risk patients had 
longer survival times, higher immune cell infiltration levels and better immunotherapeutic responses. 
Single-cell analysis showed that FBLN5 and LAD1 were overexpressed in fibroblasts and cancer cells, 
respectively, compared to normal cells. 
Conclusion: This study evaluated the clinical role of the BM in LUAD and primarily explored its 
mechanism. 

 

Introduction 
Lung cancer, the second most common 

malignant neoplasm in 2022, has the highest mortality 
rate among all malignancies worldwide [1]. 
Non-small cell lung cancer (NSCLC) accounts for 
approximately 85% of all lung cancer cases, and lung 
adenocarcinoma (LUAD) is the most common 
histological subtype, accounting for 47% of NSCLC 
cases [2]. Despite substantial advances in treatment 

approaches, the overall prognosis of LUAD patients 
remains poor, so increasing emphasis has been placed 
on the discovery of novel potential molecular targets 
to facilitate early diagnosis and effective treatment, 
thus improving the overall prognosis [1, 3, 4]. 

The basement membrane (BM) is a special type 
of extracellular matrix (ECM) produced by epithelial 
and endothelial cells. Recent findings support that BM 
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plays a critical role in resistance to mechanical stress, 
construction of a diffusion barrier, and promotion of 
cell polarity and differentiation [5, 6]. The major 
constituents of the BM include laminin, collagen, 
nidogen and heparan sulfate proteoglycan [7]. 
Approximately 66-90% of cancer patients die of cancer 
metastasis, which is triggered by the penetration of 
tumour cells through the BM [5]. Therefore, it is 
essential to evaluate the clinical role of the BM in 
LUAD and investigate its potential mechanism. 
Despite the fact that models based on BM-mRNAs 
(messenger RNA) have been developed, our research 
was conducted to identify more practical models and 
investigate the therapeutic response (particularly for 
targeted drugs) from additional aspects [8, 9]. 

In this study, BM-related data of LUADs from 
public databases were analyzed to construct a prog-
nostic model and validated with in vitro experiments. 
Moreover, we evaluated the ability of the model to 
predict immunotherapy efficiency and explored the 
potential mechanism. 

Methods 
Data collection and processing 

The mRNA data of LUAD samples and 
corresponding clinical information were downloaded 
from The Cancer Genome Atlas portal (TCGA, 
https://portal.gdc.cancer.gov, n=535, training cohort) 
and Gene Expression Omnibus database (GEO, 
https://www.ncbi.nlm.nih.gov/gds, dataset IDs: 
GSE72094, GSE68465, n=862, external validation 
cohorts) on August 10, 2022. Patients were eligible to 
enroll if they met the following requirements: (1) their 
histological diagnosis was LUAD; and (2) data on the 
gene expression and clinical features were available 
from samples. The exclusion criteria were as follows: 
(1) initial histologic diagnosis was not LUAD; and (2) 
presence of malignant neoplasms apart from LUAD. 
Finally, 1383 eligible patients participated in this 
study. In addition, single-cell sequencing data of 11 
primary LUADs (GSE131907) were selected to explore 
the role of the BM signature between cells. The 
baseline data for all tumour patients are reported in 
Table S1. 

Screening for BM-related differentially 
expressed genes (BM-DEGs) by differential 
analysis and WGCNA 

Previous research revealed that a total of 224 
BM-related genes (Table S2) are involved in tumour 
development [10]. With normal tissue as a control, we 
performed differential expression analysis of 
TCGA-LUAD samples with the Wilcoxon test using 
the “limma” R package. Genes with an adjusted P 

value<0.05 and | log2(fold change) | > 1 were 
selected. Weighted gene coexpression network 
analysis (WGCNA) was also performed to mine the 
core genes using the “WCGNA” package [11]. 
Significant modules most relevant to LUADs were 
selected as target modules, and genes within them 
were chosen. The differentially expressed genes that 
overlapped with the two algorithms were defined as 
BM-DEGs. 

Construction and evaluation of the prognostic 
model based on BM-DEGs 

All BM-DEGs were included in the univariate 
Cox regression model, and those with P values <0.05 
were included in the multivariate Cox model to select 
prognostic BM-DEGs (BMGs) using the “survival” 
package. The risk score formula based on the 
multivariate Cox model was as follows: (expression of 
A * coefficient of A + expression of B * coefficient of 
B+……+ expression of N * coefficient of N). Survival 
curves were plotted using the Kaplan–Meier method 
with the “survminer” package. Time-dependent 
receiver operating characteristic curves (t-ROCs) were 
drawn to predict the accuracy of the model using the 
“timeROC” package. In addition, we compared the 
expression levels of BMGs between groups and 
assessed their correlations with the risk score. Finally, 
a nomogram was generated with the “rms” package 
and assessed by calibration curves and decision curve 
analysis (DCA). External validation was performed 
on two GEO validation cohorts. 

External validation by quantitative real-time 
polymerase chain reaction (qRT‒PCR) and 
western blotting (WB) 

BMG expression was compared between human 
normal bronchial epithelial cells (Beas-2B) and human 
LUAD cell lines (A549). Cell lines with a good growth 
status were selected for further analysis, and each test 
was conducted in triplicate to determine the average. 
The results of qRT‒PCR and WB were analysed using 
7500 System Software V2.3 (Applied Biosystems, CA, 
USA) and ImageJ software (version 2.1.4.7 (National 
Institutes of Health), respectively. The detailed 
protocols for the in vitro experiments are provided in 
the Supplemental Materials. 

The therapeutic response to chemotherapy 
and immunotherapy 

Individual chemotherapy sensitivity was 
estimated by the “oncoPredict” package, and the 
Wilcoxon test was applied to compare the difference 
in IC50 (half maximal inhibitory concentration) 
between groups [12]. Apart from the expression of 
immune checkpoint inhibitors (ICIs: PD-1, PD-L1, 
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CTLA4, HAVCR2, LAG3, TIGIT) [13, 14], the tumour 
mutation burden (TMB) and T-cell receptor (TCR) 
repertoire were also found to predict immunotherapy 
efficiency [15, 16]. Additionally, patients from the 
IMvigor210 and GSE78220 cohorts with both 
sequencing data and immunotherapy response data 
were selected to evaluate the ability of the signature to 
predict immunotherapy efficiency [17]. 

GSEA and GSVA based on BMGs 
To explore the potential mechanism of the 

BMG-related signature, GO and KEGG gene set 
enrichment analyses (GSEA) were performed using 
GSEA tools (v4.2.1, http://www.broadinstitute 
.org/gsea), and the results were visualized with the 
“ggplot2” package. The top 5 enriched GO and KEGG 
items with adjusted P values<0.05 in the high-risk 
group and low-risk group were selected and are 
shown. We also performed gene set variation analysis 
(GSVA) using the “GSVA” package [18] to compare 
enriched pathways between groups. The above gene 
sets were downloaded from the MSigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb). 

Tumour microenvironment (TME) 
characterisation using immune cell infiltration 
analysis and the ESTIMATE algorithm 

The single-sample GSEA (ssGSEA) algorithm 
was adopted to calculate the scores of infiltrating 
immune cells and functions between groups in the 
TCGA and GSE72094 cohorts [18]. Next, we 
calculated the stromal score (representing the 
infiltration levels of stromal cells), immune score 
(representing the infiltration levels of immune cells), 
ESTIMATE score (reflecting the cell infiltration degree 
in the TME) and tumour purity in each sample using 
the “ESTIMATE” package [19, 20]. 

Evaluation of BMGs in LUADs by single-cell 
RNA (scRNA) sequencing analysis 

To explore the role of the signature in different 
cells, we conducted scRNA analysis using the 
“Seurat” package [21]. We calculated the expression 
of BMGs in each cell type and compared the cell 
proportion between risk-based groups. GSVA was 
carried out to evaluate the enrichment score of the 
pathways at single-cell resolution. Furthermore, we 
analyzed cell‒cell interaction using the “CellChat” 
package (https://github.com/sqjin/CellChat/) based 
on the expression of known ligand‒receptor pairs in 
different cell types [22]. The detailed protocol is 
presented in the Supplemental Materials. 

Statistical analysis 
All data processing, statistical analysis and 

graph plotting were performed with R software 

(v4.0.1, https://www.r-project.org/). A two-tailed P<0.05 
was considered to indicate statistical significance (* 
P<0.05, ** P<0.01, *** P<0.001, ns P>0.05). The 
framework and workflow of this study are 
summarized in Figure 1. 

Results 
Thirty-seven BM-DEGs were identified by 
WGCNA and differential expression analysis 

The expression profiles of tumour and normal 
tissues were compared, and 83 of 224 BM-related 
genes were screened (Figure 2A, Table S2). 
According to the scale independence and average 
connectivity of WGCNA networks (Figure S1), a 
power value of 4 was chosen as the best soft threshold 
power. The results suggested that the blue module 
(R2=-0.70, P=2e-83) was most significantly correlated 
with LUAD status (LUAD vs. normal), and 70 genes 
were chosen from this module (Figure 2B, Table S2). 
In total, 37 genes overlapping between the two 
methods (Figure 2C, Table S2) were identified as 
BM-DEGs for further analysis. 

A four-gene prognostic signature was built and 
evaluated in the TCGA cohort 

Eleven BM-DEGs with prognostic roles (Figure 
2D) were discovered by univariate Cox models and 
entered into multivariate analysis. As a result, four 
genes (Figure 2D) revealed a significant role in 
predicting the prognosis of LUADs and were 
identified as BM-related prognostic genes (BMGs). 
The risk score formula was as follows: risk 
score=0.688*HMCN2+0.675 *FNLN5+ 1.656* 
ADAMTS15+1.487 *LAD1. The qRT‒PCR results 
suggested that HMCN2 and FBLN5 were 
downregulated in A549 cells, while ADAMTS15 and 
LAD1 were upregulated (Figure 2E). Moreover, the 
results of WB were consistent with these findings 
(Figure 2F, G). 

All patients in the TCGA cohort were classified 
into high-risk and low-risk groups based on the 
median risk score from the 4-BMG signature. The 
survival curve indicated that high-risk patients had a 
lower overall survival rate (HR=0.52, P<0.001, Figure 
3A). The areas under the ROC curves for 1, 3, and 5 
years were 0.679, 0.679, and 0.587, respectively 
(Figure 3D). In addition, substantial differences in the 
expression of the four BMGs were identified between 
risk groups, and the levels of all these BMGs were 
significantly associated with the risk score (all 
P<0.001, Figure 3G). A high tumour stage implied a 
higher risk score (P<0.05, Figure 3H). Otherwise, 
there were no significant differences between the age 
and sex groups (Figure S2). 
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Figure 1. The framework and flowchart of this study. 

 

The signature remained a strong predictive 
factor when clinical variables were 
incorporated 

The next section of our study was concerned 
with the prognostic value of the signature when the 
model incorporated clinical features (age, sex, 
smoking, stage). Multivariate Cox analysis showed 
that only stage (HR=1.870, 95% CI 1.549-2.256, 
P<0.001) and risk score (HR=1.818, 95% CI 
1.534-2.155, P<0.001) were independent predictors in 
the TCGA training cohort (Figure 4A). Due to the 
noticeable predictive value of the risk score, we 
integrated it with clinical features to create a 
nomogram to realize a more practical clinical 
application strategy (Figure 4D). The AUC values of 
the nomogram reached 0.739, 0.724 and 0.751 for 1, 3 

and 5 years, respectively (Figure 4E). The calibration 
curves at 1, 3 and 5 years presented excellent 
consistency with the actual observations (Figure 4F). 
Moreover, the results from DCA demonstrated better 
discriminatory power of the comprehensive model 
compared to traditional clinical indexes (Figure 4G). 

External validation of the signature in GEO 
cohorts 

A significantly lower survival rate was observed 
in the high-risk groups in both GEO validation 
cohorts (GSE72094 HR=0.50, P<0.001; GSE68465 
HR=0.64, P=0.001) (Figure 3B, C). The AUCs for the 
validation cohorts ranged from 0.650-0.664, 0.607- 
0.638 and 0.564-0.859 for 1, 3 and 5 years, respectively 
(Figure 3E, F), denoting decent predictive value in all 
cohorts. The Cox regression analysis including the 
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risk score and clinical features (Figure 4B, C) 
suggested that the risk score (HR 1.818-2.120 P<0.001) 
and stage (HR 1.870-2.216, P<0.001) were significantly 
predictive of patient outcome in the two GEO cohorts. 

High-risk LUAD patients presented higher 
sensitivity to target drugs, while low-risk 
LUAD patients were more sensitive to 
immunotherapy 

Comparison of the sensitivity of LUAD patients 

in different risk groups to common agents (Figure 5A) 
revealed that high-risk LUAD patients presented high 
sensitivity to the traditional chemotherapeutic agent 
docetaxel (P<0.05) and multiple target drugs such as 
gefitinib, erlotinib, afatinib, and crizotinib (all P<0.05). 
Regarding the immunotherapy response, the expres-
sion of multiple ICI targets in the low-risk group was 
clearly enhanced (PD-1 P<0.001, CD274/PD-L1 
P<0.001, CTLA4 P<0.001, PDCD1 P<0.01, TIGIT 
P<0.01, HAVCR2 P<0.001, Figure 5B). These results 

 

 
Figure 2. Identification of prognostic BM-DEGs in LUADs. (A) Volcano plots of differential analysis. (B) Gene dendrogram obtained from WGCNA and module-patient trait 
relationships plot. (C) Venn diagram of BM-DEGs from two methods. (D) Forest plot of univariate and multivariate Cox analysis of BM-DEGs. (E) RT‒PCR results of BMGs. (F-G) 
The WB bands and analysis of BMGs. ** P<0.01, *** P<0.001, ns P>0.05. 
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primarily suggest that LUAD patients with a low risk 
score are more sensitive to ICIs than those with a high 
risk score. In addition, we observed a higher TMB in 
low-risk LUAD patients and the best overall survival 
rate in the high TMB plus low-risk group (Figure 5C, 
Figure S3). The higher TCR richness and diversity 
also confirmed these findings (Figure 5D). Further-
more, the results from immunotherapy-treated 

cohorts (Figure 5E, F) demonstrated that responders 
(complete response/partial response, CR/PR) exhi-
bited lower risk scores (GSE78220 P<0.01, Imvigor210 
P<0.05) than nonresponders (stable disease/ 
progressive disease, SD/PD). The response rate to 
anti-PD-L1 therapy was also markedly elevated in the 
low-risk group (GSE78220 P<0.001, Imvigor210 
P<0.001). 

 

 
Figure 3. Evaluation of BMGs in the training and validation cohorts. (A-C) Survival curves based on the BMG-related risk in TCGA, GSE72094, GSE68465 cohorts. (D-F) 
Time-independent ROC curves based on the BMG-related risk in TCGA, GSE72094, GSE68465 cohorts. (G) Comparisons of BMG expression between groups and their 
association with risk score. (H) Comparisons of BMG-related risk score between stages. * P<0.05, ** P<0.01, *** P<0.001, ns P>0.05. 
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Figure 4. The independent prognostic role of BMGs in LUADs. (A-C) Forest plot of univariate and multivariate Cox analysis of BMGs combined with clinical indexes in TCGA, 
GSE72094, GSE68465 cohorts. (D) Nomogram for the overall survival of LUAD patients in the TCGA cohort. (E-G) ROC curves, calibration curves and decision curves of the 
nomogram model. 

 

GSEA and GSVA enrichment analysis based on 
BM-DEGs 

Regarding enrichment results by GSEA, GO 
analysis (Figure 6A) revealed that gap junction, 
cadherin binding and galactosyltransferase activity 
were enriched in the high-risk group, while mast cell 
activation, myeloid cell activation involved in 
immune response and regulation of platelet activation 
were involved in the low-risk group. The KEGG 
analysis suggested that pro-oncogenic pathways (cell 
cycle, DNA replication, proteasome and pentose 
phosphate pathway) were enriched in the high-risk 
group. Immune-related pathways (autoimmune 

thyroid disease, asthma and systemic lupus 
erythematosus) were enriched in the low-risk group 
(Figure 6B). Moreover, the GSVA results confirmed 
the above findings (Figure 6C). These findings largely 
clarified the potential mechanism underlying the 
observation of worse survival in the high-risk group. 

Low-risk LUAD patients presented greater 
immune infiltration 

Significant differences were observed in multiple 
immune cells and immune-related functions between 
groups (Figure 6D, E). Specifically, LUADs with low 
risk scores exhibited definitively higher levels of 6 
immune cells (B cells, CD8+ T cells and. etc., P<0.01) 
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in both the TCGA and GSE72094 cohorts. Moreover, 
in both cohorts, low-risk LUADs had higher 
checkpoint molecule expression, cytolytic activity and 
type II IFN response levels, which are all critical 
targets in the antitumour biological process. Further 
analysis via ESTIMATE (Figure 6F) revealed that the 
immune and ESTIMATE scores of LUADs were 
clearly higher in the low-risk group and correlated 
negatively with the risk score, and tumour purity was 
higher in the high-risk group. However, no significant 
difference in stromal score was observed in the high 
and low risk groups. 

The expression of signature genes is increased 
in cancer cells and associated with stronger 
cell–cell interactions 

With the previously mentioned protocol, a total 
of 44196 LUAD cells (high BMG expression: 7056 cells, 
low BMG expression: 37140 cells) passed quality 
control, and 26 distinct clusters were identified 
(Figure 7A). The t-distributed stochastic neighbour 
embedding (TSNE) plot was used to cluster patients 
and suggested that there were no batch effects 
between samples (Figure 7B). We performed 
integrated annotation (Figure 7C) on the basis of 

 

 
Figure 5. Predictions regarding the efficacy of chemotherapy and immunotherapy. (A) Comparison of sensitivity of common agents administered in LUADs between groups. 
(B-D) Comparison of ICI target expression, TMB and TCR repertoire between groups in TCGA cohort. (E-F) Comparisons of BMG-related risk score between responder and 
nonresponder groups in GSE78220 and IMvigor210 cohorts, the proportion of patients with each response type between BMG-related groups. * P<0.05, ** P<0.01, *** P<0.001, 
ns P>0.05. 
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marker genes (Figure 7E) and identified 2347 cancer 
cells from epithelial cells using the “copykat” 
algorithm (Figure S4). The samples consisted of 
cancer cells, epithelial cells, fibroblasts, etc. As shown 
in Figure 7D and Figure 7F, samples with high BMG 
expression had a higher proportion of cancer cells and 
fibroblasts than those with low BMG expression. 
FBLN5 was notably upregulated in fibroblasts, and 
LAD1 was markedly upregulated in cancer cells 
(Figure 7G). GSVA at the single-cell level also showed 
that low BMG expression was associated with the 
inflammatory response and downregulation of the 
pro-oncogenic KRAS signalling pathway (Figure 8A). 

Next, we evaluated the interactions between 

cells with different BMG expression levels. The total 
number of interactions and the strength of 
interactions were significantly elevated in cells with 
high BMG expression (Figure 8B, Figure S5), and the 
interaction difference was most prominent among 
cancer cells, epithelial cells and fibroblasts (Figure 8C, 
Figure S6). Furthermore, we explored the most robust 
interactions, especially those involving cancer cells. 
Our results showed that cancer cells at high BMG 
levels mainly communicate with other cells via the 
PAR, TENASCIN and JAM pathways, thereby 
promoting tumour metastasis and progression 
(Figure 8D, E, Figure S7). 

 

 
Figure 6. Enrichment analysis and TME analysis. (A-B) GO and KEGG gene set enrichment analysis by GSEA. (C) Heatmap displaying the results of GSVA analysis. (D-E) 
Comparison of the ssGSEA scores of immune cells and functions between groups in the TCGA and GSE72094 cohorts. (F) Comparison of ESTIMATE score between groups and 
their association with risk score. * P<0.05, ** P<0.01, *** P<0.001, ns P>0.05. 
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Figure 7. Evaluation of BMGs between cells by scRNA-seq analysis. (A-D) TSNE plot grouped by clusters, patients, cell type and risk group. (E) Violin plot displaying marker 
genes of each cell type. (F) The proportion distribution of different cells between BMG-related groups. (G) The distribution of BMGs across the different cells by TSNE plot. 

 

Discussion 
Immunotherapy with ICIs is the most recent 

advancement and has been most revolutionary 
treatment for LUAD [23]. Nevertheless, in unselected 
patient populations, only a limited proportion of 
LUAD patients benefit from ICIs; thus, it is imperative 
to screen patients who may benefit from immuno-
therapy [1, 3, 4, 24]. Previous research has shown that 
BMs are significantly related to the advancement of 
cancer and that they might be possible targets for 
suppressing the development of cancer [5]. Taking all 
of these factors into consideration, it is absolutely 
necessary to clarify the unique influence that BMs 
have on the outcomes and therapeutic response of 
LUAD patients. 

Following the initial identification of 37 
BM-DEGs by differential analysis and WGCNA, we 
applied Cox regression analysis to build a prognostic 

signature based on 4 BMGs (HMCN2, FNLN5, 
ADAMTS15 and LAD1). While most of these BMGs 
are well characterized, the specific mechanisms 
underlying the downregulation of HMCN2 expression 
in cancer cells remain to be investigated [25]. Studies 
have noted that overexpression of fibulin-5 (FBLN5) 
suppresses DNA synthesis and cyclin A expression in 
mink lung epithelial cells, thus suppressing tumour 
cell proliferation [26]. Recent studies showed that 
ladinin-1 (LAD1) promoted the proliferation of LUAD 
cells after cotransfection with circ-ANXA7 knock-
down in mammary cells, suggesting that it may be a 
marker of multiple aggressive tumours[27, 28]. In 
addition, ADAM metallopeptidase with thrombos-
pondin type 1 motif 15 (ADAMTS15) has been 
identified as a crucial component of the Notch 
signalling pathway [29]. The Notch signalling system 
has been found to be essential for appropriate 
embryonic development and tissue homeostasis. 
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However, it also plays a crucial role in carcinogenesis 
and cancer progression [30]. Tenascin-C can activate 
the Notch pathway to promote glioma proliferation 
by increasing ADAMTS15 and Jagged1 (JAG1) 
expression [29]. The observation that high 
ADAMTS15 predicts a poor prognosis in our study 
could also be attributed to high activity of the Notch 
pathway triggered by tenascin. The explanation was 
partly verified by the stronger cell interactions of the 
tenascin signalling pathway in high-BMG cells from 
single-cell analysis [31]. Taking these factors into 
account, we can deduce why LUAD patients with 
high BMG levels have a worse prognosis. 

Based on the favourable predictive ability of the 
BMGs, GO and KEGG enrichment analyses by GSEA 
were adopted to explore the potential mechanism of 
BMGs. The enrichment of the gap junction and 
cadherin binding GO terms in the high-risk group 
may indicate that cell migration and EMT are 
triggered, which subsequently promotes tumour 
metastasis and progression [32, 33]. The pro-onco-
genic pathways enriched in the high-risk group from 
KEGG analysis were consistent with the results of GO 
analysis. In contrast, the enriched functions in 

low-risk group LUAD comprised activation of mast 
cells, myeloid cells and platelets, which are mainly 
associated with immune disease (asthma and 
systemic lupus erythematosus) [34].  

Furthermore, TME analysis (immune infiltration 
analysis and ESTIMATE) revealed that low-risk 
LUAD patients had high levels of multiple immune 
cells (DCs, B cells, CD8+ T cells, etc.) and enrichment 
of functions essential for antitumour regulation [35]. 
In addition, the differential immune checkpoint 
expression levels between groups primarily explained 
the differences in responsiveness to immunotherapy. 
Notably, the difference is likely mainly attributed to 
immune cells since the stromal cell scores were 
comparable between groups. 

In the next part, our study focused on ability of 
BMGs to predict the therapeutic response BMGs. 
Multiple biomarkers have been developed to identify 
patients suitable for immunotherapy. It is well 
established that high TMB is a significant predictor of 
favourable outcomes in non-small cell lung cancer 
(NSCLC) [36, 37]. TMB was computed as the number 
of somatic indels and nucleotide substitutions 
discovered per million bases in the genome's coding 

 
Figure 8. GSVA and cell‒cell interactions according to scRNA-seq analysis. (A) Boxplot displaying GSVA results at single-cell resolution. (B-D) Comparison of the total number 
and strength of interactions, the outgoing and incoming interaction strength in 2D space and the overall information flow for the top signalling pathways between BMG-related 
risk groups. (E) Circle plots shown the interactions between cancer and other cells in top signalling pathways. 
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region. In addition, the diversity of the TCR repertoire 
predicting immunotherapy was assessed using the 
Shannon diversity and richness indexes, which 
measure the relative abundance and distinctiveness of 
the TCRs, respectively [16]. In our study, high 
expression of ICI targets in the low-risk group was 
consistent with the findings regarding TMB and TCR 
scores in TCGA LUAD samples; all these results 
indicate that low-risk LUAD patients can benefit from 
immunotherapy. Additionally, the high risk scores of 
nonresponsive LUAD patients in both immuno-
therapy cohorts further corroborated that the low-risk 
group presents a better response to immunotherapy. 
This result is also illustrated by the enhanced immune 
function and increase in inflammatory cell‒cell inter-
actions in low-risk LUADs, as described previously. 

Although the BM-related signature was found to 
be a good indicator of prognosis and ICI response, 
some limitations still need to be acknowledged. This 
study involved analysis of public sequencing data and 
simple in vitro experiments, so additional more 
complicated in vivo experiments are warranted. In 
future work, we will continue to explore the role of 
the signature in specific pathways. Moreover, the 
immunotherapeutic response based on risk groups 
was evaluated indirectly, and prospective trials are 
required to be performed on large-sample patients to 
explore its predictive reliability. 

Conclusions 
In summary, we identified and validated that 

LUADs with a low BMG signature score had a better 
prognosis and immunotherapeutic efficiency, which 
could provide critical guidance for clinical treatment 
decision making. 
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