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Abstract 

As one of the most common malignant tumors, hepatocellular carcinoma (HCC) has a rising incidence 
rate and also seriously endangers human life and health. According to research reports, hepatitis B, 
hepatitis C, intake of aflatoxin in the diet, and the effects of alcohol and other chemicals can induce an 
increase in the incidence of liver cancer. However, in the current clinical treatment of HCC, most of the 
drugs are chemical drugs, which have relatively large side effects and are prone to drug resistance. 
Therefore, the development of natural compounds to treat HCC has become a new treatment strategy. 
Several studies have shown that flavonoids have shown outstanding effects and exhibit strong tumor 
growth inhibitory effects in vivo experimental studies. Luteolin, as a natural flavonoid, has anti-tumor, 
anti-inflammatory, anti-viral, anti-oxidation, immune regulation, and other pharmacological effects. The 
anti-cancer mechanism of luteolin mainly directly acts on tumor cells to inhibit their growth, induce cell 
apoptosis, reduce tumor tissue angiogenesis, regulate long non-coding RNA, affect immunogenic cell 
death, and regulate autophagy. As well as improving the curative effect of radiotherapy and chemotherapy 
and chemoprevention. In this study, we evaluated the function of luteolin in regulating cancer cell 
proliferation, migration, and invasion will summarize and analyze luteolin and its mechanism of regulating 
HCC to improve the role of luteolin in the clinical prevention and treatment of HCC. 
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Introduction 
Hepatocellular carcinoma is the deadliest and 

most common type of liver cancer, ranking sixth in the 
world in incidence and second in mortality [1,2]. 
According to the GLOBOCAN 2020 database, it is 
estimated that there are 905,677 new liver cancer cases 
and about 830,180 death [3]. This also shows that the 
mortality rate of liver cancer is gradually approaching 
the incidence rate. At this stage, the clinical early 
treatment of hepatocellular carcinoma (HCC) mainly 
consists of immunotherapy, surgical resection, 
radiofrequency ablation, and targeted therapy [4-7]. 

Patients with early liver cancer can also be effectively 
treated by surgery, but many patients lose the best 
opportunity for surgical treatment because hepato-
cellular carcinoma is an invasive disease with a poor 
prognosis [8]. It's worth noting that, flavonoids play 
an excellent anti-tumor effect, participate in and 
regulate the expression of a variety of tumor miRNAs, 
inhibit tumor cell mitosis, induce apoptosis, 
participate in immune responses, as well as inhibit the 
process of tumorigenesis through a variety of signal 
pathways [9-11]. For example, luteolin, a derivative of 
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flavonoids, is mainly found in fruits, vegetables, and 
natural plants and can be isolated from a variety of 
traditional Chinese medicines [12]. Luteolin also can 
regulate miRNA expression in different cancer to 
affect the cancer progression. At present, LUT has a 
good anti-cancer application prospect, and its 
derivatives have potential anti-cancer effects, and Ma 
Jun, Yoo Ho Soo, and others have proved that luteolin 
can affect the survival of a variety of cancer cells such 
as gastric cancer and colon cancer [13,14]. 
Nevertheless, more studies are needed to provide a 
better understanding of the mechanism of cancer 
treatment using luteolin. For this reason, based on the 
structure and pharmacological effects of luteolin, this 
article explored and reviewed the mechanism of 
luteolin's anti-growth, proliferation, apoptosis, anti- 
oxidative stress, angiogenesis, and related molecular 
signaling pathways of hepatocellular carcinoma, to 
provide new strategies for the treatment of 
hepatocellular carcinoma. 

The pharmacological activity of luteolin 
The structure of flavonoids 

Flavonoids are a class of planting metabolites 
with pharmacological activity. It is a compound with 
2-phenyl chromone as the core. It generally refers to a 
series of compounds formed by connecting two 
benzene rings (A and B rings) with phenolic hydroxyl 
groups through the central 3 carbon. The basic 
skeleton is C6-C3-C6, mainly found in the natural 
plant kingdom [15]. According to the characteristics of 
the core structure, the structure of flavonoids can be 
modified by different substituents to obtain discrete 
derivatives, resulting in different properties [7,16]. 
The main structural types of its derivatives are: 
including flavones, flavonols, isoflavones, flavanones, 
flavanonols, dihydro isoflavones Dihydro-isoflav-
ones, flavan-3-ols, flavan-3,4-diol, anthocyanidins, 
chalcones (chalcones) and dihydrochalcones (dihy-
drochalcones), etc. (Table 1). 

The chemical structure of luteolin (3',4',5,7- 
tetrahydroxyflavonoids, Luteolin, LUT) (Figure 1), 
which is a representative derivative of dihydro-
flavonoids, mainly found in plants such as 
Verbenaceae, Apiaceae and other natural medicinal 
materials and vegetables [17]. In recent years, research 
on the structure of Luteolin has shown that the 
structure of LUT contains two aromatic rings (ring A 
and ring B) connected through three carbon atoms in 
the center [18]. Therefore, the structural characteristics 
of LUT also determine the nature of its action. Several 
pharmacological studies have proved that LUT has a 
wide range of biological activities, including anti- 
inflammatory, anti-allergic, anti-cancer, antioxidant, 

or pro-oxidant. In recent years, flavonoids have 
played a major role in tumor treatment, and luteolin 
as a flavonoid derivative has also received research 
attention [19]. Just as Kapoor S [20] and Lee EJ [21] 
proposed that luteolin can inhibit EGF-mediated 
MAPP, ERK, and AKT signal pathways by reducing 
the expression of epidermal growth factor (EGF) 
mRNA. 

 

 
Figure 1. The chemical structure of luteolin. It is a compound with 2-phenyl 
chromone as the core. It refers to a series of compounds formed by connecting two 
benzene rings (A and B rings) with phenolic hydroxyl groups through the central 3 
carbon. The basic skeleton is C6-C3 -C6. 

 

The pharmacological effects of luteolin 

The effect of LUT on scavenging free radicals and 
anti-oxidation  

ROS, as important molecules that induce 
oxidative stress in the body, can be generated in 
hepatocytes and macrophages when cells undergo an 
inflammatory response [22]. The imbalance of stromal 
cells, the immune microenvironment, and some other 
biological pathways are also closely associated with 
ROS [23]. Luteolin, as a natural flavonoid compound, 
contains a certain number of phenolic hydroxyl 
groups in its structure, which provides it with strong 
reducibility and antioxidant properties. Luteolin 
exerts an antioxidant effect on biological systems by 
directly inhibiting the formation of reactive oxygen 
species, activating antioxidant enzymes, and promo-
ting antioxidant defenses [24,25]. Balanchine [26] et al. 
demonstrated that luteolin can stabilize the leakage of 
intracellular antioxidant defense systems GSH, CAT, 
and SOD and reduce the activity of MDA, thus 
reducing the production of ROS and ultimately 
protecting mitochondria from damage in cardiac 
myocytes. According to reports. H2O2 can induce 
oxidative stress in human umbilical vein endothelial 
cells (HUVECs), and the production of ROS 
superoxide can be reduced after an intervention by 
luteolin [27]. At the same time, luteolin protects 
HUVECs from TNF-α-induced oxidative stress and 
inflammation through its effects on Nox4/ROS-NF-κB 
and MAPK pathways [28]. Research data show that 
luteolin has been found to reduce the generation of 
ROS by reducing the leakage of LDH and the 
reduction of mitochondrial membrane potential, 
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thereby alleviating OTA-induced oxidative stress and 
lipid peroxidation through NrF2/HIF-1α [29]. 
Prateheshkumar [30]. Showed that luteolin inhibits 

ROS production, NADPH oxidase (NOX) activation, 
glutathione consumption, and lipid peroxidation in a 
dose-dependent manner (Figure 2). 

 

Table 1. The structure of flavonoids and their derivatives 

Flavonoid core Modification site Substituent type Derivative structure Derivative name 
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Figure 2. Schematic diagram of the influence of LUT on oxygen free radicals. Luteolin has a wide range of anti-cancer effects. Among them, it can affect the content of ROS in 
mitochondria by reducing various biochemical indicators and signaling factors in liver cancer cells.  

 

Influence of LUT on inflammation 
Part of the anti-inflammatory effect of luteolin is 

achieved by regulating inflammatory mediators, and 
it has been demonstrated to regulate inflammatory 
factors and inflammatory mediators in a variety of in 
vivo and in vitro models [31] (Figure 3). Luteolin can 
inhibit IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, TNF-α, 
interferon (IFN)-β and granulocyte-macrophages Cell 
colony-stimulating factor (GM-CSF), and can increase 
the level of anti-inflammatory cytokine IL-10 [32]. In 
addition, luteolin can also inhibit chemokines that can 
control the migration and localization of immune cells 
such as CCL2, CXCL2, CXCL8, and CXCL9 [33]. And 
by regulating diverse signaling pathways, such as 
nuclear transcription factor NF-κB, MAPK/AP-1, 
JAK-STAT, and TLR signaling pathways, etc [34]. At 
the same time, Cho Young [35]. Concluded that 
luteolin can reduce the production of NO by reducing 
the synthesis of nitric oxide synthase (iNOS). In 
macrophages induced by lipopolysaccharide plus 
interferon-γ stimulation and interleukin 4 (IL-4) 
stimulation, luteolin changed the M1/M2 polarization 
of macrophages and was down-regulated by p-STAT3 
the up-regulation of p-STAT6 exerts anti-inflam-
matory effects [36]. Studies have also shown that in 
the bone marrow-derived macrophages of SD rats, 
Luteolin inhibits the production of TNF-α and IL-6 in 
a dose-dependent manner, and shortens the half-life 
of TNF-α and IL-6mRNA [37]. In addition, luteolin 
can also inhibit inflammation by changing the 
activities of histone decarboxylase (HDAC) and 

acetylene (HAT) [38]. Luteolin-mediated Coxsackie 
virus B3 (CVB3) can be achieved. Luteolin inhibits the 
phosphorylation of p38 MAPK, JNK, and ERK in 
CVB3, thereby inhibiting NF-κB nuclear translocation 
and subsequently reducing inflammation in CVB3- 
infected cells and the expression of cytokines [39]. In 
IL-1β-induced rat chondrocyte inflammation, 
Luteolin inhibits the phosphorylation of NF-kappaB 
in vivo and attenuates the pathogenesis of osteo-
arthritis model rats [40]. In the rat model of acute 
pneumonia, luteolin treatment reduced the dry-to-wet 
weight ratio of lung tissue and decreased the total 
number of serum white blood cells in a dose-depen-
dent manner. These studies proved that luteolin 
partially inhibited the neutrophil ring Adenosine 
phosphate (cAMP-PDEs) or PDE4 activity and the 
expression of vascular cell adhesion molecule 
(VCAM-1) and intracellular cell adhesion molecule 
(sICAM-1) in microvascular endothelial cells to inhibit 
inflammation [41]. Arachidonic acid acts as the direct 
precursor of prostaglandin (PGI-2), thromboxane A2 
(TXA-2), and leukopenia (LTC-4) [42]. In the inflam-
mation reaction, PGE2 can play a pro-inflammatory 
effect by regulating the differentiation of immune 
cells or increasing the expression of related cytokines, 
thereby exacerbating the inflammatory response [43]. 
However, studies have confirmed that luteolin has 
varying degrees of influence on the two pathways of 
cyclooxygenase (COX) and lipoxygenase (LOX), 
among which the mechanism of action is to regulate 
PGE-2, IFN-α, and β [44].  
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Figure 3. Schematic diagram of LUT regulating inflammation. The role of inflammatory response in tumors cannot be underestimated. Luteolin reduces the expression of 
inflammatory factors in tumor cells by influencing inflammatory factors, inflammatory signal pathways, and arachidonic acid, in vivo and in vivo. 

  

Table 2. Experimental study of luteolin compounds on tumor cells 

Cancer types Subjects cells Mechanisms The target gene Have an effect Reference 
Breast cancer MCF-7 EGFR pathway PI3K 

AKT 
mTOR 

Inhibitory signaling pathway [45,46] 
 
 

Colon cancer SW620 ERK/FOXO3a pathway ERK1/2  
FOXO3a 
caspase-3 

Cell apoptosis [47] 

Pancreatic cancer PANC-1 MicroRNAs miR-301-3p 
caspase-3 

Gene expression [48] 

Lung cancer A549 JAK/STAT1 pathway IFN-α 
IFN-β 
JAK 
STAT1 
MicroRNA-155 

Influencing cytokines 
Signaling pathways 
Gene expression 

[49,50] 

NSCLC Oxidative stress MicroRNA-34a-5p 
Caspase-3 
Caspase-9 
Bcl-2 
MDM4 

Cell apoptosis 
Signaling pathways 

[51] 
 

Kidney cancer 786-O AKT pathway JNK 
p38MAPK 
Ask1 
PP2a 

Inhibit cell proliferation 
Induce apoptosis Factor signaling 

[52] 

Gastric cancer AGS 
BGC823 SGC7901 

MEK pathyway MEK 
ERK1/2 
P21 
P53 
miRNA-34a 

Gene expression Gene expression 
Signaling pathways 

[53] 

Prostate cancer 22Rv1 MicroRNAs miR-8080 
AR-V7 
AR-FL 
Caspase-3 
Caspase-7 

Gene expression [54] 
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The impact of LUT on tumor  
Luteolin is present as a flavonoid in vegetables, 

plants, and fruit. Take part in the fight against various 
human malignant tumors. In the mechanism studies 
published so far, most of the effects of luteolin in 
alleviating breast cancer, colon cancer, pancreatic 
cancer, lung cancer, kidney cancer, gastric cancer, and 
other tumors are by inhibiting the proliferation of 
tumor cells. Reduce the stimulation of carcinogens, 
activate cell cycle arrest, etc. to play a role. In addition, 
luteolin is also involved in the regulation of genes and 
proteins to induce tumor cells to induce apoptosis 
through distinct signal pathways and block the 
development of cancer in vivo and in vivo (Table 2). 

The effect of LUT on HCC  
Luteolin's anti-hepatocellular carcinoma activity 

is linked to its influence on various signal 
transduction pathways and cytokines in liver cancer 
cells. Several experimental studies have proved that 
luteolin can prevent the spread, metastasis, and cell 
cycle arrest of hepatocellular carcinoma, promote cell 
differentiation and angiogenesis, and also promote 
the apoptosis of malignant cells. A large number of in 
vivo and in vivo evaluations show that luteolin 
promotes tumor cell apoptosis, inhibits tumor cell 
growth cycle, tumor cell migration and invasion, etc., 
and its anti-tumor development potential is huge.  

The effect of LUT on the proliferation of HCC 
cells  

Cell proliferation is one of the important 
physiological functions of cells, and an essential life 
characteristic of organism growth, development, 
reproduction, and heredity [55]. Similarly, the 
proliferation of cancer cells is another important step 
in tumorigenesis and development. The antitumor 
activity of luteolin has been investigated in various 
cancer cells. Luteolin can induce cell cycle arrest and 
cell apoptosis, and inhibit proliferation and metastatic 
progression. Based on the rapid progress of 
flavonoids, their effects on tumor cell proliferation 
have also been extensively studied (Figure 4). Yang P 
W [56] et al, treated HuH7 and HepG2 hepatoma cells 
with different concentrations of luteolin for 24-120h, 
the results showed that luteolin inhibited the 
proliferation of hepatoma cells in a dose-dependent 
manner, and the result of HepG2 was more obvious 
than that of HuH7. Luteolin 9.25 ± 1.67 μM can 
achieve half the inhibitory effect, while in Huh7 cells 
11.54 ± 2.32 μM can achieve half of the inhibitory 
effect. Experimental studies by Chang J [57] and 
others suggest that luteolin has an inhibitory rate of 
72.84% ± 0.39 on human liver cancer cells Hep3B at a 
concentration of 100mmol/L, which has a significant 
inhibitory effect on cell proliferation. Hepatocyte 
growth factor (HGF), also known as scattering factor 

 

 
Figure 4. The effect of LUT on the growth of different HCC cells. Note: The figure above illustrates the effect of different concentrations of luteolin on inhibiting the 
proliferation of different types of liver cancer cells such as Huh7, HepG2, Hep3B, SK-Hep-1, PC-3, LCSLCs, etc. Luteolin 11.54μM can promote cell apoptosis by influencing the 
polarization of Huh7 cells in the G0/G1, G2/M phase and regulating the expression of miR-6809-5P gene; oxidative stress is another important part of tumor development. On 
the one hand, it directly or indirectly affects the proliferation of tumor cells. Luteolin has the effect of affecting ROS, and finally induces ER stress and oxidative stress; the 
self-renewal of cancer cells plays a key role in the occurrence and metastasis of tumor cells. Luteolin can regulate the self-renewal of LCSLCs. 
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(SF) and its receptor c-Met tyrosine kinase is in charge 
of the proliferation of a variety of cancer cells. 
Researchers have found that luteolin and other 
flavonoids can regulate HGF factors it reduces the 
survival rate of HepG2 cells [58]. 100μmol/L luteolin 
inhibits the proliferation of liver cancer cells by 
down-regulating the miRNA expression of the 
proliferation-related genes LETM1, URG11, PICK1, 
and CyclinD1 in HepG2 liver cancer cells, suggesting 
that luteolin may inhibit cell proliferation [59]. Im 
Eunji [60] et al, used 20, 40, 60, and 80 µM luteolin to 
interfere with human hepatocellular carcinoma 
SK-Hep-1 cells and mouse normal hepatocyte AML12 
cells, and the results showed that luteolin significantly 
reduced SK-The viability of Hep-1 cells is 
dose-dependent.  

To detect the effect of luteolin on SMMC-7721 
cell autophagy, the formation of autophagosomes was 
observed using transmission electron microscopy, the 
number of intracellular autophagosomes after 
treatment with 25,50, or 100 µM luteolin for 48 h 
increased compared with cells treated with 0 µM 
luteolin [61]. Furthermore, luteolin increased the 
number of autophagosomes within cells, promoted 
the conversion of LC3B-I to LC3B-II, and increased the 
expression of Beclin 1, a phenomenon that, finally, 
was altered by the addition of an autophagosome 
inhibitor. 10μM luteolin can inhibit the activity and 
expression of histone deacetylase-1 (HADC1) in liver 
cancer stem-like cells (LCSLCs), thereby influencing 
the self-renewal of LCSLCs [62]. 5- 10 µmol/L luteolin 
induces oxidative stress and ER stress in p53-null 
Hep3B cells, and only induces autophagy in Hep3B 
cells, enhancing cell viability [63]. 

The effect of LUT on HCC cell apoptosis  
Cell cycle regulation requires the cooperation of 

a large number of intracellular and extracellular 
signals, without proper signals, cells will be unable to 
move from one stage to the next, this phenomenon is 
called cell cycle arrest [64]. Cell cycle arrest helps to 
maintain the stability of genes, and gene mutations 
that regulate the cell cycle plays a major role in 
tumorigenesis. When the cell cycle is normal, if DNA 
damage occurs, the cell cycle stops at the 
corresponding checkpoint, and the cell cycle block 
provides extra time for the cell to repair the damage, 
thereby reducing the occurrence of mutations and 
avoiding the occurrence of tumors [65], studies have 
demonstrated that treatment with luteolin and 
apoptosis-inducing ligand (TRAIL) has a synergistic 
effect and mechanism on Huh7 cells [66]. This is 
consistent with the study of Wu B [67] that luteolin 
induces autophagic flux of human liver cancer cells, 
significantly inhibits the expression of death receptor 

5 (DR5) in the process of tumor apoptosis, and 
effectively enhances Apoptosis induced by TRAIL. 
CyclinD1 protein is a key protein for cells to transform 
from the G1 phase to the S phase. Studies have shown 
that luteolin regulates cell cycle arrest by 
down-regulating the expression of CyclinD1 gene 
mRNA in liver cancer cells [68], this is in line with the 
discovery of Shi Dongdong et al. that luteolin-blocked 
MCF-7 cells in S phase [69]. Luteolin can promote the 
apoptosis of hepatoma cells by up-regulating the 
expression of p-JNK protein in HepG2 cells, and it can 
also induce mitochondrial autophagy in HepG2 cells 
by down-regulating the expression of Bcl-2 [56]. 
Studies have shown that treatment with 40 μmol/L 
luteolin for 2 hours can promote the activity of 
caspase-3 and -8 by degrading the x-linked apoptosis 
protein inhibitor (XIAP) and inhibiting the activity of 
protein kinase C (PKC) [70]. Pretreatment of 
SMMC-7721 and Bel-7402 liver cancer cells with 50μM 
luteolin showed that the level of apoptosis factor Bax 
was up-regulated, the anti-apoptotic factor Bcl-2 was 
down-regulated, caspase-3 enzyme was activated, 
and mitochondrial membrane potential was reduced 
and induced Liver cancer cells to undergo apoptosis 
and exert their anti-liver cancer function [71]. In 
addition, the combination of metformin and luteolin 
sympathetically protects liver toxicity induced by 
carbon tetrachloride, and its effect may be related to 
the anti-apoptotic pathway Nrf2/HO-1 [72].  

The effect of LUT on HCC angiogenesis  
Angiogenesis, the process of forming new blood 

vessels and blood supply structures, is one of the 
important mechanisms of tumor growth and meta-
stasis [73]. Vascular endothelial growth factor (VEGF), 
platelet-derived growth factor (PDGF), angiotensin- 
converting enzyme (Ang) and fibroblast growth factor 
(FGF) are key factors in angiogenesis. High levels of 
circulating vascular endothelial growth factor in 
patients with hepatocellular carcinoma are closely 
associated with tumor angiogenesis [74]. Therefore, 
preventing/blocking the rapid formation of blood 
vessels is an effective way to prevent hepatocellular 
carcinoma. Rat microvascular endothelial cells have 
been shown to express high levels of cAMP-PDEs, 
especially PDE4, and further studies have shown that 
lignocaine has a dose-dependent inhibitory effect on 
the activity of endothelial cAMP-PDEs or PDE4 [41]. 
Luteolin can regulate the mRNA expression of 
pro-proliferative genes, pro-apoptotic genes, and 
angiogenic molecules Uba2, VEGF, Fra-1, HIF-1α, and 
Rac1 in hepatocellular carcinoma HepG2 cells, 
thereby inhibiting the proliferative activity and 
angiogenesis of hepatocellular carcinoma cells [75]. 
Studies have reported that luteolin downregulates 
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lymphocyte function-related molecules (LFA-3) and 
PCNA and upregulates intercellular adhesion 
molecule-1 (ICAM-1) in a way that inhibits tumor 
angiogenesis and tumor cell proliferation to achieve 
the anti-tumor effect of LUT [76] (Figure 5A). SRC and 
EGFR can be considered the main genes to prevent 
angiogenesis and inhibit the growth of tumor cells. 
Zhulin Wu [77] et al. studied 207 patients with 
hepatocellular carcinoma and found that luteolin and 

quercetin could play a therapeutic role through 
MAPK, JAK-STAT, and other pathways, and the key 
targets included SRC, EGFR, VEGFA, PIK3R1 and so 
on. Based on the above research results, we verified 
by network pharmacology technology the potential 
targets of luteolin in the treatment of hepatocellular 
carcinoma angiogenesis include AKT1, SRC, EGFR, 
ESR1, MMP9, and PTGSR (Figure 5B). 

 

 
Figure 5. A. The effect of LUT on the angiogenesis of liver cancer. The production of VEGF (vascular endothelial growth factor, vascular endothelial growth factor) is reduced 
under the action of luteolin and further down-regulates the cyclic adenosine monophosphate (cAMP-PDEs) of neutrophils to inhibit tumor angiogenesis; B. LUT regulates tumor 
cells A variety of gene expressions and DNA inhibit tumor angiogenesis; research on the potential targets of luteolin for hepatocellular carcinoma angiogenesis, PPI shows that 
luteolin can inhibit angiogenesis through targeted regulation of AKT1, SRC, EGFR, ESR1, etc.; 
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Mechanism and clinical application of 
luteolin in the treatment of HCC 
Bioinformatics study of luteolin in the 
treatment of HCC 

In recent years, bioinformatics technology has 
been widely used to study the mechanism of various 
diseases. Network pharmacology and bioinformatics 
can not only systematically combine the multi-targets 
of drugs and diseases, but also meet the problem of 
few therapeutic targets and research targets in the 
process of clinical research through genetic research 
[78]. Through the data mining of network 
pharmacology and bioinformatics analysis, we found 
that luteolin can interfere with the occurrence and 
development of hepatocellular carcinoma through 
multi-target, multi-gene, and multi-pathway (Figure 
6). After visualization, it is concluded that the main 
core targets of mignonette in the treatment of 
hepatocellular carcinoma (HCC) are SRC, EGF, AKT1, 
ESR1, PI3KR1, AR, CDK1, and so on. Among them, 
SRC and ESR1 affect the trend of the survival curve of 
patients with hepatocellular carcinoma and are 
significantly correlated with the pathological stage of 
patients with HCC. In addition, immune infiltration 
analysis showed that SRC and ESR1 were 
significantly correlated with six kinds of immune cells 
infiltrated by hepatocellular carcinoma. GO and 
KEGG enrichment analysis proved that the potential 
pathways of luteolin in the treatment of 
hepatocellular carcinoma include JAK-STAT, AMPK, 
and NF-κB. 

Signal pathway pathways of LUT treatment of 
HCC  

When a tumor cell has a special response, the 
signal transmits information from outside to inside 
the cell. Cells respond to this kind of information. 
However, in the study of flavonoids, LUT plays an 
anti-hepatoma effect through signal transduction and 
protein modification. The nuclear factor-kappa B 
(NF-κB) signal pathway is the most important 
transcriptional pathway. The regulation of NF-κB can 
control the expression of a variety of pro-inflam-
matory cytokines, including cytokines, chemokines, 
and adhesion molecules [79]. As a key effector of the 
Hippo pathway, YAP is activated by transport from 
the cytoplasm to the nucleus, which regulates gene 
expression and promotes tumorigenesis. Fas bind to 
the receptor Fas and initiate death signal trans-
duction, which leads to apoptosis of cells expressing 
Fas. It has been found that luteolin can affect the 

survival of hepatocellular carcinoma by regulating 
NF- κ B, YAP, AKT/OPN, NRF2/HO-1, Fas and Fas 
ligand, p53, AMPK, and other signal pathways 
(Table 3). 

The effect of LUT on HCC biological process 
and gene transcription  

Cancer has become one of the leading causes of 
death because of the difficulty in treating it. Both 
direct and indirect risk factors can contribute to an 
outbreak of cancer. The emergence of gene transcrip-
tion has led to significant advances in Epigenetics, 
with the differential expression of genes determining 
outcomes in cancer patients. Genome-wide screening 
and the discovery of high-throughput genomics have 
promoted the further development of proteomics, 
which is a breakthrough in the diagnosis and 
prediction of liver cancer [83]. Yang Pei [56] et al. 
demonstrated that luteolin upregulates MIR-6809-5P 
expression, overexpression of miR-6809-5p inhibits 
HCC cell growth, and knockdown of miR-6809-5p can 
reverse the anti-cancer effect of luteolin. FLOT1, an 
essential protein for plasma membrane transport, cell 
division, T cell activation, and cell surface receptor 
signaling, also has some effects on tumor cells, and 
MiR-6809-5p directly targets FLOT1 in hepatoma cells 
[84]. FLOT1 is highly expressed in a variety of tumor 
cells, but the down-regulation of FLOT1 by luteolin 
directly inhibits the growth of hepatoma cells. In most 
biological processes of liver cancer, multiple signaling 
pathways, including ERK1/2, p38, JNK, and 
NF-ΚB/P65, are overexpressed by miR-6809-5p or 
downregulated and inactivated by Flot1 [85]. 
However, in the luteolin study, extracts from 
Scutellaria baicalensis Georgi and Hedyotis diffusa 
were found to inhibit HCC cell growth and Hepatitis 
B virus activity in vivo and in vivo by altering 
circRNA-miRNA gene expression, the efficacy of 
these extracts may be consistent with that of Luteolin 
in the presence of apigenin [86]. Based on network 
pharmacology and molecular docking techniques, Liu 
et al. [87] found that luteolin, as the main component 
of Polygonum hydropiper, was successfully 
combined with AKT1 to treat liver cancer, and the 
therapeutic effect of luteolin was verified by 
experiments, the levels of P-AKT mirnas are reduced 
in low-grade liver cancer cells and have regulatory 
effects on various genes such as AKT1, JUN, MAPK1, 
RELA, IL6, and MAPK14. In HCC cells, luteolin 
targets the expression of the THOC1 gene and induces 
DNA damage to prevent the proliferation of HCC 
Cells [88]. 
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Figure 6. Bioinformatics analysis of potential targets of luteolin in the treatment of hepatocellular carcinoma. (A) Potential targets of luteolin in the treatment of hepatocellular 
carcinoma. (B) Protein interactions at potential core targets. (C) Seven core genes screened. (D) Multigene comparative analysis of candidate biomarkers based on TCGA 
database. (E)Survival heat map of core genes in hepatocellular carcinoma. (F) Expression of core genes based on GEPIA database. (G) Correlation analysis of differential genes in 
the pathological stage of hepatocellular carcinoma. (H) Influence of differential gene on survival curve of patients. (I) Correlation of differential gene SRC, ESR1 with immune cells 
infiltrated by hepatocellular carcinoma. (J) KEGG enrichment analysis pathway of potential core genes. (K-M) GO enrichment analysis of potential targets for luteolin in the 
treatment of hepatocellular carcinoma includes biological process (BP), cell composition (CC), and molecular function (MF) 

 

Clinical significance and application of luteolin  
With the development of natural medicine, the 

research on luteolin has made a great breakthrough, 
and the clinical significance of luteolin has been 
confirmed by a lot of reliable data [89]. Sorafenib, a 
small-molecule multi-kinase inhibitor, has been 
approved by the US Food and Drug Administration 

as an oral drug for the treatment of hepatocellular 
carcinoma and renal cell carcinoma. But to the best of 
our knowledge, the combination of luteolin and 
sorafenib has been shown to kill cancer cells, with the 
study claiming that the combination increased the 
expression of the phosphorylated form of JNK, 
sP600125, a JNK inhibitor, effectively attenuated the 
cell death induced by combination therapy. Thus, 
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when combined with sorafenib and luteolin to 
synergistically kill HCC cells through JNK-mediated 
apoptosis, luteolin may be an ideal drug [90]. As a 
tyrosine kinase inhibitor, lapatinib inhibits the 
activation of downstream signaling pathways by 
blocking the activation of HER1 and HER2 tyrosine 
kinases, thereby inhibiting the survival and 
proliferation of tumors. These data suggest that the 
combination of lapatinib and luteolin may inhibit 
HER2+ human breast cancer by significantly increa-
sing the expression of FOXO3a and NQO1 [91]. The 
results of metabolomics showed that the combination 
of luteolin and resveratrol could decrease the 
production of Glucuronic acid metabolites in patients 
with liver disease and increase the bioavailability of 
luteolin [92]. In recent years, the development of key 
therapeutic targets of natural drugs has become an 
important method for the clinical treatment of tumor 
diseases, and the combination of luteolin, a flavonoid 
derivative, with clinical drugs is also of great 
significance for patients with hepatocellular 
carcinoma.  

 

Table 3. Luteolin regulates the signal pathway of HCC 

Pathway Action factor Result Biological 
process 

References 

NF-κB IκBα 
p65 
COX-2 

Decreased NF-κB 
expression 

HepG2 
apoptosis 

[80] 

YAP CXCR-4 
UBTD-1 

Decreased UBTD1 
expression 

Hep3B and 
Huh7 signal 
transduction 
and abnormal 
gene expression 

[81] 

AKT/OPN AKT 
P-AKT 
OPN 
P-OPN 
Caspase-3 

Decreased 
AKT/OPN 
expression 

SK-Hep-1 
apoptosis 

[60] 

NRF2/HO-1 TNF-α 
IL-6 
NRF2 
HO-1 
ROS 

Decreased 
NRF2/HO-1 
expression 
ROS reduction 

Activation of 
NF-κB signaling 
pathway in 
RAW264.7 

[80] 

AMPK AMPK 
P-AMPK 
NF-κB 

Decreased 
P-AMPK/AMP K 
expression 

AMPK 
activation in 
HepG2 activates 
the NF-κB 
inflammatory 
pathway 

[81] 

p53, Fas-Fas 
ligand 

TGF-β1 
p21WAF1/CIP1 
p27KIP1 
Smad4 

Up-regulatio of 
TGF-β1, 
p21WAF1/CIP, 
p27KIP1, and 
Smad4 gene 
expression 

G1 arrest in 
Hep3B cells 
leads to 
apoptosis 

[82] 

 

Summary and Outlook  
The effect of exploring effective compounds 

from natural sources for the prevention and treatment 
of tumors or other cancer diseases has been well 
proven. Flavonoids are the most widely studied 
anti-tumor organic compounds at this stage, and their 
results have provided a solid basis for clinical practice 

[93]. In this context, luteolin, as a derivative structure 
of flavonoids, has received extensive attention. It 
promotes tumor cell apoptosis by inhibiting tumor 
cell growth, migration, invasion, gene expression, 
protein modification, etc. [94], and through the 
anti-tumor effects of different signal transduction 
processes and biological processes are becoming more 
and more optimistic.  

Hepatocellular carcinoma is a primary 
malignancy tumor of the liver, and the mechanism of 
hepatocellular carcinogenesis is mainly concentrated 
in the process of hepatitis and cell regeneration [95]. 
Liver cancer has been documented to develop in a 
vicious cycle of viral inflammation, alcohol-induced 
hepatocyte damage, or chronic liver damage caused 
by oxidative stress, this increases genomic instability 
and the risk of liver cancer [96]. However, flavonoids 
can inhibit tumor cells through classical signaling 
pathways such as NF-ΚB, AKT, and AMPK, and it has 
been demonstrated that luteolin can achieve in vivo 
and in vivo anti-tumor activity by affecting levels of 
inflammatory factors, with no apparent toxicity to 
normal cells and low side effects, further validating its 
clinical effect [97]. Non-coding RNAs, mirnas, and 
increase are not only involved in the initiation and 
development of disease but are also potential targets 
for drug intervention, which is consistent with studies 
by Yang P W et al. [86]. Therefore, the next step is to 
search for reliable biomarkers in terms of the effect of 
luteolin on hepatocellular carcinoma miRNAs and 
lncRNAs. Based on the above data, the potential 
biomarkers SRC and ESR1 derived from our 
bioinformatics analysis may also be potential targets 
for luteolin in the treatment of hepatocellular 
carcinoma, this not only expands our hepatocellular 
carcinoma of luteolin treatment but also provides 
insight into the pathogenesis of hepatocellular 
carcinoma, This is consistent with the results of many 
previous investigators, suggesting the efficacy of 
already existing therapeutic targets and that new 
therapeutic targets may provide new strategies for the 
treatment of HCC. Although luteolin has shown 
excellent results in cancer and animal models of 
cancer, studies on the role of luteolin in the treatment 
of pharmacokinetics hepatocellular carcinoma in vivo 
need to be improved [98]. Mitochondrial energy 
metabolism also plays an important role in the 
proliferation of liver cancer and other tumors, luteolin 
is now known to induce lethal endoparasite reticular 
responses, stimulus responses, and mitochondrial 
dysfunction in Glioblastoma multiforme cells by 
increasing intracellular reactive oxygen species (ROS) 
levels [99]. As a derivative of flavonoids, luteolin has 
never been stopped in its research. Using 
nanotechnology to modify luteolin can not only 
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improve its bioavailability but also, and the 
bioavailability of luteolin can be better regulated 
[100]. In conclusion, we describe luteolin as a real 
source, ensuring its safety and low cost compared to 
synthetic cancer drugs, and describe whether luteolin 
can be used to prevent and treat liver diseases 
through different regulatory mechanisms or 
molecular features. As an important adjunct to the 
treatment of cell cancer. 
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