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Abstract 

Globally, one out of every two reported cases of hematologic malignancies (HMs) results in death. Each 
year approximately 1.24 million cases of HMs are recorded, of which 58% become fatal. Early detection 
remains critical in the management and treatment of HMs. However, this is thwarted by the inadequate 
number of reliable biomarkers. In this study, we mined public databases for RNA-seq data on four 
common HMs intending to identify novel biomarkers that could serve as HM management and treatment 
targets. A standard RNA-seq analysis pipeline was strictly adhered to in identifying differentially 
expressed genes (DEGs) with DESeq2, limma+voom and edgeR. We further performed gene enrichment 
analysis, protein-protein interaction (PPI) network analysis, survival analysis and tumor immune 
infiltration level detection on the genes using G:Profiler, Cytoscape and STRING, GEPIA tool and TIMER, 
respectively. A total of 2,136 highly-ranked DEGs were identified in HM vs. non-HM samples. Gene 
ontology and pathway enrichment analyses revealed the DEGs to be mainly enriched in steroid 
biosynthesis (5.075×10-4), cholesterol biosynthesis (2.525×10-8), protein binding (3.308×10-18), catalytic 
activity (2.158×10-10) and biogenesis (5.929×10-8). The PPI network resulted in 60 hub genes which were 
verified with data from TCGA, MET500, CPTAC and GTEx projects. Survival analyses with clinical data 
from TCGA showed that high expression of SRSF1, SRSF6, UBE2Z and PCF11, and low expression of 
HECW2 were correlated with poor prognosis in HMs. In summary, our study unraveled essential genes 
that could serve as potential biomarkers for prognosis and may serve as drug targets for HM 
management. 
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Background 
Hematological malignancies (HMs) present a 

global health burden worsened by a lack of precise 
diagnostic, treatment and prognostic biomarkers. An 
estimated 1.24 million cases of HMs are diagnosed 
yearly across the globe, accounting for about 6% of all 
cancer cases [1]. As of 2020, HMs case fatality rate 
stood at 58% and culminated in approximately 7% of 
all cancer deaths worldwide [1]. This is an 
improvement to the statistics recorded in 2017, where 
HMs constituted 8.6% of all cancer cases and 11.5% of 
all cancer deaths worldwide [2]. However, there was 
no corresponding reduction in the case-fatality rate 
from 2017 (52%) to 2010 (58%). Al-Azri [3] attributed 
the overall poor survival of HM patients to late 

diagnosis. 
Recent advances in cancer therapies such as 

immunotherapy, stem cell transplantation, gene 
therapy and chemotherapy have improved HM 
cancers treatment. However, early detection 
continues to be a challenge. For screening and 
identification of HMs, ranges of assays are available 
such as blood tests, imaging (CT, X-ray or PET scans) 
tests and bone marrow biopsies. However, each of 
these methods has its drawbacks, including (1) false 
negative or positive results, (2) overdiagnosis of cases 
that could lead to unnecessary treatment and 
psychological stress [4] and (3) exertion of 
unnecessary worry and risk on a patient who may not 
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have HM. For these reasons, it is critical to discover 
novel diagnostic and prognostic biomarkers that will 
be effective in HM diagnosis. 

Liquid biopsies have recently supplanted 
traditional tissues biopsies as the preferred choice of 
diagnosis of HMs [5, 6]. It provides a less painful, less 
invasive and increases the testing rate of HMs. 
Unfortunately, liquid biopsies can only detect 
circulating tumor cells (CTCs) and cell-free DNA 
(cfDNA), which may be present in low concentrations 
in the patient’s blood and the tests may not be 
sensitive enough to detect them [6]. This necessitates 
the need for more sensitive, accurate and reliable 
biomarkers for HM diagnosis. 

In recent years, the introduction of inhibitors 
targeting immunological checkpoints such as 
PD-1/PD-L1 and CTLA-4 has resulted in significant 
paradigm shifts in treating hematological malig-
nancies [7]. Recent findings indicate that checkpoint 
inhibition appears to be a promising treatment option 
for certain types of hematologic malignancies [8]. 
However, the use of checkpoint inhibitors is 
accompanied by significant side effects and high 
costs, and only a small percentage of patients appear 
to benefit clinically [9]. This highlights the critical 
need for biomarkers to identify patients more likely to 
respond to treatment and/or experience fewer 
adverse effects. To this end, there have been reports 
on biomarkers that can serve as a diagnostic, 
prognostic and therapeutic target for HM 
management. Popular among these include the 
Cluster of Differentiation 47 (CD47) [10, 11], CD123 
[12] and miR-155 [13]. Although several antagonists of 
CD47, CD123 and miR-155 have been studied in vitro 
and in vivo with promising results using cell lines and 
mouse models of hematological malignancy, these 
studies focused on a specific HM at a time. Our 
approach leverages this limitation by considering 
hematological malignancies as a unity in identifying 
potential biomarkers to diagnosis and prognosis. 

Multiple HMs may have similar gene expression 
profiles that could promote tumor progression [14]. 
However, these genes have not been fully explored. 
Analyzing the transcriptomes of multiple HMs 
simultaneously will be vital in identifying the genes 
that HMs share in common, which will further enable 
the elucidation of their common signaling pathways 
that promote oncogenesis. These could be applied in 
the development of therapeutics and diagnostics to 
manage HMs effectively. In the present study, we 
contributed to the existing pool of HM biomarkers by 
identifying novel genes unique to HM patients that 
could serve as potential diagnostic and prognostic 
targets for HM treatment and management. 

Materials and methods 
Data sources 

In this study, we mined public databases for 
RNA-seq data on chronic lymphocytic leukemia 
(CLL), acute myeloid leukemia (AML), acute 
lymphocytic leukemia (ALL) and Burkitt lymphoma 
(BL). We settled on four datasets generated by 
Cocciardi et al. [15] (AML), Black et al. [16] (ALL), 
Lombardo et al. [17] (BL) and CNAG-CRG [18] (CLL), 
based on our set inclusion criteria of at least ten 
samples, data being published within the last five 
years and cancer diagnosis being performed by at 
least two experienced oncologists. Table 1 provides a 
summary of the datasets used in this study. Ten 
paired-end FASTQ files were downloaded for each 
HM via NCBI-SRA. As a control group, we used 
mRNA data on lymphoblastoid cell lines (LCLs) from 
healthy non-cancer participants of the 1000 Genomes 
project. Our choice of data and control groups 
presents an unbiased representation of the various 
HMs. 

 

Table 1. Characteristics of the RNA-seq dataset used in this 
study 

Data accession Contributors Organism Year  Cancer 
type 

Number of 
samples 

PRJNA594725 CNAG-CRG [18] Homo sapiens 2019  CLL 10 
PRJNA528267 Cocciardi et al. [15] Homo sapiens 2019 AML 10 
PRJNA475681 Black et al. [16] Homo sapiens  2018 ALL 10 
SRP099346 Lombardo et al. [17] Homo sapiens 2017 BL 10 
ERP001942 Ouyang et al. [19] Homo sapiens 2017 LCLs 10 

 

Quality control, trimming and mapping 
FastQC [20] and MultiQC [21] were used for data 

quality assessment. Low-quality bases and adapter 
sequences were trimmed with Trimmomatic [22]. 
Trimmomatic was also used to filter out reads, which 
were shorter than 20 bases pairs. Furthermore, the 
trimmed reads were aligned to the human reference 
genome (GRCh38) using the 2-pass mode of STAR 
aligner [23] under default parameters. Gene 
quantification was performed with featureCounts 
[24], with gene_id and gene_biotype attributes. A 
description of the tools used in this study has been 
provided in Table 2. 

 

Table 2. Characteristics of all tools used before differential 
expression analysis in R 

Tool  Version Function Reference 
FastQC 0.11.9 Quality checks Andrews [20] 
MultiQC 1.10 Summarization Ewels et al. [21] 
Trimmomatic 0.39 Trimming Bolger et al. [22] 
STAR 2.7.7a Splice-aware alignment Dobin et al. [23] 
featureCounts 1.6.3 Gene quantification Liao et al. [24] 
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Figure 1. Google scholar citations for the respective DEA tools between January 2013 and March 2021. 

 

Differential expression analysis (DEA) 
We surveyed eight popular tools (ABSseq, 

ALDEx2, DESeq2, baySeq, EBSeq, edgeR, limma+ 
voom and sSeq) used for differential expression 
analysis. Based on the total number of downloads and 
Google scholar citations (Figure 1), we settled on 
DESeq2, edgeR and limma+voom. We surmise that 
both the number of downloads and citations are 
commensurate to usage. Additionally, according to 
the tool’s manual, all analyses were performed using 
default parameters following a step-by-step approach. 
Table 3 briefly describes the DEA tools used in this 
study. 

 

Table 3. Characteristics of the tools used for differential 
expression analysis 

DEA tool Version Read count 
distribution  

Normalization 
approach 

Differential 
expression test 

Citation 

DESeq2 1.28.1 Negative 
binomial 

size factors Exact test Love et 
al. [25] 

edgeR 3.30.3 Negative 
binomial 

trimmed mean 
of M-values 
(TMM) 

Exact test Robinson 
et al. [26] 

limma+voom 3.44.3 voom 
transformation 
of counts 

trimmed mean 
of M-values 
(TMM) 

Empirical 
Bayes method 

Ritchie et 
al. [27] 

 

Gene ontology analyses 
The overlapping set of genes identified by all the 

DEA tools were used for gene ontology analysis. The 
Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [28] and G:Profiler’s 
g:Gost [29] were used to identify the biological events 
and pathways for which the identified genes are 
involved in HMs. Adjusted P values (Padj) less than 
0.05 were considered to be statistically significant, and 

all inferences were drawn from Functional 
Annotation Clusters with enrichment scores ≥ 1.3. 
Gene enrichment analysis using multiple databases 
provided corroborating evidence of the biological 
processes, molecular functions and biological 
pathways the genes are involved in HMs. 

Protein-protein interaction (PPI) network 
Cytoscape [30], an open platform Bioinformatics 

program to visualize molecular interaction networks 
was used to visualize the protein-protein interaction 
(PPI) network of the genes. The STRING plugin [31] in 
Cytoscape was used to visualize the interactions 
between the common genes. PPIs with a confidence 
score of at least 0.9 were considered to be highly 
significant. Additionally, the Molecular Complex 
Detection (MCODE) [32] plugin in Cytoscape was 
used to identify the highly interconnected nodes 
(most closely associated genes) within the PPI 
network, which we termed hub genes. 

Hub genes expression in tumors 
The Gene Expression Profiling Interactive 

Analysis (GEPIA) [33] online tool was used to analyze 
the expression of the hub genes in other human 
cancers. This was achieved through a systematic 
search across gene expression datasets from The 
Cancer Genome Atlas (TCGA) and Genotype-Tissue 
Expression (GTEx) projects. 

Hub-gene survival analysis 
GEPIA tool was used to perform survival 

analysis on the hub genes. GEPIA employs data from 
TCGA and GTEx projects to perform analyses, 
including patient survival. 
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Tumor immune infiltration levels 
To investigate the association of gene expression 

patterns with tumor infiltration immune cells (TIIC), 
the Tumor Immune Estimation Resource (TIMER) 
web-based tool [34] was employed. Of the seven 
available TIMER modules (Gene, Survival, Mutation, 
SCNA, Diff Exp, Correlation, Estimation), we focused 
on SCNA to compare the tumor infiltration levels 
among hematologic malignancies with different copy 
number aberrations for a given gene. SCNA used the 
two-sided Wilcoxon rank-sum test to perform the 
analyses. 

Gene expression in different races, gender and 
age groups 

Finally, we used the UALCAN web tool to 
explore the difference in hub gene expression in 
different age groups, races and gender. UALCAN 
uses cancer OMICs data from TCGA, MET500 [35] 
and CPTAC [36] for biomarker identification and 
validation and explores the epigenetic regulation of 
gene expression. Table 4 describes all the web-based 
tools used in this study. 

 

Table 4. Web-based tools used in the analysis of differentially 
expressed genes 

Tool Function Reference 
DAVID Gene enrichment analysis Huang et al. [28] 
G:profiler Gene enrichment analysis Reimand et al. [29] 
Cytoscape PPI network Shannon et al. [30] 
STRING PPI network Szklarczyk et al. [31] 
GEPIA Survival analysis Tang et al. [33] 
TIMER Tumor immune infiltration detection Li et al. [34] 
UALCAN Gene expression in different races, 

gender and age groups 
Chandrashekar et al. [37] 

 

Results 
Identification of differentially expressed genes 
(DEGs) 

Following pre-processing of the raw data, DEGs 
were identified using DESeq2, limma+voom and 
edgeR. Overall, 7745, 9250, 7253 and 6592 DEGs were 
obtained from ALL, CLL, AML and BL, respectively 
(Figure 2). The intersect function showed that 2,136 
genes were common to all the HMs and served as the 
primary data for further analyses. 

Gene ontology (GO) analyses 
GO and pathway enrichment analyses were 

performed using G:Profiler and DAVID to investigate 
the biological function of the shared DEGs. After 
removing all electronic GO terms, the results showed 
the DEGs to be significantly implicated in protein 
binding, catalytic activity and regulation of 
intracellular signal transduction. The most significant 

pathways were found to be steroid biosynthesis (Padj = 
5.075×10-4), cholesterol biosynthesis (Padj = 2.525×10-8) 
and activation of gene expression by SREBF (Padj = 
1.617×10-4). Table 5 provides a detailed distribution of 
the top GO terms associated with the DEGs. 

 

Table 5. Gene and pathway enrichment analysis of the common 
DEGs 

Term ID Term description Number 
of genes 

Padj 

Molecular function    
GO:0005515 Protein binding 1695 3.308×10-18 
GO:0003824 Catalytic activity 696 2.158×10-10 
GO:0042802 Identical protein binding  289 1.395×10-7 
GO:0016740 Transferase activity 309 1.627×10-6 
GO:0019899 Enzyme binding 275 1.911×10-5 
Biological process    
GO:0006996 Organelle organization 528 5.599×10-10 
GO:0071840 Cellular component organization or 

biogenesis 
782 5.929×10-8 

GO:0044237 Cellular metabolic process 1222 6.526×10-8 
GO:0008152 Metabolic process  1299 3.326×10-7 
GO:1902531 Regulation of intracellular signal 

transduction  
258 3.855×10-7 

Cellular component    
GO:0005622 Intracellular anatomical structure 1733 1.4×10-46 
GO:0005737  Cytoplasm 1413 5.435×10-39 
GO:0005829 Cytosol 777 5.924×10-30 
GO:0043227 Membrane-bounded organelle 1491 1.869×10-28 
GO:0043229 Intracellular organelle 1455 8.918×10-27 
KEGG Pathway    
KEGG:00100  Steroid biosynthesis 11 5.075×10-4 
KEGG:01100 Metabolic pathways  226 2.443×10-3 
KEGG:01200 Carbon metabolism 30 3.282×10-3 
KEGG:00010 Glycolysis / Gluconeogenesis 19 2.702×10-2 
KEGG:00620 Pyruvate metabolism 15 2.999×10-2 
Reactome Pathway    
REAC:R-HSA-1655829  Cholesterol biosynthesis 17 2.525×10-8 
REAC:R-HSA-191273 Cell Cycle, Mitotic 108 3.632×10-6  
REAC:R-HSA-69278 Regulation of cholesterol 

biosynthesis by SREBP 
23 8.498×10-6 

REAC:R-HSA-2426168  Activation of gene expression by 
SREBF 

18 1.617×10-4 

REAC:R-HSA-5419276  Mitochondrial translation 
termination  

28 4.817×10-4 

Human phenotype    
HP:0000252 Microcephaly 182 3.154×10-3 
HP:0002977 Aplasia/Hypoplasia involving the 

central nervous system 
239 3.624×10-3 

HP:0040195 Decreased head circumference 182 7.637×10-3 
HP:0004377 Hematologic neoplasm 53 1.027×10-2 
HP:0011893 Abnormal leukocyte count 71 1.051×10-2 
HP:0010975 Abnormal B cell count 15 1.264×10-2 
HP:0001882 Leukopenia 49 1.407×10-2 
HP:0002846 Abnormal B cell morphology 15 1.892×10-2 

 

PPI network and module selection 
PPI network was created to explore the 

relationships between proteins to study the molecular 
process of HMs in a systematic approach (Figure 3). 
The PPI network was developed using STRING 
through Cytoscape at a confidence score of > 0.9. 
Additionally, all singletons (nodes without any 
association) were excluded from further analyses. We 
observed that about 96% of the DEGs had a significant 
association with at least one other gene, confirming 
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the agreement in DEG detection among the various 
datasets and analysis tools. 

MCODE was used to detect the significant 
cluster modules present in the PPI network. It 
predicted 61 clusters and ranked them based on 
confidence scores (Figure 4). The module with the 
highest score (29.54) was selected and its genes (60) 
were used for enrichment analyses, which revealed 
ubiquitin-protein transferase activity (Padj =3.78×10-16), 
ubiquitin-like protein transferase activity (Padj = 
1.08×10-15), mRNA splicing, via spliceosome (Padj = 
8.59×10-36), RNA splicing via transesterification 
reactions (Padj = 1.13×10-35), mRNA processing (Padj = 
2.13×10-32) and mRNA metabolic process (Padj = 
1.11×10-24) to be most significant terms 
(Supplementary Table S1). 

Gene co-expression analysis 
STRING was used to perform gene co-expression 

analysis to infer the interactions between the genes 
(Figure 5). The confidence scores used to generate the 
associations were obtained from RNA expression 
patterns and protein co-expression values from the 

ProteomeHD database. STRING could accommodate 
50 genes out of the 60 hub genes; hence the last ten 
less significant genes were excluded. From Figure 5, 
SNRPF, HNRNPH1, PABPN1, SNRPD2, SNRPE and 
SNRPG positively interact with all the other genes in 
the cluster. 

 

 
Figure 2. A Venn diagram showing the number of common genes among the four 
HMs (ALL, AML, CLL and BL). 

 

 
Figure 3. Protein-protein interaction network of the shared DEGs using STRING. The nodes and edges represent query DEGs and relationships between the DEGs, 
respectively. 
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Figure 4. PPI network of the highly interconnected hub genes. 

 
Figure 5. Co-expression analysis of the top 50 hub genes. Deeper colors depict stronger associations. 
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Figure 6. Co-expression analysis and verification of hub genes using TCGA and GTEx datasets. The shaded rectangles represent the median level of expression of a gene in 
DLBC and LAML. Color intensity is also proportional to expression levels.  

 

Hub genes expression in hematologic 
malignancies and other cancers 

The hub genes were verified with gene 
expression datasets from the TCGA and GTEx 
projects. Using GEPIA online tool, we explored the 
median expression levels of the hub genes in two 
hematologic malignancies (diffuse large B cell 
lymphoma (DLBC) and acute myeloid leukemia 
(LAML)). From Figure 6, we observed that most of the 
genes were highly expressed in the HMs under study. 
Importantly, DDX5, HNRNPH, SNRPD2, PCBP1 and 
SF3B6 showed very high expression levels in the 
LAML and DLBC. However, ASB2 and HECW2; 
DET1, GAN, and HERW2 were expressed minimally 
in the LAML and DLBC cancers, respectively. 

We used the GTEx portal to explore the level of 
hub gene expression in some tissues of the body 

(Figure 7). We focused on lymphocytes, blood cells, 
liver, spleen and brain as these are the organs most 
affected by hematologic malignancies [38]. As a 
control group, we generated similar plots using 
tissues not directly affected by HMs, such as the 
vagina, cervix, testis and stomach. Comparing the 
gene expression levels (proportional to color 
intensity) for each gene, we found that all the highly 
expressed genes in tissues implicated in HMs are also 
highly expressed in non-HM-related tissues. 
However, SRSF1 and SMURF1 showed subtle 
differences in gene expression levels. 

Hub gene survival analysis 
The prognostic role of all the hub genes 

unraveled was investigated using the Kaplan-Meier 
method. The survival plots were used to measure the 
length of time it takes an event to occur in different 
patient groups. Hub genes with associated Padj values 
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greater than or equal to 0.05 were excluded. Figure 8 
shows that in DLBC and LAML, high SRSF6, UBE2Z, 
PCF11 and SRSF1 expression was associated with 
poor prognosis. Additionally, patients with low 
expression of HECW2 exhibited a lower survival 
advantage than those with higher expression levels. 
While making these extrapolations, we considered the 
median survival proportions from the y-axis of Figure 
8. 

 

 
Figure 7. Heatmap of the expression of hub genes across HM-related and 
non-HM-related GTEx tissues. Color intensity is proportional to gene expression 
levels. 

 

Somatic copy number alterations (SCNA) and 
Tumor immune infiltration level (TIIL) 
analysis 

TIMER online tool was used to determine the 
presence of SCNAs and tumor immune cells (TICs) in 
HM patients. We focused on DLBCL since it is the 
only hematologic malignancy available in TIMER. 
Statistical significance in associations was measured 
with the two-sided Wilcoxon rank-sum test while 

analyzing all the hub genes. Here, we report on genes 
with higher levels of statistical significance in the 
immune cells under study. High expression of 
CDC5L, HNRNPH1 and RBCK1 was associated with 
infiltration by TICs, especially B cells (Figure 9), 
indicating a possible association between the genes 
and immune response. 

Gene expression in patients of different age 
groups, races and gender 

The UALCAN web tool was used to explore the 
difference in hub gene expression between races, age 
groups and gender of patients. HNRNPH1 had a 
significant difference in expression in patients of 
different races, such as Caucasian vs. Asians 
(p=2.32×10-2) and African/American vs. Asians 
(p=6.84×10-3). However, there was no significant 
difference in expression between Caucasians and 
Africans/Americans. Additionally, FBXO41 
expression in patients of various age groups showed 
significant differences in the following pairs: 21-40 vs. 
81-100 (p=9.82×10-4), 41-60 vs. 81-100 (p=5.57×10-4) 
and 61-80 vs. 81-100 (p=2.97×10-4). 

Discussion 
Hematological malignancies mortality rate 

remains high and constitutes about 11.5% of all cancer 
cases worldwide. The poor prognosis could be 
attributed to a limited understanding of its 
pathogenesis and other underlying mechanisms of 
HMs. In the present study, RNA-seq data from four 
HMs were integrated and analyzed to establish a 
typical gene expression pattern and other biological 
mechanisms that could guide the development of 
novel diagnostics for early detection and treatment to 
improve the prognosis of HMs. 

In total, 2136 genes were differentially expressed 
between the HMs and non-HM controls. Subsequent 
gene ontology and pathway enrichment analyses 
revealed the genes to be enriched in steroid and 
cholesterol biosynthesis, cell cycle regulation and 
regulation of SREBF expression. Cholesterol is a 
precursor to steroid hormones and bile acids, which 
play critical roles in cell growth and differentiation 
[39]. In tumorigenesis and cancer progression, 
cholesterol can modulate signaling pathways by 
covalently binding to and modifying proteins such as 
hedgehog and smoothened [40, 41]. These have been 
observed in colon cancer [42], breast cancer [43] and 
prostate cancer [44]. SREBF, a master transcription 
factor, has also been reported to be upregulated in 
several human cancers, including glioblastoma [45]. 
Overall, cholesterol metabolism plays a significant 
role in cancer metastasis, progression, proliferation 
and differentiation [46, 47]. Investigating these critical 
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pathways could help us better understand how HMs 
develop and may point to more reliable ways of 
diagnosis and treatment. 

We created a PPI network for systematic analysis 
to investigate the pathogenesis of HMs. We avoided 
the introduction of noise and incomplete data that 
may affect the PPI network by setting the minimum 
interaction to 0.9 out of a possible 1.0. The resulting 
PPI network was run through MCODE, which used 
the connection data to find dense regions within the 
PPI networks. The network analysis revealed that 
there were 61 modules in the network, each with an 
accompanying score. The most closely connected 
module in the network was the first-rank module, 
which had a score of 29.54 and contained 60 genes. 
Studies Xia et al. [48], Yang et al. [49] and Yang et al. 
[50] on cervical cancer, glioblastoma and head and 
neck cancer, respectively, showed that modular 
analyses could be used to isolate related genes 
accurately and further accentuates the relevance of 
modular approach in the screening for biomarkers. 
The genes in the module with the highest scores were 
the ones that influenced HM occurrence. 

Next, we performed hub gene co-expression 
analysis using STRING to confirm the interactions 
between the genes. Notably, we found SRSF1, 
HECW2, SRSF6, UBE2Z and PCF11, to be linked to 

carcinogenesis and cancer management [51-62] and 
are associated with poor prognosis in HMs. We also 
found that a high level of expression of PCF11 is 
associated with poor prognosis in HM. This is 
consistent with findings from Ogorodnikov et al. [63], 
in which low expression of PCF11 was associated with 
a good prognosis in neuroblastoma. The exact role of 
PCF11 in cancer development and progressing 
remains to be determined. However, evidence 
implicates PCF11 in cancers, including head and neck 
squamous cell carcinoma [64] and oral squamous cell 
carcinoma [65]. 

The PCF11 (Cleavage and Polyadenylation 
Factor Subunit) gene product is an mRNA 3’ end 
processing complex protein, which plays a crucial role 
in producing mRNA isoforms with varying 3’ 
untranslated region (UTR) lengths. 3’ UTRs 
shortening is a hallmark of most cancer cells and that 
ubiquitination of PCF11 through MAGE-A11-HUWE1 
ubiquitin ligase promotes 3’ UTRs shortening that 
drives tumorigenesis [66]. 

Interestingly, we found HECW2 to be 
downregulated. E3 Ubiquitin-Protein Ligase gene 
(HECW2) codes for a member of the E3 ubiquitin 
ligase family and has been demonstrated to play a 
significant role in angiogenesis, the process by which 
new capillaries form from pre-existing blood vessels 

 

 
Figure 8. Overall survival analysis of (A) SRSF1, (B) HECW2, (C) SRSF6, (D) UBE2Z and (E) PCF11 in patients with Acute Myeloid Leukemia and Diffuse Large B-cell Lymphoma 
from the TCGA project. The x and y axes represent the survival time in months and survival probability, respectively. 
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[67]. Many solid tumors, including HMs, require 
angiogenesis for growth and metastasis. HECW2 
stabilizes AMOTL1, a cell-to-cell junction regulator; 
knockout of HECW2 in endothelial cells increases the 
rate of vascular permeability and sprouting 
angiogenesis [67]. Angiogenesis inhibition is a 
well-established treatment approach for many solid 
cancers. The anti-angiogenic role of HECW2 could be 
further explored as a potential therapeutic target. 

Ubiquitin Conjugating Enzyme E2 Z (UBE2Z) is 
involved in the degradation of defective proteins and 
has been shown to be highly expressed in 
hepatocellular carcinoma compared to healthy 
controls and results in poor prognosis [68]. Gene 
knockout analysis of UBE2Z using siRNA has been 
found to drastically reduce tumor cell proliferation, 
migration and invasion [68]. These findings suggest 
that UBE2Z could be a predictive biomarker for 

human cancer, including hematological malignancies. 
Alternative splicing (AS) is found in nearly every 

human gene, and aberrant alternative splicing has 
been associated with cancer [66]. The archetypal 
member of the serine/arginine-rich protein family, 
SRSF6, a proto-oncogene, has been identified as a 
significant regulator of alternative splicing in 
cancer-associated genes [69]. SRSF6 has been 
demonstrated to contribute to the regulation of 
alternative splicing in cervical cancer patients [66]. 
Studies by Yang et al. [66] revealed that in comparison 
to control cells, SRSF6 overexpression resulted in 
significantly increased apoptosis and decreased cell 
proliferation. Transcriptome analysis also showed 
that overexpression of SRSF6 in cancer cells induced 
large-scale changes in transcriptional expression 
levels and alternative splicing. 

 

 
Figure 9. Tumor immune infiltration levels analysis for (A) CDC5L, (B) HNRNPH1 and (C) RBCK1 in Diffuse Large B-cell Lymphoma (DLBC). The y-axis represents infiltration 
levels. P value definitions: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤. < 0.1. 
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Figure 10. Expression of (A) ASB2, (B) FXB041, and (C) HNRNPH1 in acute myeloid leukemia based on patient’s gender, race and age.  

 
Additionally, AS genes have been implicated in 

DNA damage response (DDR) pathways such as 
double-strand break repair. Yang et al.’s report 
indicate that SRSF6 can influence cancer growth by 
activating DDR pathways via AS regulation. These 
findings add to our understanding of the mechanisms 
behind SRSF6-mediated gene regulation and points to 
the possibility of using SRSF6 as a cancer therapeutic 
target. SRSF6 is also highly expressed in skin cancer 
[70], pancreatic cancer [71], breast cancer [72] and 
colorectal cancer [73] and promotes the survival of 
cancer cells. SRSF6 has also been found to regulate 
exon skipping, making it highly important in the 
survival of leukemic cells [74]. Moreover, Moradpoor 
et al. [75] used SRSF6 to distinguish between 
metastatic and non-metastatic breast cancer at the 
time of diagnosis. 

SRSF1 also belongs to the arginine/serine 
splicing factor family of genes, preventing exon 
skipping, invasion, and senescence and regulating 
splicing activities [76]. Dong et al. [77] found that 
downregulation of SRSF1 was associated with 
reduced apoptosis, proliferation and metastasis in 
cervical cancer patients. Zhou et al. [76] reported 
SRSF1 as a major onco-driver in several human 
cancers, including gastric cancer. Its overexpression 

has been linked to increased cell proliferation and 
metastasis of cancer cells, making it a potential 
candidate for further research as a prognostic 
biomarker in hematological malignancies. SRSF1 is 
consistently overexpressed in breast cancer samples 
and positively correlates with tumor grade and poor 
prognosis [78]. It also has the potential of increasing 
the rate of cell proliferation, migration and inhibition 
of apoptosis. Studies by Lei et al. [79] revealed that 
SRSF1 promoted tumor cell invasion and metastasis 
in hepatocellular carcinoma. Additionally, the 
knockout of SRSF1 in mouse models resulted in the 
inhibition of tumor cell migration. 

To sum up, SRSF1, HECW2, SRSF6, UBE2Z and 
PCF11 are implicated in the proliferation, apoptosis or 
metastasis of cancer cells and offer potential research 
avenues for use as diagnostic and prognostic 
biomarkers of HM management. 

Conclusion 
The present study compared HM gene 

expression patterns to non-HM samples and revealed 
five genes, SRSF1, HECW2, SRSF6, UBE2Z and PCF11 
to be associated with poor prognosis of HMs. The 
genes are novel and their exact contribution to HMs 
development and progression is unclear. Further 
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research is needed to understand the precise 
mechanism by which gene deregulation leads to poor 
prognosis in HMs. The findings also provide 
important clues for HMs and could serve as 
prognostic markers for HM treatment and 
management. 
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