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Abstract 

Despite apparently having completed surgical resection, approximately half of resected early-stage lung 
cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 
8%. Thus, there is a need for better identifying the drivers of relapse, who benefits from adjuvant therapy, 
and novel targets in this setting. Although emerging evidence has suggested a strong link between the 
pentose phosphate pathway (PPP) and cancer, the role of transketolase (TKT), an enzyme in the 
nonoxidative branch of the PPP that connects PPP and glycolysis, remains obscure in Lung 
adenocarcinoma (LUAD). In this study, TKT expression was first identified in The Cancer Genome Atlas 
(TCGA) and then validated with our database. TKT was upregulated at protein levels in cancer compared 
with normal tissues (P <0.05), and high TKT expression was associated with advanced tumor stage in our 
cohorts. Besides, TKT inhibitor promotes tumor cell apoptosis and cell cycle blockade. Clearly, TKT 
plays a critical role in LUAD progression and prognosis and could be a potential biomarker for prediction 
of recurrence after lung cancer resection. 
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Introduction 
Lung cancer is currently the most common 

malignancy and the leading cause of cancer-related 
deaths in the word. Despite recent significant medical 
advances, the disease remains the leading cause of 
cancer death and protends one of the poorest 5-year 
survival rates among all cancer types [1]. Lung 
adenocarcinoma (LUAD) is the most common 
histologic type of lung cancer, accounting for over 
40% of total lung cancer cases [2, 3]. The high 
mortality rate of LUAD is partially due to the poor 
diagnostic rate in the early stage, high rates of 
recurrence, and difficulty for therapy [4, 5]. A better 
understanding of the underlying molecular 
mechanisms of progression would significantly 
benefit the clinical outcome. Besides, it is certainly of 
great interest to identify novel biomarkers and 
therapeutic targets for LUAD. 

Rewiring of metabolism has been highlighted as 
a hallmark of cancer since nearly a century ago by 

Otto Warburg [6]. Cancer metabolic reprogramming, 
namely the Warburg effect, which primarily on 
anaerobic glycolysis to generate adenosine 
5’-triphosphate (ATP) instead of mitochondrial 
oxidative phosphorylation, even in the presence of 
oxygen, with increased lactate and ATP production 
and increased glucose uptake [7, 8]. This metabolic 
shift plays an important role in tumor immune escape, 
progression and resistance to immune-, radiation- and 
chemo-therapy [8, 9]. The pentose phosphate pathway 
(PPP), a branch of glycolysis, can work in parallel to 
glycolysis in glucose degradation in most living cells. 
Different studies demonstrated PPP was a vital factor 
in cancer growth and survival, maintaining reactive 
homeostasis against oxidative stress during 
metastasis progression [10-13]. 

Transketolase (TKT) is the main enzyme 
involved in non-oxidative PPP, which involves three 
human genes: transketolase (TKT) and two TKT-like 
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genes (TKTL1 and TKTL2) [14]. Several studies had 
been performed to determine the associations 
between the TKT genes family and cancer 
carcinogenesis [15-18]. The expression of TKT in 
breast cancer was elevated, companied with the poor 
prognosis [19]. Recently, it has been demonstrated 
that overexpression and higher enzymatic activity of 
transketolase increase cisplatin resistance, and their 
silencing or combined treatment with cisplatin could 
restore cisplatin sensitivity [9]. In colorectal cancer 
tissues, TKTL1 was significantly upregulated, and 
correlated with liver metastases and poor disease-free 
survival [20]. The prognosis of ovarian cancer patients 
with high expression of TKTL2 is worse than that of 
patients with low expression of TKTL2 [21]. 
Therefore, TKT and TKTL1/2 may serve as a potential 
biomarker to predict tumor prognosis. Nevertheless, 
the potential clinical value of TKT and TKTL1/2, 
especially in terms of prognosis and development of 
LUAD, had not been fully elucidated. 

In this study, we reveal the clinical significance 
of TKT in the progression and metastasis of LUAD. 
TKT plays an important regulatory role in the 
dynamic switch of glucose metabolism. Combined 
therapy based on the novel target TKT could be an 
improved treatment for LUAD.  

Materials and Methods 
Clinical samples 

Patients who were histologically confirmed as 
having lung adenocarcinoma by lung resection 
according to the classification criteria of the 
International Association for Lung Cancer Research-8 
(IASLC) [22] were collected from Huadong Hospital 
from September 2012 to December 2013. A total of 161 
Chinese patients, aged 18-80 years old, with good 
major organ function and normal clotting function 
were selected. The detailed inclusion criteria were 
described as follows: (1) Radical surgical resection 
was performed. (2) Postoperative pathology 
confirmed as primary lung adenocarcinoma. (3) 
Complete clinicopathological data and follow-up 
data; (4) Preoperative chemotherapy, radiotherapy, 
immunotherapy and targeted therapy were not 
performed. Exclusion criteria were stated: (1) 
Complications such as serious cardiovascular and 
cerebrovascular diseases or diabetes. (2) Pathological 
types were confirmed by immunohistochemistry to be 
mixed. Surgical tumor samples were immobilized in 
formalin for more than 24 hours and paraffin- 
embedded tissues were pending for immunohisto-
chemistry and fluorescence experiments. The studies 
involving human participants were reviewed and 
approved by the Ethics Committee of Huadong 

Hospital. All study participants completed an 
informed consent form in accordance with the 
Declaration of Helsinki.  

Analysis of the Cancer Genome Atlas (TCGA) 
RNA-Seq datasets containing 11093 tissues from 

tumor patients were downloaded from The Cancer 
Genome Atlas (TCGA), containing data from 730 
normal tissues and 10363 all cancer tissues. After 
pretreatment RNA-seq data of 59 pairs of normal and 
Lung adenocarcinoma tissues were selected as the test 
set according to the patient code, ensuring that each 
pair of issues came from the same patient and forming 
a paired analysis.  

Immunohistochemistry 
The tissues were cut into 4-µm-thick sections, 

fixed on slides, and dried for 12–24 h at 37°C. Sections 
were subsequently deparaffinized in xylene and 
rehydrated through graded ethanol and distilled 
water. After antigen retrieval, sections were incubated 
with anti-human TKT TKTL1 and TKTL2 antibody 
overnight at 4°C. The staining sections were incubated 
with the secondary antibody, then DAB chromogenic 
reagent was added and the slides were mounted for 
observation after dehydration. 

Evaluation of immunostaining 
The level of TKT/TKTL1/TKTL2 expression was 

performed by semiquantitative analysis as described 
previously [23]. The intensity of immunostaining was 
evaluated by the degree of color and then was scored 
as none (0), yellow (1), brown and yellow (2), and tan 
(3). The proportion of positive tumor cells was 
defined as follows: 0, 0%; 1, 1%-20%; 2, 21%-40%; 3, 
41%-60%; 4, 61%-80%; and 5, 81%-100%. Both were 
evaluated by two independent observers who were 
unaware of the clinicopathologic features of the 
patients. The expressions of protein in all samples 
were finally scored by multiplying the intensity and 
the percentage ranging from 0 to 15. The 
immunohistochemistry (IHC) scores of TKT 
expression in NSCLC tissues were divided into two 
levels: low (0-3) and high (4-15). 

Western blot 
The total cellular proteins were extracted with 

RIPA buffer (Beyotime). Equal amounts of protein (30 
µg/lane) were separated on sodium dodecyl sulfate 
(SDS)–PAGE and then transferred to polyvinylidene 
fluoride (PVDF) membranes (Millipore, MA). After 
blocking with PBS buffer (Beyotime) containing 5% 
non-fat milk and 0.1% Tween 20 (Beyotime), 
membranes were incubated with primary antibody 
overnight at 4°C. Subsequently HRP-conjugated 
secondary antibodies were incubated for 1 hour at 
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room temperature and developed with enhanced 
chemiluminescence (Beyotime).  

Immunofluorescence 
Briefly, the sections were washed with 

phosphate buffered saline (PBS, Hyclone) at room 
temperature, China), then were blocked with 10% 
goat serum at room temperature for 60 mins and 
incubated with Transketolase antibody (abacm) 
overnight at 4°C. Slices were incubated with 
fluorescent secondary antibody mixture for 1h 
followed by PBS washing. DAPI (Beyotime) was used 
for nuclear staining for 5 mins After washing, the 
sections were covered with DAPI (Beyotime) and 
cover glass. Confocal laser scanning microscope 
(LEICA TCS SP8) was used for detection. 

Cell Proliferation assays 
Proliferation assays were performed using the 

cell proliferation reagents WST-8 (DOJINDO, 
JAPAN). Briefly, A549 Cells were seeded at 2×104 
cells/well in a 96-well plate with DMEM containing 
10%FBS for 24 h and then treated with different 
concentrations of oxythiamine (0-100µM) for 6,12,24 
and 48 h. 10µl of WST-8 reagents were added into 
wells and incubated for an hour, then checked at 0, 24, 
48, and 72 hours. The absorbance was recorded at 450 
nm with 630 nm of reference wavelength by a 
scanning multiwall spectrophotometer (TECAN 
Spectra Fluor Plus (TECAN Austria GmbH, Austria)). 
Each treated group contained 6 repeated wells, and 
the experiment was repeated on three occasions.  

Cell cycle analysis 
A549 cells were treated with different 

concentrations of Thiamine (10µM) or Oxythiamine 
(0-100µM) for 24 h and 48 h. All the cells were 
trypsinized, harvested, washed twice with PBS, fixed 
in 70% ethanol at 1×106 cells/ml. Then were washed 
in cool PBS twice and suspended in DNA staining 
solution for 15 min at room temperature before flow 
cytometry. 

Apoptosis assay 
Cell apoptosis was measured using an Annexin 

V FITC/PI Apoptosis Detection Kit (BD Biosciences). 
Briefly, A549 cells were incubated with 5 ml Annexin 
V-FITC and 10 ml PI in a binding buffer for 30 min at 
room temperature, and resuspended in the same 
buffer. Established cells above were tested by flow 
cytometry (BD FACS Aria II). Flow jo V10 were used 
to analyze cell apoptosis and cell cycle, respectively. 
This assay was performed in triplicate.  

Statistical analysis  
All TCGA statistical analyses were conducted by 

ggplot2 package and other R packages in R software 
(Version 3.6.3). The results of Western blot were 
quantified by Image J. IHC score of TKT expression in 
LUAD tissues and adjacent normal tissues were 
analyzed by Wilcoxon rank-sum text. The impact of 
TKT on DFS or OS in lung adenocarcinoma patients 
was evaluated by univariate and multivariate Cox 
proportional hazards model and expressed as the 
hazard ratio (HR) and its 95% confidence interval (CI) 
after adjusting age, sex, TNM stage. Binary logistic 
regression models were used to evaluate the 
independent prognostic factors. Survival curves were 
constructed using the Kaplan-Meier method, and the 
differences between the survival curves were 
examined by the log-rank test.  

All values were expressed as mean ± SEM. Data 
were analyzed by one-way analysis of variance 
(ANOVA) followed by Tukey’s multiple comparison. 
Statistical analyses and graphs were performed by 
SPSS ver. 22.0 software (IBM) and GraphPad Prism 
ver. 800 (San Diego, CA). P<0.05 was considered as 
statistically significant differences (*P<0.05; **P<0.01; 
***P<0.001).  

Results 
Expression patterns of TKT in LUAD 
predicted by bioinformatics 

The TCGA database was used to compare the 
mRNA levels of TKT and TLTL1/2 between LUAD 
and normal tissues. It showed that mRNA levels of 
TKT were up-regulated in breast, rectal, gastric and 
lung cancer patients (Figure 1A). Expression of TKT 
and TKTL2 were significantly increased in patients 
with LUAD, with fold change of 5.771 (P<0.001) and 
0.025 (P<0.01) (Fig. 1B). Further analysis showed that 
TKTL1 was expressed at very low in LUAD patients 
in TCGA database, with fold change of 0.197 
(P<0.001). Similar results were found in 59 paired 
tissues. The expression of TKT (P < 0.001; Fig. 1C) and 
TKTL2 (P < 0.05; Fig. 1C) mRNA were dramatically 
higher in cancer than the normal tissues. In addition, 
the ROC curve analyses demonstrated that TKT is a 
hallmark for lung adenocarcinomas that discriminates 
lung cancers from non-malignant lung tissues with 
excellent area (0.804) under curve (AUC) scores 
(p<0.001, Fig. 1D). 

TKT was upregulated in LUAD tissues  
Immunofluorescence staining was used to testify 

the cellular location of TKT. As shown in Fig.2A, the 
expression of TKT was strongly positive in the tumor 
tissues, and the number of cells expressing TKT was 
significantly increased. Consistently, TKT was found 
to be increased in lung tumor tissues in comparison 
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with normal tissues (Fig. 2B). TKT was mainly located 
in the nucleus and cytoplasm (Fig. 2C), and IHC score 
showed TKT in carcinoma tissues was higher than in 
adjacent normal tissues (p < 0.001) both in LUAD. 
Interestingly, we also compared the expression of 
TKTL1 and TKTL2. The results showed that there was 
no difference in TKTL1 but remain the elevated 
tendency (Fig. 2D). 

TKT upregulation was associated with poor 
prognosis in LUAD patients 

Based on TCGA datasets, the expression of TKT 
was used as a biomarker to predict patient survival in 
LUAD. We surmised that TKT had higher clinical 
value in LUAD and verified in our cohort. We 
analyzed the correlation between the TKT expression 
and both overall survival (OS) and disease-free 
survival (DFS) of LUAD patients. High TKT 
expression was significantly correlated with 
characteristics of a poor prognosis, such as shorter 
overall survival (P = 0.009), metastasis of tumor 
(P = 0.038) and more serious clinical conditions 

(P = 0.03) (Fig. 3A). In the multivariate logistic 
regression model, three independent risk factors for 
TKT were further screened out, including gender 
(OR=3.327, 95% CI 1.456-7.606, P=0.004), M stage 
(OR=0.081, 95% CI 0.018-0.366, P=0.001), survival 
status (OR=6.150, 95% CI 2.502-15.119, P=0.001). The 
remaining factors did not show significant statistics. 
The expression of TKT was also demonstrated that 
remain an important prognostic factor for recurrence 
and survival in stage I patients (Figure S1). 
Kaplan-Meier survival analysis showed that high TKT 
expression at both mRNA and protein levels was 
significantly correlated with shorter OS (HR, 1.96; 
p=0.018) and DFS (HR, 1.77; p=0.04) time of the 
patients (Fig. 3B). Of note, the group with lower TKT 
expression had better OS (HR, 3.44; p=0.009) and DFS 
(HR, 3.60; p=0.007) than the group with higher TKT 
expression in stage I patients (Fig. 3C). These results 
suggest that TKT may contribute to LUAD 
progression and metastasis. 

 

 
Figure 1. Expression patterns of TKT in LUAD predicted by bioinformatics. (A) Expression of TKT mRNA in TCGA database in various tumors; (B) Comparison of 
the expression profile of TKT and TKTL1/TKTL2 in TCGA database; (C) The mRNA was dramatically different in cancer than in normal lung tissues in 59 paired patients; (D) 
Receiver operating characteristic (ROC) curve analysis for the prognostic score model. The diagnostic value of TKT/TKTL1/TKTL2 mRNA in LUAD patients. *, P<0.05; **, 
P<0.01; ***, P<0.001. 
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Figure 2. Representative images of TKT expression in LUAD tissues and their normal controls. (A) Representative fluorescence images of TKT identified in tumor 
samples from LUAD patient; (B) The protein expression level of TKT; (C) Immunohistochemical staining of TKT in LUAD samples. Original magnifications ×200 and ×400 (lower 
panels); (D) Expression of TKT and TKTL1 in LUAD tissues and paired adjacentnormal lung tissues by immunohistochemistry. Data are represented as the means ± S.D, and 
significant differences are indicated as *P < 0.05, **P < 0.01, and ***P < 0.001. 

 
To stringently control for any confounding effect 

by stage, we performed stage-stratified Cox 
regression for all the association analyses. TNM stage, 
pathological stage and TKT expression were 
significant negative prognostic factors for OS in 
univariate analysis. In multivariate Cox regression 
analysis TKT remained an independent negative 
prognostic factor (P <0.001) (Table 1). Of note, the 
analyses of stage I patients had similar results. 
Clinical factors predictive of early recurrence after 
surgery were gender (HR=0.395, P=0.006), age 
(HR=2.356, P=0.027) and T-stage (HR=0.380, P=0.008) 
(Table S1). Multivariate analysis indicated that 
gender, age and T-stage were no longer significant 
prognostic factors with respect to Disease Free 
survival while TKT high expression (HR=3.177, 
p=0.008) remained significant. 

TKT promoted NSCLC cells proliferation and 
inhibited apoptosis in vitro 

Thiamine is one of the most important vitamins 

needed for proper cell metabolism [24]. And several 
antimetabolites of thiamine such as metronidazole 
[25], pyrithiamine [26] or oxythiamine (OT) [27] have 
been synthesized and tested as antibiotics or 
cytostatic. In this study, we used thiamine and OT to 
investigate the effect of TKT on cell proliferation and 
apoptosis. The growth curve of A549 cells was 
obviously suppressed under the action of different 
concentrations of inhibitors (p < 0.001) in a time-and 
dose-dependent manner (Fig. 4A). We found that the 
percentage of apoptotic cells did not change in the 
thiamine group compared to the control group. 
However, the proportion of apoptotic cells, both early 
and late apoptotic, increased significantly with the use 
of inhibitors (Fig. 4B). We further assessed the effect of 
TKT on cell cycle. OT significantly induced G0/G1 
arrest, exhibiting increased G0 to G1 phase cells 
(p<0.001) and decreased S-phase population (p=0.004) 
(Fig. 4C). 
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Discussion 
Already known as the first cause of mortality in 

men, non-small cell lung cancer (NSCLC) is nowadays 
a major cause of cancer-related death in women. Lung 
adenocarcinoma is the most common histological 
subtype, and its incidence has risen sharply in 
women, especially surpassing squamous cell 
carcinoma [28]. Despite advances in diagnosis and 
treatments, the overall 5-year survival rate remains 
dismal, especially when lung cancer is diagnosed at 
advanced stages [9, 29]. Therefore, a deeper 
understanding of the molecular mechanisms 
underlying lung carcinogenesis could contribute to 
the development of novel strategies for prevention 
and therapy. In our patient cohort, a high TKT 
expression served as a marker of poor prognosis in 
patients with LUAD.  

Warburg identified a particular metabolic 
pathway in carcinomas that was characterized by the 
anaerobic degradation of glucose even in the presence 
of an abundant oxygen supply (aerobic glycolysis) 
[30]. One of the main differences between normal and 
cancer cells is the difference in glucose metabolism. 
Cancer cells experience increased oxidative stress and 

metabolic reprogramming, and increased glycolysis 
in metabolism is thought to be associated with cell 
proliferation and survival [31]. Therefore, inhibition 
of enzymes in the pathway could result in more 
potent anti-tumor effects. Non-oxidative glucose 
metabolism through the PPP promotes tumor cell 
proliferation and was controlled by Thiamine- 
dependent transketolase enzyme reactions [32, 33], 
different strategies using either thiamine antagonists 
(OT) or thiamin deprivation [33] have been suggested 
to deplete thiamin from cancer cells [34]. Thiamine 
supplementation may stimulate high survival rates, 
proliferation rates, and chemotherapy resistance in 
tumor cells [35-37], but other studies have 
demonstrated a beneficial role for thiamine in cancer 
[38, 39]. Thiamine deficiency can occur in cancer 
patients and lead to serious diseases, including 
Wernicke's encephalopathy [40]. Our results showed 
transketoase of thiamine family plays a pivotal role in 
carcinogenesis and OT significantly exhibits an 
inhibitory effect on cancer. More cautious approach 
would be advisable before recommending the 
combined use of thiamine with other drugs in patients 
with cancer [17, 27]. 

 

 
Figure 3. Overexpression of TKT predicted poorer prognosis in the validation cohort. (A) Association between TKT expression and clinicopathologic features in the 
LUAD validation cohort; (B) Kaplan-Meier curves for LUAD patients. The relationship of TKT with DFS and OS in LUAD patients; (C) Prognostic value of TKT expression for 
DFS and OS of patients with stage I LUAD patients based on the Kaplan‑Meier plotter. *, P<0.05; **, P<0.01; ***, P<0.001. 
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Table 1. Univariate and multivariate Cox proportional hazards analysis of TKT expression and OS for patients with LUAD in the 
validation cohort 

 
Abbreviations: CI, confidence interval; HR, hazard ratio. *, P<0.05; **, P<0.01; ***, P<0.001. 
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Figure 4. Oxythiamine(OT) suppressed tumor cell proliferation and promoted apoptosis via inhibition of TKT. (A) Effects of OT on the proliferation of A549 
cells; (B) Effects of OT on cell apoptosis in A549 cells. The percentage of apoptotic A549 cells which treated with OT (0.1- 100μM) were 19.352±4.522%, 24.655±3.236%, 
28.290±4.494% and 34.638±6.877%, respectively; (C) Effects of OT on cell cycle in A549 cells. OT induced cell cycle arrest at G1 phase. All data from three separate experiments 
are presented as mean ± SD. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 
We noticed that TKT expression increased 

progressively in LUAD stages I through III, but in 
stage IV there was a strong decreased. This is the first 
time that the expression of TKT has been correlated 
with tumor staging and metastasis in LUAD. 

Although TKT expression correlated with local tumor 
progression and regional lymph node metastasis, TKT 
expression in primary tumors decreased when distant 
metastasis occurred. This is probably due to the 
insufficient sample size of stage IV. But a similar 
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pattern was also found in colorectal cancer and 
pancreatic ductal adenocarcinoma [15, 20]. The PPP 
and glycolysis are interlinked, which are 
mechanistically relevant for the dynamic regulation of 
migration versus proliferation [41]. PPP, which 
supplies ribose-5-phosphate and NADPH for 
biosynthetic processes, is elevated in rapidly 
proliferating cells but suppressed under acute severe 
hypoxic stress, favoring glycolysis to protect cells 
against hypoxic damage. In stage IV, the decrease of 
TKT may be related to downregulation of pentose 
phosphate pathway (PPP) enzymes and a flux shift 
towards glycolysis, which are causatively involved in 
regulating “go or grow” cellular programs due to 
hypoxia. Apart from hypoxia, a variety of other 
parameters can regulate the dichotomous balance 
between proliferative versus migratory functional 
programs including extracellular matrix components, 
growth factors, microRNAs, and transcription factors 
[42-44]. Furthermore, the protein complexes 
independently reported in the STRING PPI database 
validated our hypothesis by the similarity of 
interaction patterns (Fig. S2). Certainly, more 
experiments will be required to verify above 
assumptions in the future. 

Three transketolase genes have been identified 
in the human genome to date: transketolase (TKT), 
transketolase-like 1 (TKTL1) and transketolase-like 2 
(TKTL2). Some researchers have suggested TKTL1 
and TKTL2 are functional transketolases and 
represent novel therapeutic targets for diabetes and 
cancer [20, 45-47]. TKTL1 might not possess 
transketolase activity. The lower levels of TKTL1 were 
found in cancer tissues than adjutant in the TCGA 
database. Our analysis showed there is no sense but 
an increasing trend in LUAD clinical samples. In 
previous study of TKTL1 in lung and other cancers, 
patients with a high TKTL1 expression in the primary 
tumors exhibited a worse prognosis compared to 
those with a low expression [48-51]. TKTL1 is thus one 
candidate marker for risk identification. However, a 
recent study of a large cohort of colorectal cancer 
patients with liver metastases found that TKTL1 may 
serve as a reverse prognostic significance [20]. In 
addition, TKTL1 served as a marker of a better 
prognosis in patients over 65 years old and among 
those with TNM class M1, stage IV disease, or 
perivascular invasion had already been described in 
pancreatic ductal adenocarcinoma [15]. In lung 
adenocarcinoma disease, it remains unclear if a high 
expression alone indicates a better prognosis or if it 
reflects other invasiveness-reducing characteristics 
that we have yet to identify. 

In conclusion, our study confirms previous 
findings that lung cancer patients with high TKT 

expression have a poor prognosis and highlight the 
importance of TKT as a potential therapeutic target. 
TKT inhibition may thus be a useful strategy to 
intervene in cancer cell invasion and metastases, and 
need to be explored a large cohort of clinical trial. 
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