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Abstract 

Pancreatic cancer (PaC) is a common malignant tumor of the digestive tract, with a 5-year survival rate of less 
than 5% and high mortality rate in the world. LncRNAs have been showed to possess multiple biological 
functions in growth, differentiation, and proliferation, which play an important role in different biological 
processes and diseases, especially in the development of tumors. LncRNA UCA1, which is firstly identified in 
human bladder cancer, has been showed to be a tumor promoter in pancreatic cancer. Recent researches have 
showed that UCA1 might promote pancreatic carcinogenesis and progression, and correlate with drug 
resistance. In this review, we address the biological function and regulatory mechanism of UCA1 in pancreatic 
cancer, which might give a new approach for clinical diagnosis and treatment. 
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Introduction 
Pancreatic cancer (PaC), particularly pancreatic 

ductal adenocarcinoma (PDAC) which account for the 
vast majority of pancreatic cancer, is a gastrointestinal 
malignancy with insidious onset, rapid progression, 
poor treatment effect and poor prognosis [1]. Its 
morbidity and mortality have been rising over the 
world in recent years. According to data from the 
American Cancer Society, the number of new cases of 
PaC in the United States in 2022 is expected to be 
62,210, with 49,830 deaths [2]. The latest data released 
by National Cancer Center of China showed that the 
incidence of PaC has risen to ninth place, while the 
mortality rate has increased to sixth [3]. In 2020, the 
overall 5-year survival rate approached 10% for the 
first time, up from 5.26% in 2000 [4-6]. The survival of 
PaC patients has not improved significantly in the 
past 40 years, and it is expected to become the second 
leading cause of cancer related death by 2030 [7]. The 
etiology and pathogenesis of PaC are still not fully 

understood. There is a lack of efficient early detection 
approach and effective therapeutic options. In order 
to find new molecular biomarkers and therapeutic 
targets to improve the early diagnosis and the prog-
nosis, the molecular mechanism of PaC pathogenesis 
has always been an urgent problem to be explored 
and studied in depth. 

The long noncoding RNAs (lncRNAs) are 
non-protein-coding transcripts, longer than 200 
nucleotides in length [8]. Many studies have found 
lncRNAs participated in many physiological proces-
ses by modulating gene expression at the epigenetic, 
transcriptional and posttranscriptional levels [8-10]. 
Increasing evidence indicated that several lncRNAs 
were linked to human disease, especially cancer, and 
its abnormal expression was closely related to tumor 
proliferation, differentiation, apoptosis and metastasis 
[11-16]. 
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LncRNA-UCA1, firstly cloned and identified 
from bladder cancer cell line BLZ-211, is located on 
the short arm of chromosome 19, consisting of 3 exons 
and 2 introns with multiple stop codons without any 
conserved long open reading frames (ORFs) [17]. 
There are three transcriptional isoforms of UCA1, 
lncRNA UCA1 (1.4kb), lncRNA UCA1a (or denoted 
lncRNA CUDR, 2.2kb), and the 2.7 kb isoform (its 
biological function is unknown) [18, 19]. In recent 
years, lncRNA UCA1 has been reported to be the most 
abundant isoform in various malignant tumors, such 
as bladder cancer, breast cancer, hepatocellular carci-
noma and pancreatic cancer, and play an important 
role in tumor invasion and metastasis, angiogenesis, 
immune escape and chemotherapeutic drug 
resistance [17, 20-30]. In this article, we review the 
abnormal expression, molecular mechanism (Figure 
1), and clinical significance of UCA1 in pancreatic 
cancer, which might provide theoretical basis for the 
potential future clinical applications. 

Expression and regulation of lncRNA 
UCA1 in pancreatic cancer 

Several studies have showed that the expression 
of UCA1 is up-regulated in pancreatic tumor tissues 
and PaC cell lines [31-39]. In addition, UCA1 is also 
enriched in exosomes derived from PaC patients’ 
serum or hypoxic PaC cell lines [24]. However, the 
regulatory mechanism behind the UCA1 up- 
regulation in PaC has not been fully elucidated yet. 

Recently, Zhang et al. found that KRAS 
oncogene, a well-known major driver gene for PDAC, 
could promote UCA1 expression [31]. Besides, 
Yes-associated protein (YAP), the key downstream 
target of KRAS signaling and major downstream 
effector of Hippo signaling pathway, was also found 
able to up-regulate the expression of UCA1 in PaC 
[36]. Nevertheless, the specific mechanism still 
remains to be further studied. 

The role of lncRNA-UCA1 in pancreatic 
carcinogenesis and progression 
UCA1 contributes to pancreatic 
carcinogenesis 

The occurrence and development of PaC is 
accompanied by a large number of gene mutations, 
and the high-frequency mutation genes KRAS, TP53, 
CDKN2A and SMAD4 are considered as the four 
major driver-genes of PDAC [40]. Among them, 
KRAS mutations are present in over 90% of pancreatic 
intraepithelial neoplasm (PanIN, a precursor lesion of 
PDAC) and PDAC tissues [40, 41]. KRAS is a member 
of the Ras GTPase family, and mutation in KRAS 
leads to a constitutively active, GTP-bound state, the 
active GTP-bound form of KRAS is necessary for the 
initiation, progression and metastasis of PC [42-46]. 
Therefore, KRAS mutation is considered to be the 
initiating event of pancreatic carcinogenesis. 

 

 
Figure 1. Molecular mechanism of lncRNA UCA1 in PaC. 
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Liu et al. found that lncRNA-UCA1 could act as 
a competing endogenous RNA (ceRNA) to promote 
KRAS expression by via sponging miR-590-3p, and 
enhance phospho-KRAS activity by increasing the 
binding of hnRNPA2B1 to KRAS, while KRAS in turn 
increases UCA1 expression, thus enhances stemness 
and proliferation of PDAC cells [31]. Kras has long 
been considered undruggable due to the lack of 
pharmacologically targetable pockets, until recently a 
few inhibitors specific targeting to KRAS-G12C have 
been discovered. The role of UCA1 in regulating 
KRAS expression and activity suggested it could be a 
novel target for PDAC treatment through indirectly 
targeting KRAS. 

Besides, UCA1 is also found to be up-regulated 
in plasma of malignant intraductal papillary muci-
nous neoplasm (IPMN) patients, when compared to 
benign cases [47]. Malignant IPMN has also been 
deemed as a precursor of PDAC, thus, it is 
biologically plausible that UCA1 could contribute to 
early pancreatic carcinogenesis. 

UCA1 promotes the proliferation, invasion, 
migration and metastasis abilities of PaC cells 

Several studies have revealed that UCA1 plays 
an important role in regulating PaC cells’ 
proliferation, invasion and migration. According to 
Liang’s report, overexpression of UCA1 could 
promote cell cycle progression via accelerating the 
transition of G0/G1 to S-G2/M, and suppress apop-
tosis, thus resulting in promoting of cell proliferation 
in PDAC [32]. On the contrary, knockdown of UCA1 
expression could induce cell cycle arrest in G0/G1 
phase and apoptosis [33, 34]. In addition, the study in 
vivo also revealed that UCA1 knockdown could 
significantly inhibit tumor growth in nude mice [31, 
32, 37]. Furthermore, UCA1 also exerts a promotive 
effect on cell migration and invasion [32, 33, 35-39]. 

In mechanism, UCA1 mainly functions as an 
endogenous miRNA sponge to competitively bind to 
miRNAs, thereby abrogating the inhibition effect of 
miRNA on target genes. Zhou et al. found that high 
expression of lncRNA-UCA1 could down-regulate the 
miR-96 expression and up-regulate the FOXO3 
expression, thus promoting cell proliferation, 
invasion, and migration in PaC cells [33]. Gong et al. 
showed that UCA1-miR-107-ITGA2 axis could 
enhance the migration and invasion ability of PaC 
cells via focal adhesion pathway [35]. In Liu’s study, 
UCA1 was reported to up-regulate the expression of 
KRAS oncogene via sponging miR-590-3p [31]. 
Besides, UCA1 was shown to regulate the cell 
viability by sponging miR-135a [37]. 

In addition to the function as a miRNA sponge, 
UCA1 is also able to directly interact with protein, 

modulate the activity of the corresponding protein, 
and even alter cytoplasmic localization of the protein. 
Zhang et al. reported that UCA1 overexpression not 
only increased YAP expression, but also inhibited 
phosphorylation of YAP and promoted YAP nuclear 
translocation, via interaction with key proteins of 
Hippo pathway, including MOB1, Lats1 and YAP, 
resulting in improved TEAD activity [36]. YAP in turn 
increased UCA1 expression; however, the mechanism 
is still unknown [36]. 

LncRNA-UCA1 promotes the tumor 
angiogenesis in PaC 

Tumor angiogenesis is an important link in 
tumor growth, invasion and metastasis, and plays an 
important role in the vast majority of solid tumors [48, 
49]. Numerous studies have shown that PaC is a 
hypovascular and hypoxic solid tumor, and PaC 
tissue frequently exhibits aberrant proliferation of 
human vascular endothelial cells (HUVECs) [50, 51]. 
Moreover, it is reported that the microvessel density 
(MVD) in tumor tissue is positively correlated with 
the progression of PaC [52-55]. 

Exosomes are a type of small extracellular vesicle 
containing numerous biologically active molecules, 
including proteins, DNA, coding and non-coding 
RNA, lipids, and metabolites. Growing evidence has 
proved that exosomes play an important role in 
various aspects of cancer progress, including tumor 
angiogenesis [56-59]. Recently, Guo et al. found that 
the UCA1 was highly expressed in exosomes derived 
from hypoxic PC cells, and can be transferred to 
HUVECs via exosomes to promote migration and 
tube formation of HUVECs; besides, the expression of 
UCA1 in PaC tissue was positively correlated with 
MVD [24]. Further mechanistic investigation revealed 
that UCA1 could act as a sponge of miR-96-5p to 
alleviate the inhibitory effect of miR-96-5p on the 
expression of its target gene Angiomotin-like 2 
(AMOTL2) [24]. AMOTL2 is a member of angiomotin 
family proteins, and is required for proliferation, 
migration and tube formation of HUVECs during 
angiogenesis [60]. Moreover, hypoxia could induce 
the expression of 60 kDa isoform of AMOTL2 which is 
able to promote tumor growth and invasion [61]. 
These results indicated that UCA1 may play an 
important role in promoting angiogenesis in PaC 
under hypoxic condition. 

UCA1 increases drug resistance in PaC 
Drug resistance is a major cause of cancer 

treatment failure. A large number of lncRNAs have 
also been shown to induce drug resistance in cancer 
cells [62-64]. Overexpression of UCA1 has been 
reported to be associated with resistance to chemo-
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therapeutic drugs, including 5-fluorouracil, cisplatin, 
gemcitabine, paclitaxel, docetaxel, gefitinib, 
cetuximab, doxorubicin, daunorubicin, tamoxifen, 
temozolomide, and trastuzumab, in many kinds of 
tumor cells [65-80]. Recently, the role of UCA1 in the 
chemoresistance of PaC has also been investigated. 
Chi et al. showed that exosomal UCA1 derived from 
hypoxia-induced pancreatic stellate cells could 
promote gemcitabine resistance in PaC, via the 
SOCS3/EZH2 axis [81]. Besides, Liang et al also 
reported that UCA1 overexpression also could induce 
resistance to 5-Fu in PDAC cells [32]. It is generally 
believed that UCA1 promotes drug resistance by 
directly binding to specific miRNAs and acting as a 
“sponge”. However, the underlying molecular 
mechanisms by which UCA1 promoted drug resis-
tance in PaC still remain to be investigated in depth. 

Future clinical applications of UCA1 in 
PaC 
UCA1 as biomarker for PaC diagnosis 

Early diagnosis is the key to successful treatment 
of cancer. A number of studies have revealed the high 
expression of UCA1 in PaC tissues as well as in serum 
of PaC patients. Particularly, the expression of UCA1 
has also been found up-regulated in plasma of 
patients with malignant IPMN (a PDAC precursor) 
compared to benign cases; UCA1, along with other 
seven lncRNAs, performed greater accuracy in 
discriminating between benign and malignant IPMNs 
than the standard clinical and radiologic features, 
with an AUC value of 0.77 [47]. Nevertheless, it is 
reported that UCA1 could be released into exosomes, 
and the level of exosomal UCA1 in serum of PC 
patients were significantly higher than in healthy 
controls, with an AUC value of 0.78 [24]. Thus, UCA1 
has the potential to be an early diagnostic biomarker 
for PaC. 

UCA1 as biomarker for PaC prognosis 
The increased expression of UCA1 has been 

reported to be significantly associated with poor PaC 
prognosis. Guo et al. revealed that the elevated UCA1 
level in serum exosomes is significantly associated 
with tumor size (p = 0.038), lymphatic invasion (p = 
0.018), late TNM stage (p = 0.017) [24]. Besides, Chen 
et al. reported that UCA1 expression in PaC tissues is 
also significantly correlated with tumor size (p = 
0.021), depth of invasion (p = 0.033), tumor stage (p = 
0.013) and CA19-9 level (p = 0.034) [34]. Patients with 
high UCA1 expression in cancer tissue or serum had 
relatively short overall survival [24, 34]. Multivariate 
Cox analysis results showed that the high expression 
of UCA1 is an independent prognostic factor in PaC 

[34, 39]. In adition, several LncRNA prognostic 
Models, such as a three-lnRNA penal (UCA1, 
AC009014.3, and RP11-48O20.4), a seven m6A-related 
lncRNA penal (UCA1, LINC01094, CASC19, 
LINC02323, PRECSIT, ITGB1-DT, and NRAV), have 
been constructed and showed noticeable potential 
prognostic value [82,83]. 

UCA1 as potential targets for pancreatic 
cancer therapy 

At present, multiple studies on UCA1 in various 
tumor types have proved the possibility of UCA1 as a 
target for cancer treatment. Down-regulating UCA1 
not only significantly inhibits cell proliferation in vitro 
and tumor growth in vivo, but also increases the 
sensitivity of cancer cells to different drugs and 
improves chemotherapeutic effect in various human 
cancer, including pancreatic cancer, which suggesting 
that UCA1 may become a potential tumor therapeutic 
target. However, none of these novel findings are yet 
to be assessed in clinical trials, and further clinical 
trials are needed to validate these findings in the 
future. 

Conclusions 
LncRNA-UCA1 is considered to be the most 

important lncRNA associated with PaC prognosis. 
UCA1 participated in the regulation of the key of PaC 
progression, including cancer cell growth, invasion, 
migration, metastasis and angiogenesis. Hence, UCA1 
could be a potential target for PaC therapy, which 
requires more in-depth mechanism research as 
theoretical support. Patients with elevated UCA1 
expression had shorter overall survival, suggesting 
that UCA1 might be an important independent 
predictor of poor survival. In conclusion, UCA1 
shows great potential as a diagnostic, predictive or 
prognostic biomarker, and a therapeutic target in PaC, 
and the mechanisms needs to be elucidated in greater 
detail, which might provide new ideas and solutions 
for the diagnosis and treatment of PaC. 
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