Supplementary documentation

Supplementary Tables

G	Mutation Significance	Number of	Frequency	
Gene	(Q-value)	Mutation		
TP53	436	357	69.30%	
FATI	142	111	21.60%	
CDKN2A	112	105	20.40%	
<i>РІКЗСА</i>	94	90	17.50%	
NOTCH1	97	88	17.10%	
LRP1B	111	85	16.50%	
PCLO	92	79	15.30%	
KMT2D	88	77	15.00%	
NSD1	76	60	11.70%	
CASP8	63	55	10.70%	
RELN	53	48	9.30%	
FAT4	46	41	8.00%	
KMT2C	38	37	7.20%	
EP300	37	37	7.20%	
FBXW7	35	33	6.40%	
HRAS	34	31	6.00%	
CREBBP	35	30	5.80%	
RNF213	32	30	5.80%	
AJUBA	32	29	5.60%	
MGAM	34	29	5.60%	
PRKDC	31	29	5.60%	
LRRK2	35	29	5.60%	
NFE2L2	29	28	5.40%	
SPEN	30	27	5.20%	
PTPRD	29	27	5.20%	
GRM3	30	26	5.00%	
ROS1	28	26	5.00%	
KMT2A	25	25	4.90%	
EPHA5	26	25	4.90%	
TGFBR2	26	24	4.70%	

Table S1. The Top 30 Mutated Genes in TCGA-HNSC cohort (n = 515)

Characteristics Age		Number	ALDH2, Mean ± ¹ SD	<i>p</i> -value	
				0.3816	
	< 60	61	22.69±20.75		
	≥ 60	40	27.15±23.16		
Gender				0.5958	
	male	92	24.77±21.97		
	female	9	21.34±19.96		
Subsite				0.0027	
	oral cavity	23	14.28 ± 16.51		
	larynx	72	27.11±21.61		
				0.0037	
Grade	1	25	16.09±17.89		
	2/3	72	28.52±22.16		
				0.1039	
² AJCC T	1+2	42	20.79±20.53		
	3+4	59	27.07±22.35		
				0.6652	
AJCC N	0	76	24.85±21.44		
	N+	25	23.28±23.00		

Table S2. The correlation of immunohistochemistry expression levels of ALDH2 with clinical variables (n = 101)

¹SD: standard deviation; ²AJCC: American Joint Committee on Cancer

Supplementary Figure Legends

Figure S1. The genetic analysis of *ALDH2* **in cancer.** (A) The cBioPortal presents the pattern and frequency of genetic alterations of *ALDH2* in pan-cancer, as well as the proportion of *ALDH2* copy number alterations in different cancer types. (B) The relationship between *ALDH2* levels and mutation count. (C, D) The associations of tumor mutation burden (TMB) with microsatellite instability within the TCGA-HNSC cohort. (E) The correlation between *ALDH2* transcripts and TMB in 507 HNSC patients.

Figure S2. The differential expression of *ALDH2* **in tumor and normal tissues.** (A, C) The box plots in TNMplot reveal the *ALDH2* transcripts in normal- and tumor tissues on a gene chip and RNA-seq data. (B, D) The bar plot shows the ratio of tumor *ALDH2* levels to normal tissue *ALDH2* levels at different cut-off values.

Figure S3. The association between *ALDH2* level and tumor immune infiltration in **HPV-unrelated HNSC TIMER presents.** (A) The *ALDH2* levels within six infiltrated immune cells, and (B) the effect of *ALDH2* copy number variation on immune cell infiltration levels in head and neck cancer, with asterisks indicating significant associations.

			HPV status of HNSC							
	Immune Cell	Marker	All	HPV-	HPV+	All	HPV-	HPV+		
CD8 B cell	CD8	CD8A CD8B	***	***	***	***	***	***		
			***	***	***	***	***	***		
	B cell	CD19	***	**	***	***	**	***		
		CD79A	***	**	***	***	**	***		
N	Monocyte	CD86	***	***	***	***	***	***		
		CD115(CSF1 R)	***	***	***	***	***	***		
M1 n	M1 macrophage	NOS2	***	**	***	***	**	**		
		IRF5	***	***		***	***			
		PTGS2		*			*			
NK	NK cell	KIR2DL1	**		**	**		**		
		KIR2DL3	***	**	***	***	*	***		
		KIR2DL4	***	**	***	***	**	***		
		KIR2DS4	**		**	**		**		
		KIR3DL1	***		***	***		***		
		KIR3DL2	***	***	***	***	***	***		
		KIR3DL3	**		**	*		*		
Т	Tfh	BCL6	***	***		***	***			
		IL21	***	***	***	***	***	***		
		ICOS	***	***	***	***	***	***		
		CXCR5	***	***	***	***	***	***		
Mast	Mast	ADAMTS3	**	**		**	**			
		CMA1	**	***		*	***			
		CPA3	***	***		***	***			
		CTSG	*	***		**	**			
	T cell exhaustion	PDCD1	***	***	***	***	***	***		
		CTLA4	***	***	***	***	***	***		
		LAG3	***	**	***	***	**	***		
		HAVCR2	***	***	***	***	***	***		
	Purity Unadjusted Purity Adjusted									

в

Figure S4. The immunological features of *ALDH2* level in HNSC. (A) The heatmap presents the adjusted and non-adjusted correlations of gene markers of the tumor-infiltrating immune cells and *ALDH2* levels in HNSC by HPV statuses. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001. (B) The TISCH database revealed the *ALDH2* levels in various cell types within the HNSC tumor microenvironment across three GEO cohorts.

Α

Figure S5. The correlation between *ALDH2* **levels with molecules involved in macrophage polarization.** (A) The TIMER 2.0 data port demonstrated significant correlations for *Myd88*, *PTEN*, and *TNFRSF1A* in HPV-unrelated HNSC but not in HPV-related HNSC. (B) The adjusted correlation coefficients for *Myd88*, *TNFRSF1A*, and *PTEN* in HPV- group.