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Abstract 

Colorectal cancer (CRC) is a common malignancy worldwide and the second leading cause of cancer- 
related deaths. Obesity is an important determinant of CRC incidence; however, obese patients have also 
shown better long-term survival than non-obese patients, suggesting that the development and progression of 
CRC are associated with different mechanisms. This study compares the expression of genes, tumor-infiltrating 
immune cells, and intestinal microbiota between high- and low-body mass index (BMI) patients at the time of 
CRC diagnosis. The results revealed that high-BMI patients with CRC have better prognosis, higher levels of 
resting CD4+ T cells, lower levels of T follicular helper cells, and different levels of intratumoral microbiota 
than low-BMI patients. Our study highlights that tumor-infiltrating immune cells and intratumoral microbe 
diversity are major features of the obesity paradox in CRC. 

Key words: Obesity paradox, colorectal cancer, TCGA, tumor-infiltrating immune cells, intratumoral microbiota 

Introduction 
Colorectal cancer (CRC) is the third-most 

diagnosed cancer worldwide and the second leading 
cause of cancer-related deaths. According to Xi and 
Xu [1], the proportion of CRC incidence and related 
deaths are expected to increase substantially by 2040 
because of the impacts of a westernized diet and 
modern sedentary lifestyles. Although obesity is 
considered to be an important risk factor of CRC [2, 3], 
contradictory reports have been obtained regarding 
its role in CRC progression, and it has also been 
associated with increased survival rates in CRC 
patients [4-6]. 

Being overweight or obese is known to increase 
the risk for various chronic diseases, such as cancer or 
cardiovascular disease [7, 8]. However, in various 

consumptive chronic diseases – several cancers and 
tuberculosis – lower body mass index (BMI) has been 
associated with worse prognosis [9-12]. This 
phenomenon in which the prognosis of overweight 
patients is superior to that of underweight and normal 
weight patients is known as the “obesity paradox” 
[13]. Although obesity was associated with greater 
overall mortality in cancer patients, obese patients 
with lung cancer, renal cell carcinoma, melanoma, 
and CRC had better prognoses than under- or normal 
weight patients with the same conditions [14-20]. 
Given that obesity is a confirmed risk factor for CRC 
and metabolic syndromes [21], the mechanism 
underlying the obesity paradox in cancer remains 
ambiguous [22]. 
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Tumor-infiltrating immune cells (TIICs) play an 
important role in tumor development and determin-
ing clinical outcomes [23]. TIICs are promising 
biomarkers for the diagnosis and prognosis of 
non-metastatic CRC [24], and have achieved greater 
prognostic performance than histopathological 
methods [25]. We hypothesize that the evaluation of 
TIICs could elucidate the molecular mechanisms 
associated with the obesity paradox in CRC. 

The gut microbiome plays a crucial role in the 
local and systemic immunomodulation of various 
diseases, including tuberculosis, cardiovascular 
disease, and cancer [26-28]. A previous report showed 
a strong relationship between the intake of certain 
bacteria and the inhibition of colon cancer progression 
[29], which is achieved via intestinal homeostasis and 
immune regulation [30, 31]. Although the relationship 
between obesity and gut microbiota composition has 
been widely investigated [32], the complex and 
dynamic relationships between gut microbiota, 
obesity, and CRC remain unclear. 

This study describes the obesity paradox of CRC 
in cohorts of The Cancer Genome Atlas (TCGA) and 
investigates the associated characteristics of TIICs and 
intratumoral microbiome using whole genome and 
RNA sequencing analyses. 

Materials and Methods 
Data acquisition and pre-processing 

Gene expression, methylation, and clinical data 
were downloaded from TCGA-COAD (colorectal 
adenocarcinoma) and TCGA-READ (rectal adeno-
carcinoma) databases. Data are available at the 
Genomic Data Commons data portal [33] (https:// 
portal.gdc.cancer.gov). Overall survival (OS) data 
were downloaded from the UCSC Xena Browser [34] 
(http://xena.ucsc.edu). BMI was calculated as weight 
divided by height squared (kg/m2) and categorized 
based on WHO classifications (high-BMI group, BMI 
≥ 30; low-BMI group, BMI ≤ 25). Asian patient data 
were excluded from TCGA cohorts because the Asia–
Pacific BMI classification differs from that of WHO. 
We investigated the intratumoral microbiome using 
the Kraken analysis, as previously described [35]. The 
Kraken algorithm is a rapid and highly accurate 
program for assigning taxonomic labels to 
metagenomic sequences using k-mers alignment [36]. 
We downloaded microbiome data for CRC patients 
from an online data repository (ftp://ftp.microbio 
.me/pub/cancer_microbiome_analysis/TCGA/Krak
en/). We specifically used intratumoral microbiome 
abundance (“Kraken-TCGA-Voom-SNM-Plate- 
Center-Filtering-Data.csv”) and clinical data 
(“Metadata-TCGA-Kraken-17625-Samples.csv”). Pre- 

processing of data was performed using R software 
(v4.1.1) [37]. Patient information is listed in Table 1. 

 

Table 1. Characteristics of colorectal cancer (CRC) patients 
(TCGA-COAD and TCGA-READ) 

TCGA-CRC N Mean (SD) 
Variable 
Age (years) 178 64.5 (12.6)  

N Percentage (%) 
Sex 178  
Female 93 52.2 
Male 85 47.8 
Race 178  
White 138 77.5 
American Indian 1 0.6 
Black 39 21.9 
Primary Disease Stage 172  
I-II 94 54.7 
III-IV 78 45.3 
Sample type 178  
Primary 178 100 
BMI 178  
≥ 30 88 49.4 
≤ 25 90 50.6 
Death 178  
No 144 80.9 
Yes 34 19.1 

CRC, colorectal cancer; BMI, body mass index; SD, standard deviation. 
 

Differentially expressed gene (DEG) analysis 
We used the edgeR package (v3.34.1) in R to 

identify DEGs [38]. First, DEGs were identified for 
primary tumor samples of the high- and low-BMI 
patient groups. We used the Benjamini–Hochberg 
adjusted P < 0.05 and |log2 fold change| > 0.05 to 
identify genes with upregulated and downregulated 
expressions. We filtered unexpressed and low counts 
using the edgeR function filterByExpr, with the 
minimum count required for at least some samples = 
10, minimum total count required = 15, and minimum 
proportion of samples in the smallest group that 
expressed the gene = 0.7. The trimmed mean of the 
M-values were normalized and analyzed using the 
edgeR function glmQLFTest. A quasi-likelihood test, 
which fits the data to a quasi-likelihood negative 
binomial generalized log-linear model, was used to 
perform gene-specific analyses for a given coefficient 
or contrast. The EnhancedVolcano package (v1.10.0) 
in R was used to visualize the DEGs [39]. 

Protein-protein interaction (PPI) network 
construction and module selection 

To identify the pathways and functions 
associated with the DEGs, PPI networks were 
constructed using the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (http://www. 
string-db.org) [40] and Cytoscape software (v3.8.2) 
[41]. The Molecular Complex Detection (MCODE) 
plugin was used for module selection with the 
following parameters [42]: degree cutoff, 2 × cluster 
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finding; node score cutoff, 0.2 × K-core = 2 ×; 
maximum depth, 100. 

Functional analysis of DEGs 
DEG pathways were further assessed by gene 

ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses using the 
ClusterProfiler package (v4.0.5) in R [43], and GO and 
KEGG enrichment analyses were performed using the 
enrichment plot (v1.12.3) R package [44]. Significance 
was set at P < 0.05. 

Analysis of TIICs based on machine learning 
We estimated the proportions of infiltrating 

immune cell types in each sample using bulk RNA 
sequencing data, which was analyzed using the 
CIBERSORTx algorithm [45]. CIBERSORTx is a 
machine learning algorithm that extends the 
CIBERSORT framework to infer cell-type-specific 
gene expression profiles without physical cell 
isolation. We included 22 immune cell subtypes 
parsed from the gene signature matrix LM22 and 
1,000 permutations of the CIBERSORTx web portal 
(http://cibersortx.stanford.edu/) with bulk-mode 
batch correction. 

Linear discriminant analysis effect size (LEfSe) 
To identify unique microbial signatures in the 

CRC samples between the high- and low-BMI 
patients, we analyzed the Kraken-TCGA datasets 
using a linear discriminant analysis in the Galaxy web 
application (http://huttenhower.sph.harvard.edu/ 
galaxy) [46]. To identify taxa with significantly 
differential abundance, we used the factorial Kruskal–
Wallis test for classes and pairwise Wilcoxon test for 
subclasses, with the significance set at P < 0.05. The 
threshold for the logarithmic LDA score for 
discriminative features was set at 2. 

Differential methylation probes (DMPs) 
Methylation data (downloaded from TCGA 

database) included 159 CRC patients (79 high and 80 
low BMI samples). We used the ChAMP package 
(v2.24.0) to identify the DMPs between the high- and 
low-BMI groups [47]. A beta-mixture quantile 
normalization was performed to correct the probe 
design bias in Illumina 450k DNA methylation data. 
Batch effects were corrected using the ChAMP 
function ComBat to reduce technical variation. We 
selected the cutoff values P < 0.05 and |deltaBeta| > 
0.05 to define hypermethylated and hypomethylated 
genes. 

Statistical analysis 
OS rate was compared between the high- and 

low-BMI groups using Kaplan–Meier survival curves 

and a log-rank P-value. Hazard ratios (HRs) and 95% 
confidence intervals (CIs) were estimated using a Cox 
proportional hazards model to investigate the 
association between patient survival and multiple 
predictors. A Schoenfeld individual test was 
performed to confirm that the assumptions of the Cox 
proportional hazards model were met (Supple-
mentary Figure S1). The Wilcoxon signed-rank test 
was used to compare the mean difference in the 
immune cell fractions of CRC patients. Venn 
diagrams were generated using Venny software [48]. 
All statistical analyses and visualizations were 
performed using R software [37]. 

Results 
BMI and patient survival 

The Kaplan–Meier survival curves revealed that 
OS rates were lower in the low-BMI than in the 
high-BMI CRC patient group (log-rank P = 0.028, 
Figure 1). According to the Cox proportional hazards 
model, patient survival in the low-BMI group was 
significantly affected by age, sex, and TNM stage (HR 
= 2.49, 95% CI: 1.06–5.9, P = 0.037; Table 2). 

 

 
Figure 1. Kaplan-Meier curves for overall survival analysis. Survival curves of 
high- and low- body mass index (BMI) patients with colorectal cancer (CRC, n = 178). 
Data were downloaded from the UCSC Xena Browser (http://xena.ucsc.edu). 

 

Table 2. Cox proportional hazard analysis of overall survival in 
colorectal cancer patients 

Variable HR1 95% CI2 P-value 
BMI    
High (≥ 30) reference   
Low (≤ 25) 2.49 1.06-5.9 0.037* 
Age 1.03 1.00-1.1 0.071 
Sex    
Female reference   
Male 0.59 0.28-1.2 0.16 
Disease Stage    
I-II reference   
III-IV 3.44 1.58-7.5 0.002* 

Global P-value (log-rank) = 0.0006*; Concordance index = 0.72; 
1HR: adjusted hazard ratio, estimated using the Cox proportional hazards model. 
2CI: confidence interval. 
*P-value statistically significant. 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

325 

 
Figure 2. Differentially expressed genes (DEGs) and protein-protein interaction (PPI) network. (A) Volcano plot of the 569 DEGs (298 upregulated and 271 
downregulated in the high-BMI group) between high- and low-BMI patients with CRC. Genes corresponding to the Benjamini-Hochberg adjusted P < 0.05 and log2 fold change 
> 2 are denoted in red; genes corresponding only to the adjusted P < 0.05 are denoted in blue; genes corresponding only to the log2 fold change > 2 are denoted in green; and 
genes not corresponding to either the p-value or log2 fold change are denoted in black. (B) Heatmap of 569 DEGs between high- and low-BMI patients with CRC based on the 
normalized Z-score. (C) PPI network of 298 genes with upregulated expressions. (D) PPI network of 271 genes with downregulated expressions. The module with the (E) 
highest and (F) second-highest Molecular Complex Detection (MCODE) value for the genes with upregulated expressions. The module with the (G) highest and (H) 
second-highest MCODE value for the downregulated genes.  

 

Molecular differences between high- and 
low-BMI groups in CRC patients 

We identified 569 DEGs (298 upregulated and 

271 downregulated in the high-BMI group) between 
the high- and low-BMI groups. Volcano plots and a 
heatmap of the 569 DEGs are shown in Figure 2A and 
2B. From the PPI network (Figure 2C-D), we 
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identified significant modules of genes with 
upregulated and downregulated expressions using 
MCODE. In the PPI network of the 298 genes with 
upregulated expressions, the module with the highest 
MCODE score contained six genes (HIST1H1B, 
HIST1H1C, HIST1H2AI, HIST1H2BC, HIST1H2BH, 
and HIST1H3J; Figure 2E). The second-most 
significant module comprised 12 genes (ABCA4, 
ALDH3A1, CNGA1, CNGA3, GSTA1, GSTM1, HPGDS, 
USH2A, FRZB, FZD9, WNT4, and WNT7B; Figure 2F). 
In the PPI network of the 271 genes with 
downregulated expressions, the most significant 
module comprised 14 genes (ALOX15B, CXCR2, 
CYP2C9, CYP2E1, GFAP, IGF1, IL1A, IL1RN, MAPT, 
OSM, PLA2G2A, PLA2G4A, PTGS2, and UGT1A6; 
Figure 2G) and the second-most significant module 
comprised seven genes (MYH4, MYH7B, MYLPF, 
SCN5A, TCAP, TRIM54, and TTN; Figure 2H). 

Functional enrichment analysis of DEGs 
To identify the functional factors of the highly 

networked protein groups, we performed GO and 
KEGG enrichment analyses to determine the 
biological roles of the 39 genes (upregulated: 18, 
downregulated: 21) comprising the significant 
modules in the PPI network (Figure 3). The GO 
analysis considered three major categories: biological 
process (BP), cellular component (CC), and molecular 
function (MF). The top GO categories of the 18 genes 
with upregulated expressions were visual perception, 
prostanoid metabolic process, prostaglandin 
metabolic process, photoreceptor cell cilium, and 
glutathione transferase activity (Figure 3A). The top 
GO categories of the top 21 genes with downregulated 
expressions were arachidonic acid (AA) metabolic 
process, long-chain fatty acid metabolic process, 
unsaturated fatty acid metabolic process, contractile 
fiber, and structure constituent of muscle (Figure 3B). 
According to the KEGG pathway analysis, the 18 
genes genes with upregulated expressions were 
primarily associated with hepatocellular carcinoma, 
cytochrome P450, Wnt signaling pathway, glutathione 
metabolism, basal cell carcinoma, DNA adducts, 
melanogenesis, signaling pathways regulating 
pluripotency of stem cells, and breast cancer (Figure 
3C); the 21 genes with downregulated expressions 
were primarily associated with AA metabolism, 
linoleic acid metabolism, DNA adducts, serotonergic 
synapse, MAPK signaling pathway, cytokine receptor 
interaction, ovarian steroidogenesis, metabolism of 
cytochrome P450, and alpha-linolenic acid 
metabolism (Figure 3D). 

Investigation of DNA methylation-driven 
DEGs 

We identified 5,684 DMPs (274 hypermethylated 
and 5,410 hypomethylated genes in the high-BMI 
group) between the high- and low-BMI groups. We 
investigated the overlapping DEGs (Figure 2A) and 
DMPs between the high- and low-BMI groups (Figure 
4A and 4B) and identified 86 upregulated and 
hypomethylated genes and 10 downregulated and 
hypermethylated genes. Figure 4C shows the PPI 
network of the 86 upregulated–hypomethylated 
genes. The module with the highest MCODE 
contained four genes (FRZB, FZD9, WNT4, and 
WNT7B; Figure 4D); the module with the second- 
highest MCODE comprised 10 genes (ABCA4, CLCA1, 
CNGA3, FCGBP, FOLR1, MUC16, PI3, REG3A, 
USH2A, and WFDC2; Figure 4E). The PPI network of 
the 10 downregulated–hypermethylated genes did 
not show statistically significant results. The top GO 
categories of the 14 upregulated–hypomethylated 
genes were the Wnt signaling pathway, Golgi lumen, 
actin-based cell projection, and Wnt-protein binding 
(Figure 4F). In the KEGG enrichment analysis, the 14 
upregulated–hypomethylated genes were associated 
with Wnt signaling pathway, basal cell carcinoma, 
melanogenesis, signaling pathways regulating 
pluripotency of stem cells, breast cancer, gastric 
cancer, mTOR signaling pathway, Cushing syndrome, 
Hippo signaling pathway, and hepatocellular 
carcinoma (Figure 4G). 

Differences in TIICs between high- and 
low-BMI groups in CRC patients 

Using the CIBERSORTx algorithm, we estimated 
the relative abundance of 22 immune cells from the 
bulk tumor RNA sequencing data. Figure 5 shows the 
differences between the 22 TIICs according to the BMI 
groups. When compared with that in the low-BMI 
group, we found that resting CD4+ T cells were more 
abundant (P = 0.032, Wilcoxon’s rank test) and T 
follicular helper (Tfh) cells were less abundant in the 
high-BMI group (P = 0.043, Wilcoxon’s rank test). 
Spearman correlation analysis showed that CNGA3, 
GSTA1, HPGDS, FRZB, and WNT4 were significantly 
correlated with resting CD4+ T cells. IL1RN, OSM, 
and PLA2G2A were significantly correlated with T 
follicular helper (Tfh) cells (Supplementary Figures S2 
and S3). Univariate and multivariate Cox regression 
analyses between BMI and TIIC of CRC patients are 
shown in Supplementary Table S1. 

Investigation of unique microbial signatures 
between BMI groups 

We divided 184 CRC samples into 23 DNA 
whole genome sequencing (seven high- and 16 
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low-BMI samples) and 161 RNA sequencing samples 
(79 high- and 82 low-BMI samples). LEfSe of the 
Kraken-TCGA dataset identified nine enriched 
microbe genera in the high-BMI group (Shinella, 
Fimbriimonas, Blastomonas, Frondihabitans, Modesto-
bacter, Caldimicrobium, Morococcus, Sclerodarnavirus, 

and Bifidobacterium; Figure 6A) and 11 enriched 
microbe genera in the low-BMI group (Rothia, 
Phenylobacterium, Succinimonas, Stomatobaculum, 
Basilea, Megasphaera, Methylobacillus, Lentimicrobium, 
Plesiocystis, Rubellimicrobium, and Nitrospira; Figure 
6B). 

 

 
Figure 3. Functional analysis. Gene ontology (GO) assay for the 39 genes comprising the significant modules in the PPI network: (A) 18 upregulated genes and (B) 21 
downregulated genes. GO analysis considered the biological process (BP), cellular component (CC), and molecular function (MF) terms. Dot plots show the results 
corresponding to P < 0.05. Size of the circle indicates the number of genes corresponding to each term. The closer to red, the lower the p-value. Kyoto encyclopedia of genes 
and genomes (KEGG) assay of the 39 genes comprising the significant modules in the PPI network: (C) 18 upregulated genes and (D) 21 downregulated genes. The size of the 
circle indicates the number of genes corresponding to each term. Dot plots show the results corresponding to P < 0.05. The closer to red, the lower the p-value. 
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Figure 4. Analysis of DNA methylation-driven DEGs. (A) The Venn diagram shows the overlapping upregulated and hypomethylated DEGs. (B) The overlapping 
downregulated and hypermethylated DEGs. (C) PPI network of upregulated-hypomethylated genes. The module with the (D) highest and (E) second-highest MCODE value for 
upregulated-hypomethylated genes. (F) GO assay of 14 upregulated-hypomethylated genes comprising the module with the highest MCODE value. GO analysis considered the 
biological process (BP), cellular component (CC), and molecular function (MF) terms. Dot plots showing results corresponding to P < 0.05. Size of the circle indicates the number 
of genes corresponding to each term. The closer to red, the lower the p-value. (G) KEGG assay of 14 upregulated–hypomethylated genes comprising the module with the highest 
MCODE value. The size of the circle indicates the number of genes corresponding to each term. Dot plots showing results corresponding to P < 0.05. The closer to red, the 
lower the p-value. 
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Figure 5. Differences in the 22 immune cell fractions between high- and low-BMI patients with CRC. Differences in the expression of tumor-infiltrating immune 
cells (TIICs) between the high- and low-BMI groups were evaluated using the Wilcoxon sign-rank test (two-sided). CRC, colorectal cancer; BMI, body mass index. 
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Figure 6. LEfSe of the Kraken-TCGA dataset. Linear discriminant analysis effect size (LEfSe) and distribution of the associated microbiota by subtype using RNA and whole 
genome sequencing (WGS). 

 

Discussion 
Given the high incidence and mortality rates for 

CRC globally, intensive efforts are being made to 
discover effective prognostic factors and elucidate the 
molecular mechanisms of CRC to improve patient 
prognosis [5, 6, 49-51]. Although controversial, the 
obesity paradox – first noted with the high survival 
rates of hemodialysis patients with high BMI [52] – 
has been reported in various chronic diseases [53-56], 
including CRC [57-62]. However, bioinformatic 
studies on the characteristics of TIICs and 

intratumoral microbiome associated with the obesity 
paradox in CRC are scarce. Therefore, we investigated 
the differences in gene expression, TIIC occurrence, 
and intratumoral microbiome composition according 
to BMI via bioinformatic analysis of CRC TCGA data. 

We confirmed the obesity paradox in CRC for 
TCGA-COAD and TCGA-READ cohorts. As shown in 
Figure 1, high BMI was associated with a favorable 
prognosis, i.e., higher OS rates. The PPI network 
analysis of DEGs identified 18 and 21 genes with 
upregulated and downregulated expressions, 
respectively (Figure 2E-H). Many studies have 
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reported the functions of histone variants in CRC [63], 
and various dysregulated genes related to CRC 
prognosis have also been reported: For example, high 
expression levels of CXCR2, IGF1, IL1A, OSM, and 
PLA2G4A, and hypermethylated MAPT were 
associated with poor prognosis [64-69]; low 
expression levels of GFAP and PLA2G2A were 
associated with poor prognosis [70, 71]. However, 
ALOX15B and PTGS2 expression levels were not 
associated with CRC prognosis [72, 73]. Although a 
more detailed analysis on the role of these aberrantly 
expressed genes is required, our findings suggest that 
these DEGs are collectively responsible for enhanced 
survival in the high-BMI group. 

GO analysis of the DEGs revealed that 
glutathione transferase activity was high in the 
high-BMI group (Figure 3A). We also observed the 
existence of a correlation between GSTA1 and resting 
CD4 T cells (Supplementary Figure S2). However, 
CRC prognosis was not dependent on TIIC 
(Supplementary Table S1). Therefore, we believe that 
GST activity affects the obesity paradox of CRC 
patients in different ways. Indeed, a meta-analysis 
showed that GSTM1 and GSTT1 null genotypes 
contributed to an increased risk of CRC in the 
Caucasian population [74]. Low expression of GSTM1 
and GSTM2 was associated with better prognosis of 
CRC [75]. In addition, GST-pi serves as an effective 
marker of survival in CRC [76]. These findings 
provide a strong foundation for the association of 
glutathione s-transferase (GST) activity with 
prognosis in CRC. Another study reported that high 
levels of GST activity were associated with better 
survival and prognosis in ovarian cancer [77]. GST is 
considered to lower the risk of cancer by regulating 
reactive oxygen species (ROS) [78]. In contrast, GO 
analysis showed that the expression of long-chain 
fatty acid pathways, including the AA pathway, were 
lower in the high-BMI CRC patient group. In vitro 
studies using human cell lines derived from lung 
cancer and CRC have shown that AA inhibitors 
induce apoptosis [79, 80]. Disease-free survival of 
cholangiocarcinoma patients with low expression of 
the AA pathway-associated COX-2 and 5-LOX 
showed better prognosis [81]. Inhibition of the AA 
pathway enzymes of COX-2, 5-LOX, and CYP450 
could inhibit cell proliferation and neoangiogenesis 
[82]. Oral cancer patients with asymptomatic 
loss-of-function somatic mutations in the AA pathway 
showed good response to chemotherapy, which was 
likely because of an associated downregulation of the 
PI3K-Akt pathway downstream [83]. In contrast, 
dysregulation of the eicosanoid pathway by chronic 
inflammation has complex implications for 
tumorigenesis, i.e., both cancer-promoting and 

anti-cancer roles [84]. A previous study revealed that 
obesity was positively associated with AA-derived 5- 
and 11-hydroxyeicosatetraenoic acid levels [85]. 
Obesity induces increased AA metabolism and 
activates various signaling pathways, including the 
PI3K-Akt pathway, and inflammatory cytokines, 
which have conflicting effects on CRC progression. 
Therefore, the downregulation of long-chain fatty 
acid metabolic pathways because of obesity does not 
necessarily improve prognosis in CRC. 

KEGG pathway analysis revealed that drug 
metabolism of cytochrome P450 and metabolism of 
xenobiotics by cytochrome P450 were up- and 
downregulated, respectively (Figure 3C and 3D). This 
is consistent with the PPI analysis wherein the 
expressions of ADLH3A1, GSTA1, GSTM1, and 
HPGDS were upregulated and those of CYP2C9, 
CYP2E1, and UGT1A6 were downregulated in the 
high-BMI CRC patient group with good prognosis. As 
a matter of fact, obesity has been reported to increase 
the activity of cytochrome P450 2E1 [86]. Although 
more detailed mechanistic studies are required, these 
results suggest that cytochrome P450-related genes 
are critical to the obesity paradox of CRC. 

TIICs are important determinants of tumor 
development and clinical outcomes in cancer patients 
[23]. Increased levels of tumor-infiltrating Tfh cells 
were correlated with increased survival of melanoma 
cancer patients [87], and favorable prognosis in lung 
squamous cell carcinoma [88]. Tfh cells are more 
abundant in obese than lean mice [89]. However, in 
the present study, we identified higher levels of 
resting CD4+ T cells and lower levels of Tfh cells in 
the high-BMI group. 

As shown in Supplementary Figures S2 and S3, 
CNGA3, GSTA1, HPGDS, FRZB, and WNT4 were 
significantly correlated with resting CD4+ T cells, and 
IL1RN, OSM, and PLA2G2A were significantly 
correlated with Tfh cells. Wnt/β-catenin signaling 
plays an important role in T-cell immunity [90] and 
cancer immunotherapy [91]. Moreover, Thf cells may 
be involved in the occurrence of immune-related 
adverse events in highly efficient immune checkpoint 
blockade treatment through exaggerating cytotoxic T 
lymphocyte response [92]. The generation of robust 
memory T cell populations is critical for T cell-based 
therapies to prevent and treat cancer [93]. In contrast, 
a previous study reported that OSM not only 
increases the metastatic potential of breast cancer in 
vitro but also promotes metastasis in vivo, and may 
negatively affect patient survival [94]. Lin Wang et al. 
[95] showed that OSM is associated with CD4 T cells 
and high-infiltration of Tfh was associated with poor 
prognosis. Our finding may provide guidance for 
further investigations regarding the mechanism of the 
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obesity paradox in CRC. A previous report found that 
high-BMI patients (>30 kg/m2) have higher levels of 
macrophage M1 (1.13-fold higher than the 25–18.5 
kg/m2 group) and lower levels of activated natural 
killer cells (0.25-fold lower than the 25–18.5 kg/m2 

group) [96]. Even though in the aforementioned 
study, CIBERSORT with gene expression and clinical 
data corresponding to CRC patients from the TCGA 
database was used, their results were distinctly 
different from ours. However, we could not conduct 
an informed comparison as the description of their 
dataset was limited. These results suggest that a more 
in-depth study on the role of TIICs in the obesity 
paradox of CRC is required. 

Gut microbiota plays a vital role in regulating 
tumorigenesis and the progression of CRC [97-99]. A 
recent meta-analysis of CRC showed that high levels 
of Fusobacterium nucleatum and Bacteroides fragilis were 
related with poor and improved survival, respectively 
[100]. Although we did not identify F. nucleatum or B. 
fragilis, Bifidobacterium was found in CRC samples of 
high-BMI patients. Bifidobacterium was previously 
found in the fecal samples of a healthy control group 
[101] and occurred at a low level in a CRC patient. 
Kosumi et al. [102] showed that the abundance of 
Bifidobacterium was associated with the level of signet 
ring cells, suggesting that Bifidobacterium might affect 
the tumor microenvironment and differentiation of 
cancer cells. Nevertheless, there was no significant 
difference in survival probability related to 
Bifidobacterium. Although little evidence exists for 
Bifidobacterium improving survival in CRC patients, 
the existing literature and our results suggest that 
Bifidobacterium is a potential diagnostic and 
prognostic marker for CRC. Recently, it has been 
reported that Bifidobacterium lactis and Lactobacillus 
plantarum suppress glioma growth in mice by 
inhibiting the PI3K-Akt pathway [103]. Our results 
revealed that the AA pathway was lower but the 
KEGG enrichment analysis of the 14 upregulated–
hypomethylated genes was associated with mTOR 
signaling pathway in the high-BMI CRC patients. 
Therefore, further studies are needed to investigate 
the effect and mechanisms of Bifidobacterium on the 
AA/PI3K-Akt/mTOR signaling pathway, and for 
this, a research model using CRC organoid needs to 
be considered. 

We acknowledge that there are some limitations 
to our study. First, considering the aim of our study – 
the assessment of the molecular and prognostic 
differences between CRC patients of varying BMI – it 
is difficult to determine obesity based on BMI. As we 
used TCGA datasets, we had to apply the WHO 
standard of 30 kg/m2 to define obesity. However, 
considering the molecular changes caused by obesity, 

it may be more appropriate to use waist 
circumference rather than BMI; however, TCGA 
database does not provide waist circumference. 
Second, although the histological type of CRC is an 
important factor for prognosis, it was not stratified in 
TCGA data. Third, the immune cell infiltration assays 
and microbiome analysis were based on bioinformatic 
techniques. Finally, we did not examine the 
relationship between the molecular effects of obesity 
and sequential change of the microbiome and the 
feedback between these factors. Given these 
limitations, it is difficult to conclude the plausibility of 
the obesity paradox in CRC. Future research should 
consider the causal relationship or underlying 
mechanism of the obesity paradox in CRC. 

Conclusion 
CRC is a common malignancy worldwide and is 

the second leading cause of cancer-related deaths. 
Obesity paradox is a phenomenon in which the 
prognosis of overweight patients is superior to that of 
underweight and normal weight patients in several 
chronic diseases such as CRC. This study shows that 
high-BMI patients with CRC have better prognosis, 
higher levels of resting CD4+ T cells, lower levels of 
Tfh cells, and different levels of intratumoral 
microbiota than low-BMI patients. Our study 
highlights the TIICs and intratumoral microbe 
diversity as major features of the obesity paradox in 
CRC. 
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