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Abstract 

Background: Hit network-target sets (HNSs), compiled sets of different network nodes of the same type, are 
available and play a significant role in cancer development but are notoriously more difficult to select than a 
single target. This is due to a combination of challenges attributed to the differential of node interactions, node 
heterogeneity, and the limitations of node-hit information. 
Methods: In this study, we constructed a lung adenocarcinoma regulatory network using TCGA data and 
obtained different HNSs of driver nodes (DNs), core modules (CMs) and core nodes (CNs) through three 
kinds of methods. Then, the optimized HNS (OHNS) was obtained by integrating CMs, CNs and DNs, and the 
performance of different HNSs was evaluated according to network structure importance, control capability, 
and clinical value. 
Results: We found that the OHNS has two main advantages, the central location of the network and the ability 
to control the network, and it plays an important role in the disease network through its multifaceted 
capabilities. Three unique pathways were discovered in the OHNS, which is consistent with previous 
experiments. Additionally, 13 genes were predicted to play roles in risk prognosis, disease drivers, and cell 
perturbation effects of lung adenocarcinoma, of which 12 may be candidates for new drugs and biomarkers of 
lung adenocarcinoma. 
Conclusion: This study can help us understand and control a network more effectively to determine the 
development trend of a disease, design effective multitarget drugs, and guide the therapeutic community to 
optimize appropriate strategies according to different research aims in cancer treatment. 
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Introduction 
Diseases place the body in an unbalanced state. 

The purpose of treating diseases is to correct this 
imbalance and adjust it to a healthy status. Effectively 
controlling the disease network and modifying the 
states of biological systems to desired states by 

manipulating signals is a research hotspot. Excellent 
control methods can provide key therapeutic targets 
for diseases, assist in the design of optimal 
compounds with the expected effects, and discover 
new indications for old drugs [1]. Hit network-target 
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sets (HNSs), sets of different network nodes compiled 
from the same available types, play a significant 
controlling role in disease development. Here, we 
define the “hit network target set” as a combination of 
multicomponent units that occupy the core of the 
network structure and have control over the network, 
which can provide important driving forces for 
system perturbation of the network. However, 
knowledge about HNSs is far from comprehensive, 
which hampers disease control and the discovery of 
new drugs. Recently, the continuous accumulation of 
omics and big data has provided new methods for 
network-based target research and prediction. The 
success of network-based drug discovery depends on 
the choice of drug targets. Therefore, determining the 
HNS in a network has become a key issue. 

It is challenging to capture the most relevant 
features of HNSs. Researchers have conducted 
different exploratory studies regarding the import-
ance of HNSs. For example, the structural properties 
of networks are mainly based on node centrality [2, 3], 
network core module nodes (CMs) for measuring the 
importance of node sets [4] and driver nodes (DNs) 
based on structural control theory [5], where the aim 
is to identify the key nodes in complex networks as 
drug targets. Module nodes allow the automated 
prediction of protein complexes from qualitative 
protein–protein interaction data and are thus able to 
help predict the function of unknown proteins. Core 
nodes (CNs), also called hub nodes, are used for 
ranking elements in a network by their network 
features to infer their importance in the network and 
can help us identify central elements of biological 
networks [6]. DNs control targets in complex 
networks obtained by a full-fledged, abstract 
state-dependent dynamical model of diffusion 
dynamics in genomic networks and are often used as 
a way to study cancer [7]. 

Although great progress has been made 
regarding computational methods for the 
identification of HNSs based on network topologies, 
there are still several challenges that researchers have 
to address. For example, highly connected genes 
(hubs), because of their strong centrality, have a 
significant influence on the structure of the network, 
which is important for cell growth and survival [8]. 
Taking such nodes as targets can indeed produce a 
large disturbance in the network, but the deletion of 
such genes will result in lethality or infertility since 
the organism cannot survive without them. It is 
necessary to find a method that can not only avoid 
hubs but also achieve a certain control over the 
network. Hu et al. [9] introduced the concept of driver 
nodes, defined as especially critical nodes that have a 
strong ability to influence the states of other nodes 

and a weakened susceptibility to the states of the 
other nodes. Moreover, injecting control inputs 
(drugs, signals from the environment or within the 
organism, etc.) to critical and high-frequency driver 
nodes can regulate the whole state of the disease, 
which indicates that critical and high-frequency 
driver nodes are potential drug targets [10]. 

Inspired by these findings, to improve the 
accuracy and effectiveness of disease control, a 
method needs to be chosen to achieve a balance that 
can not only attack the disease but also maintain the 
survival of the organism. In this study, we obtained 
the network HNS based on the multiangle 
characteristics of network topology and structure 
control theory. This method was evaluated from the 
perspective of network information transmission and 
structural integrity. It could improve the control of 
complex dynamical systems in general and 
biochemical regulation in particular. We expect that 
this will help to select appropriate drug targets and 
provide value for rational drug design. 

Materials and Methods 
Data source 

The Cancer Genome Atlas (TCGA) database 
(http://cancergenome.nih.gov) contains over 20000 
primary cancer and matched normal samples 
spanning 33 cancer types, providing an important 
resource for evaluating the biological relevance of 
cancer genomics discovery. This study aims to 
integrate sufficient data, including as much relevant 
important information as possible, so all the 
mRNA-Seq data were generated using lung 
adenocarcinoma (LUAD) tissues and normal tissues 
from 594 samples by TCGA (LUAD=535, normal=59). 

Calculation of differentially expressed genes 
The limma package and biocLite edgeR from R 

software v3.5.3 (R Foundation for Statistical 
Computing, Vienna, Austria) were used to study the 
differential expression of mRNAs. The adjusted P 
value was analyzed to correct for false-positive results 
in TCGA. Adjusted P < 0.05 and fold change=1.5 were 
defined as the thresholds for screening differential 
expression of mRNAs [11]. 

Construction of the gene regulatory network 
We constructed a disease regulatory network by 

mapping the differentially expressed gene set to the 
human gene regulatory network. The human gene 
regulatory network was constructed by integrating 
annotations from three high-quality pathway 
databases: Reactome, KEGG, and the NCI-Nature 
Pathway Interaction Database, which were compiled 
from Hu et al. [9]. 
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Identification of driver nodes 
The identification of driver nodes can be 

formulated as a maximum-cardinality bipartite 
matching problem in a bipartite graph corresponding 
to the original network. The details of the driver 
nodes and the identification algorithm can be found in 
[5]. In this work, the Hopcroft-Karp algorithm [12] 
was utilized to solve the maximum-cardinality 
matching problem. Control centrality was developed 
to quantify the ability of a node to control a network, 
which equals the dimension of the controllable 
subspace, and the algorithm used to calculate the 
control centrality was proposed in [13]. 

Core gene identification 
Maximal clique centrality (MCC) [14] captures 

more essential proteins in the top-ranked list in both 
high-degree and low-degree genes. Given a node v, 
the MCC of v is defined as MCC(v) = ∑C∈S(v)(|C| - 
1)!, where S(v) is the collection of maximal cliques that 
contain v and (|C|-1)! is the product of all positive 
integers less than |C|. If there is no edge between the 
neighbors of node v, then MCC(v) is equal to its 
degree [6]. 

Modular screening and stability 
Three module-screening methods, connected 

components, the Markov cluster algorithm (MCL; 
parameters: number of iterations=16) [15], and 
molecular complex detection (MCODE; parameters: 
degree cutoff=2, K-core=2, and node score 
threshold=0.2) [4], were compared. The connected 
components are simple divisions based on 
connectivity [16]. The MCL algorithm assigns genes 
into families based on precomputed sequence 
similarity information. MCODE is based on vertex 
weighting by local neighborhood density and 
outward traversal from locally dense seed genes to 
isolate dense regions according to the given 
parameters [4]. The network structure entropies of 
these regions are calculated to balance the selective 
speculation [17]. The network structure entropy is 
defined as follows: 

𝐸𝐸 = −∑ 𝐼𝐼𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑁𝑁
𝑖𝑖=1   (1) 

where N is the number of nodes in the network and Ii 
is the importance of node i. A smaller entropy value 
means a higher similarity between modular nodes, 
thereby determining the module stability. 

Core module identification using the 
multiple-modular-characteristic fusing 
approach 

Core module genes were regarded as important, 
and the edges between these modules were derived 

from the intermolecular relations across modules. The 
approaches of multiple modular characteristic fusing 
(MMCF) [4], including degree, maximum neigh-
borhood component (MNC), density of maximum 
neighborhood component (DMNC), maximal clique 
centrality (MCC), closeness (Clo), eccentricity (EC), 
radiality (Rad), bottleneck (BN), stress (Str), 
betweenness centrality (BC), and edge percolated 
component (EPC), were used for this search process 
[18-23]. After ranking the results of these 11 methods, 
the rank-sum ratio was used for comprehensive 
quantitative evaluation. 

Performance assessment of the HNS 
We removed each CN, CM and DN from the 

network and then observed the change in the 
characteristic path length and giant component. To 
better compare the change trends of the characteristic 
path length and giant component, we randomly 
selected genes from the CNs, DNs, CMs, RNs 
(random nodes in the whole network) and OHNS (the 
combination of the CMs and the top-50 control 
centrality nodes among the DNs). The cardinal 
number started at 5, and 5 genes were randomly 
added each time for a total of 10 times. For each gene 
removed, we recorded the size of the graph’s 
remaining giant component and characteristic path 
length. 

(i) Characteristic path length (L): 

𝐿𝐿 = 1
𝑛𝑛
∑ 𝐿𝐿𝐿𝐿 = 1

𝑛𝑛
∑ ∑𝑗𝑗∈𝑁𝑁.𝑗𝑗≠𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛−1𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁  (2) 

where i and j are the different nodes in the network, Li 
is the average distance between node i and all other 
nodes, and dij is the distance between nodes i and j 
[24]. 

(ii) Giant component (GC) 
The giant component is the largest connected 

component in a network, and the fraction was 
calculated by dividing the number of nodes in the 
giant component by the total number of nodes in the 
network [7]. 

(iii) Calculation of the F-measure 
To provide comprehensive comparisons of 

HNSs, the key cancer genes annotated in the list of 
drug targets and biomarker genes for lung cancer 
(Comparative Toxicogenomics Database, http:// 
ctdbase.org/) were adopted to assess the F-measure, 
considering both the precision and the recall of the 
predicted HNS using the formula: 

𝐹𝐹𝐹𝐹 = 2𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅 ÷ (𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅)  (3) 

where Pi denotes the fraction of correctly predicted 
DNs, CNs or CMs among the predicted DNs, CNs or 
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CMs and Ri denotes the fraction of correctly predicted 
DNs, CNs or CMs among all the key cancer genes. 

(iv) Perturbation effects 
We used genome-scale CRISPR‒Cas9 knockout 

data from the Cancer Dependency Map 
(https://depmap.org/portal/). The necessary genes 
for perturbation of 197 non-small cell lung cancer cell 
lines among the CMs, CNs and DNs were collected. A 
lower Chronos score indicates a higher likelihood that 
the gene of interest is essential in a given cell line. A 
score of 0 indicates that a gene is not essential; 
correspondingly, -1 is comparable to the median of all 
panessential genes. 

Functional enrichment analysis 
Metascape (http://metascape.org) is a reliable, 

intuitive tool for gene annotation and gene list 
enrichment analysis [25]. In our study, Metascape 
version 3.5 was used for functional enrichment 
analysis, with species restricted to Homo sapiens. Gene 
Ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were able to describe 
the biological features of HNSs. Cytoscape ClueGO 
[26] was used to find the genes linking different 
pathways. Modified Fisher’s exact test and 
Benjamini’s test were reutilized for calculating and 
correcting P values (P < 0.05). Biological processes 
(BPs), cellular components (CCs), and molecular 
functions (MFs) were included in the GO enrichment 
analysis. 

Statistics 
Statistical analyses were performed using SPSS 

23.0, and a P value of < 0.05 was considered 
statistically significant. The chi-square test was used 
to analyze the (in- and out-) degree distribution ratio 
of multiple groups in a network. The Pearson 
correlation coefficient was used to analyze the 
correlation between the (in- and out-) degree, 
characteristic path length and giant components of the 
HNSs. 

Risk prognostic assessment 
RNA-sequencing expression (level 3) profiles 

and corresponding clinical information for LUAD 
were downloaded from the TCGA dataset (https:// 
portal.gdc.cancer.gov/). For the Kaplan-Meier curves, 
p values and hazard ratios with 95% confidence 
intervals were generated by log-rank tests and 
univariate Cox proportional hazard regression. All 
the analysis methods and R packages were 
implemented in R (Foundation for Statistical 
Computing 2020) version 4.0.3. p < 0.05 was 
considered statistically significant. 

Data retrieval for replication and validation 
analyses 

Validation and replication of the HNS was 
performed using datasets (GSE27262) in the Gene 
Expression Omnibus (GEO). Databases were 
downloaded in their raw states to maximize platform 
and annotation information, and then the data were 
normalized. The raw data were downloaded as 
MINiML files. The limma package in R software was 
used to study differentially expressed mRNAs. The 
adjusted P value was analyzed to correct the false 
positive results in the GEO datasets. “Adjusted P < 
0.05 and Log (Fold Change) >1 or Log (Fold Change) 
< −1” were defined as the thresholds for the 
differential expression of mRNAs. 

Results 
Identification of the HNS 

From TCGA, we obtained 8803 differentially 
expressed genes, including 7342 upregulated genes 
and 1461 downregulated genes. After removing single 
nodes, we obtained a regulatory network comprising 
834 nodes (genes) and 6035 directed edges (regulatory 
links). By using the MCC algorithm, we obtained the 
core genes, and the top 100 are shown in 
Supplementary Table S1. We used the Hopcroft–Karp 
algorithm to obtain 396 driver nodes. Finally, 201 
driver nodes were selected according to the control 
centrality (see Methods, Supplementary Table S2). 
The MCODE, MCL and connected components were 
used to divide the disease network modules, and 
modules 28, 39, and 15 were obtained. The entropy of 
the MCODE, MCL and connected components was 
5.105, 5.986, and 6.018, respectively (Supplementary 
Table S3). 

According to the minimum entropy criterion, 
compared with two other methods (connected 
components and MCL), MCODE demonstrated 
strikingly consistent stability in each group. With the 
MMCF comprehensive ranking, we finally obtained 
No. 2 as the core module, which contained 50 genes 
(Supplementary Table S1) and 369 edges. 

The network distribution of HNSs shows the 
characteristics of clustering and scattering 

After removing the single nodes, we obtained a 
regulatory network (Fig. 1A). In this network, the 
distributions of CMs, CNs and DNs were very 
different. The CMs and CNs had more overlap (Fig. 
1B), and they were more centralized in the network, 
while the DNs were more scattered. 



 Journal of Cancer 2023, Vol. 14 

 
https://www.jcancer.org 

133 

Driver nodes show out-degree-dominant 
characteristics 

To show the (out- and in-) degree differences 
between nodes in the HNS, we chose to take an 
average network degree of 7.2 as the baseline and set 
up four standards: average out-degree > 7.2, average 
out-degree ≤ 7.2, average in-degree > 7.2, and average 
in-degree ≤ 7.2 (Fig. 2A). Through comparative 
analysis, it was found that the driver nodes had a 
smaller in-degree (27% average in-degree > 7.2), 
which was significantly different from the module 
nodes and the core nodes (p<0.05). Moreover, by 
comparing the differences in the values of the 
out-degrees and in-degrees of the three node sets, it 
was shown that the percent of nodes with a degree 
difference ≥ 0 was 47% for CNs, 38% for CMs, and 
97% for DNs (Supplementary Table S1, Fig. 2C). 

The characteristic path lengths and giant 
components of HNSs reveal the advantages of 
multitarget combinations 

We deleted single-gene and random polygene 
combinations and used the characteristic path length 
and giant components to evaluate the importance and 
robustness of the deleted genes for the network. The 
results showed that after deleting the genes (deleting 
only one node at a time) in the three HNSs, only a few 
nodes can cause disturbances in the network (Fig. 2B, 
2D). It is worth noting that only one of these 

perturbed genes was consistent with a list of lung 
cancer drug targets and biomarkers, so these genes 
may become new candidate targets for lung 
adenocarcinoma. 

As shown in Fig. 3, after deleting the random 
polygene combinations in turn (see Methods), the 
three different node sets are more obvious than the 
sets of random nodes. In the change trend of L (Fig. 
3A), the L of the remaining network increases 
gradually when removing CMs (from 5.212 to 5.581) 
and CNs (from 5.112 to 6.041), which indicates that 
the CMs and the CNs play an important role in 
information transmission between the network nodes; 
after removing random DN combinations in turn, 
there is no change in the remaining network L. 

 
The change trend of the GC is different from that 

of L; when the combinations of random nodes are 
deleted in turn, the GC of the remaining network 
shows a gradual shrinking trend. The GC of the 
remaining network without CNs is smaller than that 
of the other nodes. After removing the CM set (8th 
iteration) and the DN set (10th iteration), the GC of the 
remaining network has a very obvious and rapid 
shrinking trend (from 0.919 to 0.912 when removing 
the CMs, and from 0.910 to 0.898 when removing the 
DNs), which may be caused by the synergy of the 
node sets between networks (Fig. 3B). 

 
 

 
Figure 1. Distribution map of the HNS. A. Green represents CMs, blue represents CNs, pink represents DNs, and yellow represents the OHNS. B. The Venn diagram 
represents the relationships in the HNS. Charts showing the list size and the intersection size repartition are located below the diagram. 
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Figure 2. Network analysis of CMs, CNs, and DNs. A. The distribution probability of 4 levels of the HNS. B. Comparison of the changes in the characteristic path length 
after the nodes in the CM, CN, and DN sets are deleted. C. Comparison of the degree difference values in the CMs, CNs, and DNs. D. Comparison of the changes in the giant 
component after the nodes in the CM, CN, and DN sets are deleted. 

 

 
Figure 3. Performance comparisons of the CMs, CNs, DNs and OHNS of the network. A. The disturbance of the CMs, CNs, DNs, OHNS and RNs on the network; the smaller 
the giant component is, the greater the disturbance of the network. B. The importance of the CMs, CNs, DNs, OHNS and RNs in the network; the larger the characteristic path 
length is, the greater the importance. 
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Figure 4. Correlation and F-measure. A. The correlation between the (out- and in-) degrees, the characteristic path length and the giant component in the CMs, CNs, and 
DNs. B. The F-measure of genes overlapping with the CMs, CNs, DNs and OHNS in the CTD list. C. Comparison of the overlapping genes with the CMs, CNs, DNs and OHNS 
in the CTD list. 

 

The characteristic path lengths and giant 
components are specific in a network 

To study whether the (in- and out-) degrees of 
different node sets are an influencing factor of the L 
and GC, we calculated the Pearson correlation 
coefficient between them. The results show that there 
is only a significant weak correlation between the (in- 
and out-) degrees of the driver nodes and L (Fig. 4A). 

The OHNS has better target prediction ability 
in terms of the F-measure and perturbation 
effect 

The F-measure was used to evaluate the target 
prediction ability of the HNS in the list of drug targets 
and biomarker genes for lung cancer. We mapped 
lung cancer biomarkers and therapeutic targets from 
the CTD database to the CMs, CNs, and DNs and 
obtained 4, 6, and 22 markers and therapeutic targets, 
respectively. These genes are all supported by 
different studies. The DNs are more effective for 

discovering drug targets and biomarkers than the 
CMs and CNs (Fig. 4B). The results may also depend 
on the advantage of the absolute number of DNs. 
Consistent with the above observation, the mapping 
results of the CNs and CMs overlap. It is worth noting 
that the F-measure of the OHNS (see Methods) is 
0.129, which is close to that of the DNs (Fig. 4B). 
However, only one pair of mapping results of the DNs 
and CMs overlap (Fig. 4C), so merging them can 
increase the hit probability of drug targets and 
biomarkers. 

Using genome-scale CRISPR-Cas9 knockout 
data, we calculated the Chronos dependency scores of 
CMs, CNs, and DNs in 197 non-small cell lung cancer 
cell lines. Only 13 genes (CDC45, CDK1, CHEK1, 
ESPL1, MCM2, MCM4, MCM6, ORC1, ORC6, 
PKMYT1, PLK1 and PLK4) among the DNs had 
obvious perturbation effects on 197 non-small cell 
lung cancer cell lines (Supplementary Table S4). 
Interestingly, these 13 genes are also present in the 
OHNS. 
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Figure 5. Analysis of the CMs, CNs, DNs and OHNS. A-D. The GO biological functions of CMs, CNs, and DNs by enrichment analysis. e-h. KEGG analysis of CMs, CNs, 
and DNs by enrichment analysis. A-C. Enrichment analysis of the top 20 GO biological functions in the CMs, CNs, and DNs. E-G. Enrichment analysis of the top 20 KEGG 
pathways in the CMs, CNs, and DNs. d. Biological process comparison of CMs, CNs, and DNs. H. Pathway comparison of CMs, CNs, and DNs. I. Comparison of the 
distributions of the CMs, CNs, DNs, and OHNS in terms of biomarkers, pathway hub genes, risk-prognostic genes, and perturbation effects. The width of the extended branch 
in the figure corresponds to the size of the data flow. 

 

The OHNS enriched 3 unique pathways 
Metascape was utilized to analyze the functions 

of the HNS. A total of 185, 537, and 315 GO functional 
enrichments (Fig. 5A-C) and 37, 66, and 52 KEGG 
pathways (Fig. 5E-G) were detected in the CMs, CNs, 
and DNs, respectively. In the results, there were 8 
functional overlaps and 21 pathway overlaps of CMs, 
CNs and DNs. Interestingly, although the CMs and 

CNs overlap, they have different biological functions, 
which may be due to the number of genes not shared 
between them (Fig. 5D). We also used Cytoscape- 
ClueGO to create a pathway network and visualized 
the link genes between different pathways. The 
results showed that the CMs, CNs, and DNs had 9, 33, 
and 43 pathway hub genes, respectively (Fig. 6). 
However, in the KEGG pathway enrichment, the 
pathway to which the CNs are enriched contains the 
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pathways of all CMs (Fig. 5H). There were 53 
pathways enriched in the OHNS (Supplementary 
Figure S1). After comparison with the CMs and DNs, 
3 unique pathways were discovered in the OHNS: the 
p53 signaling pathway, gap connection, and HTLV-I 
infection. 

Survival analysis further suggests the 
importance of 13 perturbed genes 

The prognostic factors in the whole genome 
were observed, and the prognostic significance was 
evaluated by the single-factor Cox and log rank tests 
according to the expression level of a single gene. The 
results showed that there were a total of 2416 
risk-prognosis-related genes, of which 3, 11, and 48 
were found among the CMs, CNs, and DNs, 
respectively (Supplementary Table S5). Interestingly, 
we found that of the 48 DN risk prognostic genes, 13 
were fully consistent with perturbed genes. 

Replication and validation analyses 
By replicating this method to process the GEO 

data, a total of 3170 differentially expressed genes in 
lung adenocarcinoma were obtained. We constructed 
a set of 933 nodes and 4336 directed edges. After 
analyzing the network, we found that the degree 
distribution of CMs, CNs, and DNs in the GEO 
network, the degree difference, the F-measure and the 
L and GC scores after deleting a single node were 
almost identical to the trends of TCGA 
(Supplementary Figure S2, Table S6). 

Discussion 
Choosing an effective HNS at the network level 

is a popular topic in the postgenome era, and it can 
help us obtain information about the key components 
of a disease network. An increasing number of studies 
about methods have been proposed due to the good 
theory and application value of identifying HNSs. 
These methods can be considered from two 
perspectives: detecting the core structure of the 
network and considering the ability to control the 
network. Given the important role that nodes with a 
high degree (hubs) have in maintaining the structural 
integrity of networks against failures and attacks [27], 
in spreading phenomena [28] and in synchronization 
[29], it is natural to expect that controlling the hubs is 
essential to controlling disease networks. Some hub 
nodes are not suitable as drug targets since they result 
in lethality or infertility. Predicting drug targets based 
on network control theory is a popular field, but 
completely controlling disease networks is currently 
difficult in the real world. Additionally, researchers 
do not fully understand the core connotations and 
characteristics of different types of HNS. They have 
only explored them from a certain angle, which has 
both advantages and limitations. To overcome these 
difficulties, we compare these approaches from 
different perspectives, such as core structure, control 
forces and clinical value, and show their respective 
characteristics. 

The results show that DNs have advantages in 
risk prognosis, pathway hub genes, biomarkers, and 
perturbation effects. Therefore, we infer that DNs are 
likely to play a controlling role through the 
coordination of these four aspects (Fig. 5I). 
Considering the core structure and control capabilities 

 

 
Figure 6. Pathway link network of CMs, CNs and DNs. The large nodes in the network represent the enriched pathways, the small nodes represent the genes between 
the linked pathways, the connected edges represent the common genes between the pathways, and the colors of the nodes represent the enrichment classification. A. 
Relationship between the enriched pathways and genes in the CMs. B. Relationship between the enriched pathways and genes in the CNs. C. Relationship between the enriched 
pathways and genes in the DNs. 
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of the network structure, we generated the OHNS. 
The F-measure shows that the OHNS increased in 
comparison with the CMs and CNs, and it changed in 
almost the same way as the DNs, which tells us that a 
combination of multiple calculation methods may 
increase the probability of disease control. This may 
be because the OHNS is based on the conservative 
evolution of core genes and plays a controlling role in 
the network. Thirteen genes in the OHNS were 
predicted to play roles in the risk prognosis, 
biomarkers, and perturbation effects of lung 
adenocarcinoma. Since RFC4 is a known drug target, 
the remaining 12 may be new biomarker candidates of 
drugs for lung adenocarcinoma. OHNS enrichment 
analysis showed the same results. The pathways 
enriched by the OHNS were not completely absorbed 
by the CM, CN and DN pathways. Instead, 3 unique 
pathways emerged. These may be signaling pathways 
in the regulatory network of lung adenocarcinoma 
that take into account both the structural centrality 
and control ability. Sun et al. [30] found that p53 
signaling pathway inhibition by pifithrin-α abrogated 
tumor-suppressive effects in lung cancer. Maynard et 
al. [31], using 49 clinical biopsies obtained from 30 
patients before and during targeted therapy, found 
that lung cancer progression was associated with 
upregulated gap-junction pathways. Recently, Flávia 
et al. [32] described a case of a small cell lung 
epidermoid carcinoma in a patient who developed 
HAM from HTLV-1 infection. This was the first case 
of this type of lung cancer since it was reported by 
Matsuzaki et al. [33] in 1990. 

Cheng et al. [34] proposed a network-based 
approach to reveal that clinical drug combinations can 
have better efficacy according to the target 
distribution of two drugs in the protein interaction 
network. Gates et al. [35], in an effective graph study, 
explained why a combination of drugs could drive 
cancer proliferation to zero in this model while a 
single drug could not, and they proposed that only a 
combination of interventions was capable of fully 
resolving the state of the proliferation variables. 
Multitarget drugs and drug combinations are more 
promising for achieving sustainable clinical outcomes 
and therefore are more likely to activate a cascade of 
multiple pathways to robustly perturb disease 
phenotypes. A full understanding of the meaning or 
characteristics of HNSs calculated by different 
methods can prompt us to choose the appropriate 
method and help explore the space of gene 
combinations more effectively to identify synergistic 
gene interactions based on network topology [36]. 
Therefore, it is reasonable to use more than one kind 
of method from multiple perspectives, considering 
not only the core position of the network but also the 

control ability of the network. 
Notably, this research method is not limited to 

lung adenocarcinoma; it has certain flexibility in 
setting parameters, and different methods can be 
selected and combined according to research 
requirements so that researchers can change the 
method according to their own goals. At the same 
time, this research idea requires a certain amount of 
data to calculate differential genes and build 
regulatory networks. Therefore, it is not suitable for 
the study of sparse networks due to the small amount 
of data. However, the relevant conclusions regarding 
the OHNS method in this work can provide strategies 
and ideas for other disease treatments and provide 
more insights into complex diseases from multiple 
perspectives. 

Conclusions 
Taken together, we proposed the idea of OHNS 

target combination based on the core structure and 
control ability of the lung adenocarcinoma regulatory 
network and obtained 3 unique lung adenocarci-
noma-related pathways. Additionally, 13 genes were 
predicted to play roles in the risk prognosis, disease 
drivers, and cell perturbation effects of lung 
adenocarcinoma, of which 12 may be candidates for 
new drugs and biomarkers of lung adenocarcinoma. 
Although further experimental studies are needed, 
our study shows that the OHNS contains multiple 
disease biomarkers and therapeutic targets that can 
guide the therapeutic community to optimize 
appropriate strategies according to different cancer 
treatment targets, providing new avenues for disease 
intervention and drug discovery. 
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