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Abstract 

Focal Boundary Dice, a new segmentation evaluation measure, was hereby presented, with the focus on 
boundary quality and class imbalance. Extensive analysis was carried out across different error types with varied 
object sizes of imaged tumors from Magnetic Resonance Imaging (MRI) scans, and the results show that Focal 
Boundary Dice is significantly more adaptive than the standard Focal and Dice measures to boundary errors for 
imaged tumors from MRI scans and does not over-penalize errors on the division of the boundary, including 
smaller imaged objects. Based on Boundary Dice, the standard evaluation protocols for tumor segmentation 
tasks were updated by proposing the Focal Boundary Dice. The contradiction between the target and the 
background area, and the conflict between the importance and the attention of boundary features were mainly 
solved. Meanwhile, a boundary attention module was introduced to further extract the tumor edge features. 
The new quality measure presents several desirable characteristics, including higher accuracy in the selection of 
hard samples, prediction/ground-truth pairs, and balanced responsiveness with across scales, which jointly 
make it more suitable for segmentation evaluation than other classification-focused measures such as combined 
Intersection-over-Union and Boundary binary cross-entropy loss, Boundary binary cross-entropy loss and 
Shape-aware Loss. The experiments show that the new evaluation metrics allow boundary quality 
improvements and image segmentation accuracy that are generally overlooked by current Dice-based 
evaluation metrics and deep learning models. It is expected that the adoption of the new boundary-adaptive 
evaluation metrics will facilitate the rapid progress in segmentation methods, and further contribute to the 
improvement of classification accuracy. 

Keywords: medical image segmentation; deep learning; boundary binary cross-entropy; Magnetic Resonance Imaging; dice loss; 
Intersection-over-Union loss, Tversky loss. 

Introduction 
Image segmentation can be defined as a 

pixel-level classification task. An image consists of 
different pixels that are grouped together to define 
different image elements. The method of classifying 
these pixels into the elements is called semantic image 
segmentation. Image segmentation is a fundamental 
and essential task in medical image analysis, 
especially in image-guided intervention and radiation 
therapy [1,2].  

Recently, with the development of deep 
learning, convolutional Neural Networks (CNNs) 

have achieved state-of-the-art results in many 
automatic image segmentation tasks [3,4]. Different 
types of loss functions have emerged and become 
increasingly diversified, displaying a satisfactory 
performance in accurately mining data information. 
Especially, an increasing number of loss functions 
matter considerably in the analysis and classification 
of medical imaging.  

The choice of loss functions is a huge challenge, 
which is especially important in the case of designing 
complex deep learning architectures for small-size 
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medical image datasets [5,6]. The way to achieve 
promising object segmentation from the background 
of medical images by learning from limited 
annotations is becoming a hot topic in the medical 
computing community, and the main challenges are 
as follows.  

The process to separate objects from their 
respective backgrounds is often known as interactive 
object selection or interactive segmentation which is 
commonly required in many image editing and visual 
analysis workflows [7-9]. While recent advanced 
methods of interactive segmentation focus on the 
region-based paradigm, more traditional boundary- 
based methods, such as the binary level set, are still 
popular in practice as they allow users to have active 
control over the object boundaries [10-13]. The main 
limitation faced by existing boundary-based segmen-
tation methods, however, is that much more user 
input is often demanded. One major reason is that 
those methods rely solely on low-level image features 
such as gradients or edge maps which are often noisy 
and lack high-level semantic information.  

In medical image processing, it is possible to 
generate thousands of candidate regions from a single 
image, but only a small portion of them contains the 
target object for diagnosis tasks, thereby resulting in 
the imbalance in the number of categories, and the 
excessively large number of negative samples 
accounts for most of the total loss. In addition, 
negative examples tend to be easier to classify, which 
thus makes the model become less efficient in 
achieving target segmentation. 

In tumor segmentation and classification, the 
analysis of semantic characteristics of the boundary is 
extremely important in differentiating the benign and 
malignant tumors. The boundaries of benign tumors 
are usually smooth, while those of malignant tumors 
are covered with burrs. Accurate identification of the 
shape and position of abnormal objects (e.g., tumors) 
in medical images matters a lot in surgical planning, 
also in the diagnosis and prognosis of diseases, which 
is, however, difficult to achieve from two-dimensional 
or even three-dimensional medical images as these 
images present inaccurate and ambiguous object 
boundaries. 

Herein, a compound loss function was construc-
ted in terms of breast MRIs that enable a user to obtain 
accurate object segmentation, e.g., imaged tumors, 
with boundaries reflecting object shape variation 
suitable for tumor segmentation and classification. 
The work was motivated by three key considerations.  

On the one hand, a good boundary prediction 
model should be adaptively made throughout the 
segmentation process. To this end, a fully convolu-
tional encoder-decoder network was developed, 

which takes both the image and user interactions (e.g., 
cutting the whole image into different quadrant) as 
the input and predicts semantically meaningful 
boundaries that match with user intentions. 

On the other, in order to improve the accuracy of 
the classification model for the difficult sample 
segmentation, focal loss was proposed, with its basis 
for the improvement of the standard cross entropy 
function, to be added along with the balance factor. 
The loss function is inclined to the difficult samples, 
thereby improving the accuracy of the classification 
model for the difficult sample segmentation, which, to 
a certain extent, solves the problem of sample 
imbalance in the medical image classification, an 
inevitable problem in the analysis of breast MRI data. 

Moreover, Boundary (BD) Loss monitors the loss 
of the deep learning network for highly imbalanced 
segmentation by using boundary matching. Only 
pixels on the boundary were evaluated, setting as 0 
while matching the boundary of Ground Truth, and 
points failing to match were evaluated for loss based 
on their distance from the boundary. The focus was 
on the determination of the target boundary. The 
Binary cross-entropy (BCE), Intersection over Union 
(IoU), Dice, etc. do not penalize incorrect boundary 
delineation. The Hausdorff distance (HD) loss [14] 
estimates the Hausdorff distance of the convolution 
neural network.  

The main contribution of this paper is the 
boundary-based segmentation and classification 
framework based on a new combination of loss 
functions. Hence, in terms of the above prior 
knowledge, a compound loss function, including Dice 
loss, focal loss and boundary loss, was designed with 
the focus placed on boundary information detection. 
An edge-attention mechanism was introduced to 
convolutional neural network (CNN) structures. In 
terms of clinical retrospective data analysis, according 
to Dice and Precision, along with border dice 
similarity coefficients and Hausdorff distance, the 
experimental results of the proposed algorithm 
indicate a significant improvement in tumor 
segmentation and classification quality compared to 
the state-of-the-art methods, thereby perfectly 
reflecting the effectiveness of the proposed algorithm. 

Related Work and Methodology 
Considering the dense and complex tissue in the 

breast, the segmentation performance of MRI scans 
for imaged tumors can be interfered with by the 
surrounding normal glandular tissues in the image. 
Machine learning [15-17] allows the segmentation of 
imaged tumors by comparing the segmentation mask 
predicted using the classification system with the 
ground truth mask provided by the annotator. The 
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segmentation quality metric was used to evaluate the 
degree to which the prediction shape of the medical 
segmentation result is consistent with that of the 
ground truth object [18-20]. In this section, a new 
segmentation metric loss function was introduced and 
compared with existing consistency loss function 
using evaluation metrics.  

Focal Boundary Dice Loss 
As an improvement on the standard binary 

cross-entropy loss function, focal loss has been shown 
to achieve higher accuracy in the selection of hard 
samples in the presence of category imbalance. In 
breast MR images, the imaged tumor is considered as 
a positive sample and represents only a small fraction 
of the MR images. It is therefore insignificant 
compared to the negative sample, which is a large 
part of the entire image, occupied by the background 
and other tissues of the breast. Such an imbalance is 
further increased after extracting boundary 
information from the imaged tumor. Thus, attempts 
were made to perform the extraction of edge 
information Ledge under the supervision of focal loss. 
The following edge loss function was proposed: 

 (1)  

where (x, y) are the coordinates of each pixel in 
the edge of the predicted edge image Se and the 
background truth value Ge, while w and h denote the 
width and height of the corresponding graph, 
respectively, and the coefficient γ adds the weight to 
the difficult samples, and is also the key to solving the 
problem of sample imbalance. 

In medical image segmentation tasks, Dice loss is 
usually chosen to determine whether the model 
achieves satisfactory results, which is achieved by 
calculating the similarity of the predicted samples to 

the real samples (background truth). As mentioned 
before, the detected target is too small, thus resulting 
in highly imbalanced positive and negative samples. 
The new loss function should have a weaker bias in 
the segmentation measure of the objects of interests, if 
some background pixels are included. 

Guided by these principles, the focal boundary 
Dice loss function was correspondingly proposed. On 
the one hand, the fusion of focal loss and Dice loss 
aims to improve the segmentation performance of 
breast MRIs with small imaged tumors of interests 
and large background regions. On the other, by 
further introducing boundary loss, the detected 
boundaries of the imaged tumor are found closer to 
the background truth. By assigning the corresponding 
weights to these three loss functions, the flexibility 
was achieved to place different emphasis on different 
loss functions depending on the various problems 
posed by medical images.  

 
To assign proper weights to the three loss 

functions, the following segmentation loss function 
was proposed: 

 (2) 

where LDice, LFocal and LBD represent the loss 
functions of Dice, focal and BD, respectively, and λ1, 
λ2, λ3 are the corresponding weights of the three loss 
functions. According to the target of interest of MRI, 
the weights of the Dice loss, focal loss, and BD loss 
were finally set as 0.5, 0.3, and 0.2, respectively. For 
the current MRI scan to be analyzed, the Dice loss 
function was emphasized with the highest weight, 
followed by the focal lose function, while the 
boundary loss function was least emphasized with the 
lowest weight. 

 

 
Fig. 1. Illustration of tumor segmentation from MRI scan under different weight assignments. The first column depicts the inputs of two 2-D MRIs from two 
different patient; the second column shows the manually depicted tumors according to the first column of MRIs; and the remaining segmentation is achieved using weighted Dice 
(λDice), weighted boundary (λboundary) and weighted focal coefficients (λFocal), respectively. 
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Fig. 2. Illustration of the structures of deep convolutional neural networks for automatic breast segmentation. Global tumor segmentation as input features is 
located on layer 1 for supervised learning. For the output of layer 2, boundary attention module for edge information detection and edition was adopted, which was further used 
as an input component to compute the total loss function. The outputs of layers 3, 4, and 5 of the deep learning networks were high-level features related, and deep supervised 
learning was performed separately with global tumor segmentation by up sampling them to the same size as ground truth.  

 
Eq. (2) consists of two parts of segment loss 

function Lseg, λDice for image segmentation 
(image-level) supervision, and λFocal and λboundary 
for target boundary (pixel-level) supervision. In the 
deep learning task, unlike the standard Dice loss 
widely adopted in segmentation tasks, the weighted 
Dice loss pays more attention to hard-to-segment 
pixels (boundary pixels) to highlight their importance. 

To further validate the hereby proposed idea, 
Dice loss, focal loss and boundary loss were used as 
the dominant (most distributed weights) for training, 
respectively, and the following results were obtained, 
as shown in Fig. 1. Corresponding weight functions 
for the object were given by max=λDice, max=λFocal, 
and max=λboundary. 

Given that Dice loss is statistic, and usually 
chosen to determine the similarity of the predicted 
image segmentation to the real mask, weighted Dice 
(λDice) allows the classification of most segmented 
pixels related to fully connected tumor regions with 
holes removal, as can be seen from the third column in 
Fig 1.  

Weighted boundary (λboundary) focuses on the 

collection of pixels along the target boundary. The 
lack of clear edge between the imaged tumors and 
other anatomical structures makes it challenging to 
accurately extract the boundaries, while the existence 
of weighted boundary makes the learning network 
more adaptive to the boundaries during 
segmentation. Meanwhile, it facilitates to address the 
problem of small medical imaging datasets. 

Illustrated in the fifth column, the weighted focal 
(λFocal) collected more pixels from the target 
boundaries of interest with less background pixels to 
be involved than boundary-weight based learning. 
The central cause lies in that focal loss focuses training 
on a sparse set of hard examples and prevents the vast 
number of easy negatives of image background from 
overwhelming the detector during training. 

According to the important number of pixels 
collected in the tumor region and boundary, the 
weight was set as 0.5, 0.3, 0.2, related to Dice, focal 
and boundary, respectively. 

For high-level features, such as the outputs of 
layers 3, 4, and 5 of the deep learning networks as 
illustrated in Fig 2, deep supervised learning was 
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separately performed with global tumor segmentation 
by up-sampling them to the same size as ground truth 
(SUP). For the output of layer 2, boundary attention 
module was adopted for edge information detection, 
which was further used as an input component to 
compute the total loss function. It should be 
highlighted that boundary loss was calculated 
according to the boundary of the original input image, 
which is independent on the resultant segments 
calculated form layer 3,4, and 5. In this case, the error 
of the latter does not affect the accuracy of the 
resultant boundary of the former. The former makes 
the segmentation learning network more adaptive 
towards the boundaries. The total loss Ltotal in the 
network equals to: 

 (3) 

where i labels the layer of the deep learning 
network, and Gs denotes the ground truth 
segmentation. 

Additionally, global tumor segmentation was 
also used as the input feature located in layer 1. 
However, using the edge loss function (Ledge) in layer 
2 is better than using it in layer 1. By introducing the 
boundary attention module in layer 1, the 
experimental results show a slightly decrease in the 
quality evaluation of Dice, precision and specificity, 
which is lower than the present results of ledge being 
put on the second layer, as shown in Fig. 3. 

 

 
Fig. 3. Performance comparison including Dice, precision, and specificity, 
while introducing the boundary attention module on the first (L1) and second layer 
(L2) of the deep convolutional neural networks. 

 

BCE-based IoU Loss 
The motivation to use the standard binary 

crossover loss (BCE) is to achieve the edge loss 
function, which can be defined as: 

 (4) 

where (x, y) are the coordinates of each pixel in 
the predicted edge image Se and the manually 
depicted edge Ge, while symbol w and h represent the 
width and height of the corresponding images, 
respectively. 

In contrast, segmentation loss function is defined 
as the combination of the weighted IoU loss (Lω●IoU) 
with the weighted binary cross-entropy (BCE) loss 
(Lω●BCE): 

 (5) 

The two parts of the edge loss function  
provide efficient global (image-level) and local 
(pixel-level) supervision for accurate segmentation. 
Unlike the standard IoU loss, which is widely adopted 
in segmentation tasks, the weighted IoU loss exerts 
higher weights on hard-to-segment pixels which are 
addressed through the introduction of the proper 
weighted BCE loss L(ω●BCE). Additionally, 
compared with the standard BCE loss, L(ω●BCE) 
makes it possible to multiply the positive and 
negative samples with different weights. Against the 
context, more emphasis was placed on positive 
samples, rather than assigning equal weights to all 
pixels. Specifically, when all the samples in the 
receptive fields are positive or negative samples, no 
sufficient attention was paid to them. In the contrary, 
more attention was paid to the samples far from the 
mean in the receptive field in order to determine the 
positivity/negativity of these hard samples. The value 
of the weight ω is given by Eq. (6), which corresponds 
to the boundary of the tumor region in the present 
experiments, as illustrated in Fig. 4. Correntropy- 
induced loss functions [21,22] were used to determine 
the weight ω, so as to improve the robustness. 

 (6) 

where Gs denotes the ground truth used for 
segmentation, and Favg_pool2D refers to the mean 
pooling function in 2 dimensions (2D), which was 
hereby used to spot the mean value of the pixels in the 
2D receptive field. The final function of the total loss 

 can be expressed as: 

 (7)  

The definitions of these losses are the same as 
those in [23-25], and their effectiveness has been 
demonstrated in the domain of salient object 
detection.  
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Fig. 4. Zoomed magnetic resonance imaging regarding positive/negative 
samples. The red boxes are the regions corresponding to positive/negative samples 
in the receptive field range that requires less attention, while the blue box includes the 
pixels from the edge between the positive and negative region, which should be 
assigned with larger weights. 

 

BCE-based Boundary Loss 
Different from the common boundary loss that 

performs the boundary matching degree to supervise 
the loss of the deep learning network, BCE-based 
boundary loss is to achieve supervised learning of the 
boundary information under the boundary (BD) loss, 
and evaluate the tested edge image loss according to 
the distance between the tested edges/boundary of 
the target regions and the manually depicted 
edges/boundaries (the ground truth).  

The distance between the boundary of ground 
truth ∂G and the predicted boundary ∂S by the deep 
learning model can be calculated using the following 
equation: 

 

 (8) 

where the q∂S(p) represents the predicted point q 
corresponding to the point p on the boundary ∂S(p); 
the sign S-G, the subtraction between the two 
boundary regions S and G; and Ω, the whole image 
domain. The distance between predicted boundary 
and ground truth is labeled by DG→S(p), while s(p) and 
g(p) are two binary functions regarding the predicted 
and true boundary, respectively. The sign ФG(p) is 
boundary level set function, with Sɵ(p) representing 
the output probability of softmax. At point p, the 
boundary loss function is defined as follows: 

  (9) 

Similarly, segmentation loss function is shown as 
Eq. (5), which combines the weighted IoU loss with 

the standard cross-entropy (BCE) loss, and the final 
loss is extended to: 

 (10) 

Shape-aware Loss 
For the tumor segmentation task, the most 

important thing is to guarantee its integrity. Only 
when the information is complete and the boundary is 
smooth can the subsequent diagnosis of benign and 
malignant tumors be carried out with higher accuracy 
and efficiency. In this case, given that the tumor can 
maintain shape integrity, shape compactness and 
shape smoothness, a new loss function was hereby 
obtained by introducing two complementary shape 
constraints into the loss function in [26]. 

 (11) 

In order to better present the compact shape of 
the tumor, the equivalence quotient measure CEQM = 
4πA/P2 was proposed, where A and P represent the 
target shape area and edge length, respectively. The 
above metric was transformed into the segmentation 
task, forming the shape compactness constraint [25]:  

 (12) 

where ρ is the predicted probability image; Ω, the 
set of all pixels in the image; ∇𝜌𝜌𝑢𝑢𝑖𝑖 and ∇𝜌𝜌𝑣𝑣𝑖𝑖 , the 
probability gradients for each pixel i in the horizontal 
and vertical directions; and o, a hyperparameter for 
computational stability. 

Overall, the perimeter P is the sum of the 
gradient magnitudes over all pixels i ∈ Ω, and the area 
A is calculated as the sum of the absolute values of ρ. 
Intuitively, given that the incomplete shape often has 
a smaller area A, and a larger P minimizing the above 
function will encourage the segmentation result and 
lead to a more complete and compact shape, which 
results in a larger Lcompact. In the case where the 
boundary is difficult to locate, the cross-entropy loss 
is proposed to be changed by increasing the 
shape-based coefficient. 

The segmentation results require smooth edges, 
improved intra-class consistency and inter-class 
dissimilarity by regularizing the relevant back-
grounds and contour embeddings, while the domain 
remains invariant. Specifically, the result of the edges 
and background embedding are obtained by using the 
mask-averaged set method: 
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  (13) 

where 𝑇𝑇𝑚𝑚𝑙𝑙  indicates the output of lth convolution 
layer; Ω, the set of all pixels in the representation 𝑇𝑇𝑚𝑚𝑙𝑙 ; 
𝐸𝐸𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐸𝐸𝑚𝑚

𝑏𝑏𝑏𝑏, single feature vectors in relation to the 
contour- (cm) and background (bm) related images, 
which are extracted from the entire image I. 

After another embedding network, it was 
remapped to the low-dimensional space, and the 
distance was then calculated on this low-dimensional 
space, and finally the shape smoothness constraint 
was formed as: 

 
where the function τ(E) indicates that class ζ is a 

predefined distance margin following metric learning 
practices, and dɸ labels the distance between two 
feature vectors Em and En from the output of deep 
learning network. The final target Lsmooth is computed 
in a mini-batch of υ samples. 

 
Intuitively, the above constraint ensures more 

similar features for pixels that also belong to the 
edges, and more discriminative features for pixels on 
the edges and background, making the segmentation 
edges less ambiguous. 

The key to this loss function is to split the shape 
constraints into two parts, i.e., the shape and the edge. 
In general, shapes are more concerned with internal 
features and the overall topology, while edges can 
usually add smooth constraints, etc. to ensure the 
relative external features. 

Empirical Analysis 
Measurements 

A total of 30 women with various ages from a 
local hospital were hereby collected. The MR images 
of the patients with breast tumors were all 
T1-enhanced images. A total of 2,820 images were 
extracted from the 3D volume associated with 2D MRI 

axial slices in which tumor slices were visible, and a 
total of 366 images with labels were manually 
annotated by radiologists. To ensure the timeliness of 
the experiment, the collected data were from patients 
in the last few years, and were therefore still relatively 
limited for deep learning. 

To verify the reliability of the present study 
based on sufficient test samples, 114 slices of 10 
patients were randomly selected for the construction 
of the training set, and the remaining 20 patients with 
a total of 251 image data were used for testing. These 
30 cases of breast tumor patients include: 
fibroadenosis of breast; Invasive ductal carcinoma of 
breast (grade I, II, III), breast fibroadenosis with 
adenoma formation, Mucous carcinoma of right 
breast, Catheter dilatation with chronic inflammation, 
breast papillary disease, Adenocarcinoma of left 
breast mass, middle grade intraductal carcinoma, 
Cystic hyperplasia of right breast, Invasive carcinoma 
in central region, Invasive lobular carcinoma in the 
central region. The collections of these different types 
of breast MRIs do take time to finish. Please remember 
these MRIs data is valuable. The following table 
(Table 1) lists the types of 27 cases of patients with the 
benign (B) and malignant tumors used for the 
experiment design. There are 3 remaining patients 
missing the types of labels. As the paper aims to get 
image segmentation, such results will not affect the 
experiment results. 

In order to remove the interference of the 
remaining chest tissues as much as possible, each data 
was divided into 4 sections according to the 
quadrants, and only the sections with tumors were 
kept to reduce the computational complexity. 

Dice, Precision and Specificity were adopted as 
evaluation metrics for tumor segmentation to validate 
the CNN learning model, among which, Dice is one of 
the most common evaluations metrics in medical and 
various image research fields. It is widely recognized 
for its pixel-level evaluation of images, and can truly 
reflect the difference between the predicted results 
and the background truth. Its formula can be 
expressed as: 

  

Table 1. The list of the benign (B) and malignant (M) tumors used for the experiment design. 

No. of cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
No. of Images 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139 
Type of tumors B M M B M M M B B M B B B M 
No. of cases 15 16 17 18 19 20 21 22 23 24 25 26 27  
No. of images 140-149 150-159 160-169 170-179 180-189 190-199 200-209 210-219 220-229 230-239 240-249 250-259 260-269  
Type of tumors B M M M B M B B B B B M   
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where pred and true denote the set of predicted 
values and the set of real values, respectively, and the 
numerator is the intersection of the two sets. 
Multiplying by 2 avoids repeated calculations in the 
denominator.  

Intuitively, it can be observed from the formula 
that the coefficient Dice is a measure of the similarity 
of the two sets. For images, this coefficient can be 
directly used to calculate the overlap degree between 
the model output and the target region in the real 
image, so it takes a value in the range {0,1}. The closer 
the result is to 1, the smaller the difference between 
the model output and the real sample becomes. 

Precision is one of the most common evaluation 
indicators in the two-class problem. In the two-class 
problem, it is assumed that the class of interest is set 
as the positive class, while the others are negative 
class. Then, the classifier will get four cases: 
predicting the positive class as the positive class (TP), 
the negative class as the positive class (FP), the 
negative class as the negative class (TN), and the 
positive class as the negative class (FN). The precision 
can be expressed as: 

 
It refers to the proportion of truly positive 

samples among all predicted positive samples, with a 
larger result within the value range [0,1] indicating a 
higher-level accuracy of the model predicting the 
positive samples. For the present tumor segmentation 
research, the pixels where the tumor is located are 
positive samples, while the other tissues and 
background regions in the breast MRI are negative 
samples. The adoption of this metric provides a 
visualization of the accuracy of the hereby proposed 
model for segmenting tumor regions. 

Finally, the specificity coefficient was used to 
evaluate the model’s ability to discriminate against 
negative samples. In terms of accuracy, specificity is 
generally used as an evaluation indicator for binary 
classification problems. 

 
where the specificity describes the proportion of 

the identified negative samples to all the negative 
samples. Unlike the above two indicators, specificity 
focuses on negative samples and takes a range of 
values between [0,1], with a larger result representing 
a lower positive rate. Given that the experiment was 
not intended to judge normal tissues as tumor cells in 
the results, this coefficient was thus chosen as the final 
evaluation index, which also matters considerably in 
clinical diagnosis. 

Preprocess of Breast MRIs 
Empirical evidence was provided for the 

evaluation of the proposed algorithm in the 
segmentation of breast MRIs, and the comparison in 
several loss functions was conducted. 

Difficulties in breast tumor segmentation and 
classification of are the small tumor region of the 
target tumor of interest, the large background, and the 
fact of the number of MRI datasets to be achieved 
being less than required. Additionally, individual 
differences among patients result in differences in 
tissue density/contrast and intensity variation. The 
various scan time and scan slices of MRI can also lead 
to differences in MRI measurements. For the 
preprocessing step, automatic breast quadrant 
delineation was first implemented based on the 
symmetric nature of breast MRIs. Then, data 
augmentation algorithms were adopted to increase 
the sample size while enriching the variety of imaged 
tumors. 

Automatic Division of Breast Quadrants 
Since the tumor image region of interest 

accounts for a small proportion of the entire image, 
two main difficulties are observed in tumor 
segmentation as a small target detection task, i.e., few 
target instances and small target areas. In this case, it 
is important to start with expanding the area ratio 
between the target region of interest and the 
background. Considering that the breasts are paired 
structures on the anterior thoracic wall, each breast is 
represented as a different quadrant. It can be observed 
that the breast tumor only occupies a small part in an 
MRI and is only located in the first or second 
quadrant of the whole image. To this end, in order to 
increase the proportion of the target tumor area while 
reducing the background regions, the MRI was 
divided into 4 quadrants, keeping only the quadrant 
with imaged tumors, as shown in Fig. 5. 

Data Augmentation  
To address the problem of small datasets, data 

augmentation (DA) [31] on MR images with tumors 
was proposed to generate large realistic/diverse 
dataset and improve the robustness of the deep neural 
networks (DNNs) in breast tumor detection from 
MRIs.  

Gaussian blur allows to output the target image 
after mean filtering of the input to source MRIs. The 
use of convolution allows blurring of the original 
image with the aim of retaining larger and brighter 
objects in the image. Herein, a Gaussian filter with 
random kernel size was adopted to eliminate the 
breast tissue outside the imaged tumor to some 
extent, thereby resulting in better perform target 
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extraction.  
 

 
Fig. 5. Illustration of one of the 4 quadrants regarding divided MRIs with an imaged 
tumor in the fourth quadrant. 

 
Adaptive histogram equalization (AHE), a 

computer image processing technology, was mainly 
used to improve the contrast of images, which was 
achieved by calculating the local histogram of an 
image and then redistributing the brightness 
according to the obtained processing. AHE is subject 
to the problem of over-amplification of noise in the 
same area of the image. The Contrast-Limited 
Histogram Equalization (CLAHE) algorithm [27] sets 
a contrast magnitude limit for each small region to 
avoid excessive contrast amplification caused by the 
AHE algorithm. 

Elastic transformation allows for random 
deformation of the MRI in a random displacement 
field. The random displacement field was then 
convolved into a Gaussian function with standard 
deviation σ, inversely proportional to the random 
displacement field. Since the strength of the random 
displacement field is between (-1,1) and its mean 
value is 0, the field is almost constant and has a 
random orientation if the displacement field (with a 
parity of 1) is normalized. The Gaussian-convolved 
displacement field was then multiplied by a scaling 
factor, which controls the deformation strength. An 
elastic deformation displacement field was obtained, 
and this displacement field was finally applied to the 
image after affine transformation to obtain the final 
elastic deformation of enhanced data. 

Considering the varied shape of the tumors, the 
random elastic variation of the image data allows the 
model to learn richer tumor shapes, especially the 
feature of “burr”. To prevent the singularity of the 

position of imaged tumors, the MRI data were 
randomly rotated and flipped to understand the 
growth or spread of the imaged tumors. In addition, 
the pixel intensity, contrast, sharpness, and brightness 
were randomly varied using Random Contrast, 
Random Brightness, Hue Saturation Value and other 
methods. The data augmentation samples used to 
solve the problem of insufficient MRI data sets are 
shown in Fig. 6. 

Boundary Feature Extraction 
Some studies have shown [28-30] that edge 

information can provide useful constraints to guide 
the feature extraction for segmentation. Therefore, 
low-level features are considered important features 
that can be automatically extracted from the edge 
image by virtue of the shape information of imaged 
tumors. The corresponding boundary ground truth 
images were hereby manually annotated by clinic 
experts, as shown in Fig. 7. 

Referring to Fig. 2, the second convolutional 
layer was processed to map the edge information to 
necessary output categories. Considering that the 
tumor is immersed in the glands of breast tissues, the 
boundary information cannot be easily detected. 
However, the smoothness of the boundary features is 
one of the key factors to identify tumors. Therefore, 
the boundary attention module and the edge loss 
function were hereby designed to achieve accurate 
extraction of boundary features to improve the 
performance of tumor segmentation. The output of 
extracted boundary information was compared with 
the boundary ground truth, as shown in Fig. 8. The 
output of the tumor edges was visually matched with 
boundary ground truth.  

Comparison and Analysis of Different Loss 
Functions in Tumor Segmentation  

First, various loss functions were applied to 
analyze breast MRI on the deep learning system 
represented in Section 2 and compare the 
segmentation results. Then, the most appropriate loss 
function was investigated for analyzing MRI scans 
from the empirical perspective. The resultant 
segmentations were shown and discussed, and the 
performance of the segmentation results was 
quantified for validation. Figure 9 depicts the 
comparison among the four loss functions used to 
train the proposed deep learning network for tumor 
segmentation, i.e., focal boundary dice loss, 
BCE-based IoU loss, BCE-based boundary loss, and 
shape-aware loss.  
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Fig. 6. Illustration of resultant data augmentation. The first to the sixth lines correspond to the processing in terms of the original MRI, Gaussian blur processing, 
contrast-limited adaptive histogram equalization (CLAHE), normalization, random elastic deformation and random brightness change, respectively.

 

 
Fig. 7. Illustration of the boundary ground truth of MRI scans from four different patients that were manually annotated by clinic experts. 
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During the training process, the BCE-based IoU 
loss function obtains better curves than shape-aware 
loss. The BCE-based boundary loss and focal 
boundary dice loss present a smoother and more 
speedy convergence than the other two. Among the 
four loss functions, focal boundary dice is provided 
with the fastest convergence rate. 

Besides, the tumor segments of MRI trained 
under the four loss functions were tested for further 
validation. First, the resultant segments were tested 
according to the optimal configuration of focal 
boundary dice loss, and the resultant segments of 
imaged tumors are shown in Fig. 10. Considering the 
interference of other tissues, only a small portion of 

the segmented tumors show misclassified regions, 
such as the last three images in the first and second 
rows of the figure. Besides, there exists obvious gap 
between the misclassified pixels and the real tumor 
region to be detected, and the former one can be easily 
removed using morphology operation. This focal 
boundary dice loss enables the construction of the 
deep learning network for good segmentation 
performance in all tested MRIs, and the quantification 
results are listed in Table 2. 

Next, the model trained by BCE-based boundary 
loss was tested. Fig. 11 illustrates the relative 
segmentation performance.  

 

 
Fig. 8. Illustration of imaged tumor edges extracted from MRIs of two different patients. The images from the top to the bottom are the raw MRIs, boundary shapes 
extracted from ground truth, and boundary features obtained by the hereby proposed model. 
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Fig. 9. Comparison of loss functions: BCE based IoU loss, shape-aware loss, BCE based boundary loss, and focal boundary dice loss. 

 
Fig. 10. The resultant segments of imaged tumors from four patients under the focal boundary dice loss. The segmented tumors are overlayed on the original 
data. 
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As can be seen from Fig. 11, the BCE-based 
boundary loss function allows tumor segmentation 
for most tested MRIs, while the details of the tumor 
boundaries are poorly handled with more 
misclassified pixels. In addition, for some hard 
samples, the proposed learning network trained by 
BCE-based boundary loss fails to achieve the segment 
result. 

The segmentation result using BCE-based IoU 
loss is shown in Fig. 12. The segmented pixels in the 
tumor region were not correctly classified, making the 
overall boundary information of imaged tumors 
significantly lost, and many pixels from the tumor 
region were incorrectly classified as normal tissues in 
this study. In the worst case, for many MRI cases with 
tumor features, there is even not an identifiable tumor 
region of interest. 

Comparing the above-mentioned focal boundary 
dice loss and BCE-based boundary loss, BCE-based 
IoU loss ignores the special attention to the boundary, 
thus resulting in inconsistent tumor boundaries. 
Although both IoU and dice coefficients impose 
constraints on samples regarding the coincidence 
degree with background truth, the result shows that 
the tumor contours obtained by the dice coefficient 
related loss function are more complete, while the 
tumor region to be segmented by the IoU related loss 
function causes a disintegrated result. 

Finally, the deep learning model trained using 

shape-aware loss was tested, and the results are 
shown in Fig. 13. The model fails to assign tumor 
regions, and as a small target segmentation task, it is 
difficult to extract the imaged tumor from MRIs. 

Meanwhile, we perform 3, 6, 9 folder cross 
validation in 270 randomly ranked MRI scans with 
upto 100 training times (epochs) each, for 
performance comparison, including total loss, mean 
Inetersection over Union (mIoU), pixel accuracy (also 
called global accuracy), and Hausdorff distance, as 
shown in Fig. 14-Fig. 16, respectively. 

Mean Intersection-over-Union is a common 
evaluation metric for semantic image segmentation, 
which first computes the IoU for each semantic class 
and then computes the average over classes. The IoU 
is defined as follows: IoU = true_positive / 
(true_positive + false_positive + false_negative) 
=(TP)/(TP+FP+FN). And mIoU is defined as: 

mIoU= 1
𝑘𝑘+1

∑ 𝑝𝑝𝑖𝑖𝑖𝑖
(∑ 𝑝𝑝𝑖𝑖𝑖𝑖 + ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖)𝑘𝑘

𝑖𝑖=0
𝑘𝑘
𝑖𝑖=0

�
𝑘𝑘
𝑖𝑖=0 , where 

𝑝𝑝𝑖𝑖𝑖𝑖 indicats TP+TN, 𝑝𝑝𝑖𝑖𝑖𝑖 indicats FP+FN. 

Pixel accuracy is metric that denotes the percent 
of pixels that are accurately classified in the image. 
This metric calculates the ratio between the amount of 
adequately classified pixels and the total number of 
pixels in the image. It can be expressed as: PA = (TP + 
TN) / (TP + FP + TN + FN). 

 
Fig. 11. The model segmentation of MRIs from four patients under the BCE-based boundary loss function overlapped with the original MRIs. 
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Fig. 12. The segmented tumor regions using the deep learning model under the BCE-based IoU loss function from MRIs. The visualized results are obviously 
disconnected tumor regions. 

 
Fig. 13. The segmented tumor regions using the deep learning model under the shape-aware loss function from MRIs, where disconnected tumor regions are 
illustrated. 
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Fig. 14. Illustration of 3 folder cross validation in 270 randomly ranked MRI scans with upto 100 training times each, for performance comparison, including 
total loss, mean Inetersection over Union (mIoU), pixel accuracy (also called global accuracy), and Hausdorff distance. 

 

Table 2. Segmentation evaluation according to Dice, precision, 
and specificity. 

Case number Dice Precision Specificity 
1 0.76 0.93 0.97 
2 0.85 0.99 0.98 
3 0.83 0.92 0.98 
4 0.8 0.93 0.97 
5 0.77 0.91 0.97 
6 0.96 0.99 0.98 
7 0.67 0.95 0.99 
8 0.72 0.94 0.98 
9 0.77 0.92 0.97 
10 0.89 0.97 0.99 
11 0.95 0.97 0.97 
12 0.90  0.96 0.97 
13 0.86 0.94 0.98 
14 0.72 0.91 0.98 
15 0.82 0.89 0.99 
16 0.71 0.92 0.98 
17 0.88 0.98 0.98 
18 0.85 0.95 0.97 
19 0.78  0.87 0.98 
20 0.94 0.99 0.99 
Mean 0.82 0.94 0.98 

 
The Hausdorff distance is the maximum 

deviation between two models, measuring how far 
two-point sets are from each other. Given two 
nonempty point sets A={x1,x2,…,xn} and 
B={y1,y2,…,…,ym}, the Hausdorff distance between 
A and B is defined as H(A,B): H(A,B)=max(h(A,B), 
h(B,A)), where h(A,B)=𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥∈𝐴𝐴(𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦∈𝐵𝐵||x−y||) and 
h(B,A)=𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦∈𝐵𝐵(𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥∈𝐴𝐴||x−y||). H(A, B) denotes the 
Hausdorff distance in R3. h(B, A) and h(A, B) are the 
one-sided value from A to B and from B to A, 
respectively. The Hausdorff distance is often used in 
engineering and science for pattern recognition, shape 
matching and error controlling. If H(A, B) is a small 
value, A and B are partially matched; If H(A,B) is 
equal to zero, then A and B are matched exactly. 

Figure 14-Figure 16 show the combination (total) 
loss, pixel accuracy, mean IOU, and Hausdorff curves, 
regarding 3, 6, 9 cross validations for the proposed 
model for 100 epochs. It is clear from the above curve 
plot that in the case of the 6-folder cross validation as 
shown in Fig. 15, the model performed very well, 

especially, there only shows sharp variety at 37th 
epoch for the loss curve as Fig. 15 (a), and at 69th 
epoch for global accuracy or pixel accuracy curve. But, 
after 34th epoch, as the number of epochs increases, 
the mean IOU starts to be adsorbed sharply, then 
starts to increase gradually. While for Hausdoff 
distance, the relative curve decreases gradually till 
33th epoch, and then starts to increase slowly. The 
best training and testing loss Fig. 15 (a) and accuracy 
Fig. 15 (b) are as good as 0 and 99%, respectively, 
while the maximum mean IoU in Fig.15 (c) achieved 
from training data is around 84%, slightly higher than 
testing data of 2%, and the minimum Hausdorff 
distance in Fig.15 (d) calculated according to testing 
data is slightly increased compared with training 
data, with value of 0.9 and 0, respectively.  

In Fig. 14 (a), the 3 folder cross validation goes to 
stable when the train times go to 58th epoch, with 
averaged total loss around 4 pixels, two more pixels 
than the test data.Global accuracy in Fig.14 (b) can be 
as good as 99%, the maximum mean IoU in Fig.14 (c) 
achieved from training data is around 84%, higher 
than testing data 8%, and the minimum Hausdorff 
distance in Fig.14 (d) calculated according to testing 
data is increased slightly compared with training 
data. There show sharp vibrations when the train 
times rise up. Considering the high training times, it is 
efficient to train and test image data with less than 50 
running times for 3 folder cross validation. 

In Fig. 16 (a), the 9-folder cross validation goes to 
stable after 36 training runs, showing rapid 
convergence. The total loss is increased a bit 
compared with 6 folder cross validation, but the same 
as 3 folder cross validation. Global accuracy in Fig.16 
(b) can be as good as 99%, the maximum mean IoU in 
Fig.16 (c) achieved from training data is around 83%, 
slightly higher than testing data of 2%, which shows 
reduced segmentation performance compared with 6 
folder cross validation, but better than 3 folder cross 
validation. The minimum Hausdorff distance in 
Fig.16 (d) calculated according to testing data is a bit 
higher than training data, with slightly reduced value 
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compared with 3 folder cross validation, but increased 
value compared with 6 folder cross validation. The 
vibration stage shows periodicity decreases of 
Hausdorff distance when the train times rise up.  

Thus, from these experimental implementations, 
we have observed that the accuracy varies with the 
number of epochs as well as with the number of cross 
validations. This has also affected the prediction of the 
correct crop disease. Fig. 17 regards the four selected 
cropped MRIs, background truth and resultant 
segmentation with coordinates to show the position of 
each pixel. The resultant segmentation shows good 
visualization according to the 9-folder cross 
validation. 

To further verify the effectiveness of the hereby 
proposed tumor segmentation algorithm, the seg-

mentation results of different deep learning models 
were evaluated, and histograms were plotted for 
comparison, as shown in Table 3 and Fig. 18, 
respectively. 

As can be observed from Table 2 and Fig. 18, the 
hereby proposed model is provided with an 
improved performance in tumor segmentation 
compared to other deep learning algorithms, such as 
U-Net, ResUNet, Pix2pix, Att-Unet, 2D-VNet, and 
Dense UNet. An edge-attention mechanism was 
added to the network structure, along with a 
boundary loss function for a special attention on the 
edge of tumors. This mechanism is found to perform 
better in terms of the accuracy, dice rate, and 
precision, reflecting the effectiveness of this 
algorithm.  

 

 
Fig. 15. Illustration of 6 folder cross validation in 270 randomly ranked MRI scans with upto 100 training times each, for performance comparison, including 
total loss, mean Inetersection over Union (mIoU), pixel accuracy (also called global accuracy), and Hausdorff distance. 

 

 
Fig. 16. Illustration of 9 folder cross validation in 270 randomly ranked MRI scans with upto 100 training times each, for performance comparison, including total 
loss, mean Intersection over Union (mIoU), pixel accuracy (also called global accuracy), and Hausdorff distance. 

 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

733 

Finally, based on the resultant tumor 
segmentation of the proposed deep learning network 
and tumor volume to breast volume ratio, Multilayer 
Perceptron Classifier (MLP) was adopted to classify 
benign tumors from malignant ones. The results are 
listed in Table 4.  

Based on the proposed deep segmentation 
algorithm, benign tumors were successfully 
distinguished from malignant tumors, with an 
accuracy of 85%. To further explore the effectiveness 
of our model, different networks were selected for 
comparison, and the results are shown in Table 4. 

It can be observed that the proposed model is 
provided with high sensitivity in the case of ensuring 
the accuracy and specificity in the diagnosis of benign 
and malignant tumors, indicating the better 
performance of this very model in detecting benign 
and malignant tumors. 

 

Table 3. Resultant segmentation using different deep learning 
models. 

Model Dice Precision Specificity 
U-Net 0.73 0.81 0.99 
ResUNet 0.76 0.82 0.99 
Pix2pix 0.58 0.78 0.99 
Att-UNet 0.76 0.80 0.99 
2D-VNet 0.74 0.84 0.99 
DenseUNet 0.76 0.80 0.99 
Our 0.82 0.94 0.98 

 

Table 4. Classification performance of different deep learning 
models in recognizing benign and malignant breast tumors. 

Method Accuracy Sensitivity Specificity 
VGG16 71.2% 72.4% 73.2% 
InceptionV3 76.5% 77.2% 76.9% 
ResNet-50 81.6% 81.5% 81.6% 
FCNN 80.1% 81.2% 80.6% 
AlexNet-TL 86.3% 86.1% 85.0% 
Our 85.0% 90.0% 80.0% 

 
 

 
Fig. 17. Illustration of the four selected cropped MRIs, background truth and resultant segmentation after 9 folder cross validation with coordinates to show the position 
of each pixel. 
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Fig. 18. Comparison histogram of the segmentation performance of the breast tumor lesions of different models, including U-Net, ResUNet, Pix2pix, Attention 
based UNet, 2D VNet, Dense UNet, and the proposed model, according to Dice (red bar), precision (orange bar), and specificity (blue bar). 

 
Finally, in order to verify the practical usefulness 

of this algorithm in clinical practice, a hospital 
radiologist was invited to perform a professional 
diagnosis of the test set. The results show that the 
misdiagnosis rate of the data by physicians with more 
clinical experience is between 10% and 30%, while 
that of the tumor types by green-hand physicians with 
less clinical experience is around 35%. 

Discussion 
Magnetic resonance imaging (MRI) is currently 

an irreplaceable and important means of breast cancer 
screen, and has advantages over other imaging 
techniques in observing the characteristics of cancer. 
In this study, the breast MRIs of real patients with 
different ages were collected, and a set of breast 
cancer segmentation algorithm was designed for 
computer-aided tumor detection and diagnosis, 
where different loss functions were explored. The 
tumor segmentation algorithm using MRIs, based on 
the convolutional neural network [32-38], introduced 
two core modules, i.e., the edge attention module and 
a new combined loss function to address the 
contradiction between the target and the background 
area, also the contradiction between the importance 
and attention of boundary features. Meanwhile, the 
proposed algorithm also affords the solution to the 
difficulties in obtaining tumor boundary features and 
extremely unbalanced target areas.  

Generally, Focal Boundary Dice, as a new 
segmentation evaluation measure, enables to take the 
challenge in boundary quality improvement and 
address the problem with class imbalance. We carry 
out extensive analysis across different error types 
with varied object sizes of imaged tumors from 
Magnetic Resonance Imaging (MRI) scans, and the 
results show that Focal Boundary Dice is significantly 
more adaptive than the standard Focal and Dice 
measures to boundary errors for imaged tumors from 
MRI scans and does not over-penalize errors on the 

division of the boundary, including smaller imaged 
objects.  

Therefore, the new quality measure presents 
several desirable characteristics, including higher 
accuracy in the selection of hard samples, prediction/ 
ground-truth pairs, and balanced responsiveness 
across scales, which jointly make it more suitable for 
segmentation evaluation than other classification- 
focused measures such as combined Intersection- 
over-Union and Boundary binary cross-entropy loss, 
Boundary binary cross-entropy loss and Shape-aware 
Loss. The several resultant experiments represented 
show that the new evaluation metrics allow boundary 
quality improvements and image segmentation 
accuracy that are generally overlooked by current 
Dice-based evaluation metrics and deep learning 
models. It is expected that the adoption of the new 
boundary-adaptive evaluation metrics will facilitate 
the rapid progress in segmentation methods, and 
further contribute to the improvement of boundary 
quality. 

The current study is also subject to some 
limitations, such as the way to select target regions 
based on contextual information and weights, to 
capture the spatial and channel correlations among 
features [39-41], to strengthen information exchange 
between the spatial and channel features, and to 
enhance the original features of small targets [42,43] to 
improve the classification performance of imaged 
tumors. Especially, further exploration should be 
conducted on the way to achieve the extraction of 
boundary features by using the local density 
deviation of adjacent targets as a reference item. 

Focused on the important problem of unba-
lanced segmentation, our experiments did not fully 
investigate the benefits in the performance with more 
cases of breast tumor patients to be collected. As a 
result, it will affect contour shapes which are, 
typically, less varied than those obtained with more 
cases of tumor types. With more cases of MRI datasets 
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to be collected, the training and test modeling will 
become more robust, which will form our future 
work. 

Another limitation of our formulation and 
experiments is that they were limited to binary 
(two-region) segmentation problems. It will be 
interesting to investigate extensions of boundary loss 
to the multi-region scenario, with competing distance 
maps from multiple structures and various/complex 
topological constraints (e.g., one structure fully 
included within another). 

Conclusion 
The deep convolutional neural network-based 

tumor segmentation algorithm introduces two core 
modules, i.e., the edge attention module and a new 
combined function, focal boundary dice loss function, 
to address the challenge in classifying tumor pixels, 
and obtaining tumor edges with clear boundary 
features and unbalanced target regions. The proposed 
deep learning model facilitates the efficient 
classification of benign and malignant tumors with 
the use of MLP multi-layer discriminator, which 
guarantees the accuracy of benign and malignant 
diagnosis and paves the way for the automatic 
diagnosis of breast cancer. 
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