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Abstract 

Backgrounds: Lung adenocarcinoma is one of the most common malignant tumors, in which 
KEAP1-NFE2L2 pathway is altered frequently. The biological features and intrinsic heterogeneities of 
KEAP1/NFE2L2-mutant lung adenocarcinoma remain unclear. 
Methods: Multiplatform data from The Cancer Genome Atlas (TCGA) were acquired to identify two 
subtypes of lung adenocarcinoma harboring KEAP1/NFE2L2 mutations. 
Bioinformatic analyses, including immune microenvironment, methylation level and mutational signature, 
were performed to characterize the intrinsic heterogeneities. Meanwhile, initial results were validated by 
using in silico assessment of common lung adenocarcinoma cell lines, which revealed consistent features 
of mutant subtypes. Furthermore, drug sensitivity screening was conducted based on public datasets. 
Results: Two mutant subtypes (P1 and P2) of 89 patients were identified in TCGA. P2 patients had 
significantly higher levels of smoking and worse survival compared with P1 patients. The P2 subset was 
characterized by active immune microenvironment and more smoking-induced genomic alterations with 
respect to methylation and somatic mutations. Validations of the corresponding features in 20 mutant cell 
lines were achieved. Several compounds which were sensitive to mutant subtypes of lung 
adenocarcinoma were identified, such as inhibitors of PI3K/Akt and IGF1R signaling pathways. 
Conclusions: KEAP1/NFE2L2-mutant lung adenocarcinoma showed potential heterogeneities. The 
intrinsic heterogeneities of KEAP1/NFE2L2 were associated with immune microenvironment and 
smoking-related genomic aberrations. 
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Introduction 
Lung cancer is the leading cause of cancer- 

associated morbidity and mortality worldwide, 
among which lung adenocarcinoma accounts for the 
highest proportion with increasing incidence rate 
[1-7]. Previous studies promoted a paradigm shift 
regarding classifying lung tumors based on the 

significant genomic alterations for therapeutic targets, 
such as epidermal growth factor receptor (EGFR) and 
anaplastic lymphoma kinase (ALK) [8-10]. The 
Kelch-like ECH-associated protein 1 (KEAP1) and the 
nuclear factor erythroid-2-related factor 2 (NFE2L2) 
mutations were found in more than 20% patients with 
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non-small cell lung cancer, which represented one of 
the most important genomic subtypes [11,12]. 
Moreover, the genomic alterations of KEAP1 and 
NFE2L2 were reported to play crucial roles in lung 
adenocarcinoma [13-15]. 

Abnormal regulations of reactive oxygen species 
contribute to the occurrence and development of 
malignant tumors [16]. The KEAP1 and NFE2L2 are 
the two main components in the stress response 
pathways. KEAP1 mediates the degradation of 
NFE2L2 to act as an adaptor protein of the Cullin 3 
(CUL3) E3 ubiquitin ligase so as to maintain the redox 
homeostasis. In the presence of oxidative stress, the 
inactivation of KEAP1 results in the release, 
accumulation, and nucleus translocation of NFE2L2 to 
counteract the damage [17,18]. The KEAP1/NFE2L2 
mutations, representing the dysfunctional activations 
of the stress response pathway, have been found in 
many malignant tumors, including lung 
adenocarcinoma [19-21]. The KEAP1-NFE2L2 can be 
hijacked by cancer cells, and the activation of the 
pathway leads to increased tumor growth and 
progression [22-24]. Nevertheless, the biological 
features and clinical implications of KEAP1/NFE2L2 
mutations remain elusive and contradictory [25]. In a 
retrospective study of 9243 patients (4647 with lung 
cancer), KEAP1/NFE2L2 mutations were associated 
with higher tumor mutational burden and higher 
programmed death-ligand 1 expression. Improved 
survival was observed in the subset of patients treated 
with immune checkpoint inhibitors [26]. On the 
contrary, patients with KEAP1/NFE2L2 mutations 
had inferior survival compared with wild-type 
patients in subgroup analyses from several trials 
regarding immunotherapy [27-29]. Concurrent 
mutations with KEAP1/NFE2L2 may also affect 
patients’ benefits from immunotherapy [30,31]. 
Moreover, Hellyer et al suggested that KEAP1/ 
NFE2L2 mutations might represent a mechanism of 
intrinsic resistance to EGFR-tyrosine kinase inhibitor 
therapy [32]. Chemoresistance was also reported to be 
associated with KEAP1/NFE2L2 mutations [33,34]. 

In our study, multiplatform data from The 
Cancer Genome Atlas (TCGA) were acquired to 
identify two subtypes of lung adenocarcinoma 
harboring KEAP1/NFE2L2 mutations. Bioinformatic 
analyses, including immune microenvironment and 
methylation level, were performed to characterize 
potential mutant subgroups. The initial results were 
validated by using in silico assessment of common 
lung adenocarcinoma cell lines, which revealed 
consistent features of KEAP1/NFE2L2-mutant 
subtypes. Furthermore, cell line samples were 
adopted for drug sensitivity screening based on 
public datasets. Potential drugs which were sensitive 

to each mutant subtype of lung adenocarcinoma were 
explored. 

Methods 
Patient cohort and cell lines data 

First, we selected all patients (565 patients) with 
primary lung adenocarcinoma in TCGA database. 
Level 3 RNA sequencing data, DNA methylation data 
(Illumina Infinium HumanMethylation 450K 
BeadChip), miRNA expression data and clinical 
information of patients with lung adenocarcinoma 
were downloaded from TCGA (https://protal.gdc. 
cancer.gov/). Somatic mutation data were selected 
based on previous studies by comprehensive analyses 
accounting for variance and batch effects [35]. Copy 
number variations (CNV) were estimated using the 
GISTIC2 method from the University of California 
Santa Cruz Xena website (https://xena.ucsc.edu). 
Patients with missing data types in the above were 
excluded (67 of 565 patients). According to the 
mutation data, patients with KEAP1/NFE2L2 
mutations were selected as the main study cohort (89 
patients). The remaining 409 patients without 
KEAP1/NFE2L2 mutations were regarded as the 
wild-type group in the subsequent analyses. 

RNA sequencing data, miRNA expression levels, 
copy number values and gene mutation status of 
common lung adenocarcinoma cell lines were 
downloaded from the Cancer Cell Line Encyclopedia 
(CCLE, https://portals.broadinstitute.org/ccle). Also, 
DNA methylation levels (Illumina Infinium 
HumanMethylation 450K BeadChip) of selected 
cancer cell lines were acquired from the Gene 
Expression Omnibus (GEO, (https://www.ncbi.nlm. 
nih.gov/geo) (GSE68379). The drug sensitivity data of 
selected cancer cell lines were obtained from the 
Genomics of Drug Sensitivity in Cancer (GDSC, 
https://www.cancerrxgene.org/). Histological 
information of each cell line was confirmed based on 
GDSC, CCLE and Cellosaurus database [36,37]. Cell 
lines with unknown data types were removed. In 
total, 20 lung adenocarcinoma cell lines with 
KEAP1/NFE2L2 mutations were identified. 

Data processing and clustering 
For the DNA methylation data, probes in sex 

chromosomes or overlapping single nucleotide 
polymorphisms were removed. Cross-reactive probes 
were also excluded according to Chen et al [38]. The 
frequencies of six base substitutions (C > A, C > G, C > 
T, T > A, T > C, and T > G) were calculated. For some 
datasets, features or probes with more than 20% 
missing values were deleted. The k-nearest neighbor 
algorithm was adopted to impute the remaining 
missing data. 
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All five data types (RNA sequencing, DNA 
methylation, miRN, copy number and base 
substitution) were integrated using the similar 
network fusion (SNF) method for both lung 
adenocarcinoma patients and cell lines. The SNF 
method constructs networks of samples for each 
available genome-wide data and efficiently fuses 
them into one network, which represents the full 
spectrum of underlying features and provides a 
comprehensive view under a given condition [39]. 
The SNF method has been used and validated in 
different types of diseases based on multi-omics data 
[40-43]. In this study, the SNF method fused all five 
datasets into one by creating a similarity matrix for 
each data type. A non-linear method based on the 
theory of message-passing was adopted to iteratively 
update and converge datasets. Afterwards, consensus 
clustering was performed to identify distinct KEAP1/ 
NFE2L2 mutated subgroups of lung adenocarcinoma 
patients and cell lines [44]. 

Bioinformatic analyses to characterize 
KEAP1/NFE2L2-mutant subgroups 

Mutant subgroups were preliminarily 
characterized by subjecting clusters for both patients 
and cell lines to Gene Set Enrichment Analysis 
(GSEA) using Hallmark, Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and Gene Ontology 
(GO) (MSigDB v7.0) gene sets [45]. Normalized 
enrichment score >1, nominal P-value <0.05, and false 
discovery rate Q-value < 0.25 were used as screening 
thresholds for GSEA. Moreover, we studied potential 
concurrent mutations in KEAP1/NFE2L2-mutant 
subsets of lung adenocarcinoma patients. 

The features of tumor immune 
microenvironment in KEAP1/NFE2L2-mutant lung 
adenocarcinoma were evaluated according to several 
previous studies. Saltz et al proposed a leukocyte 
fraction by estimating tumor-infiltrating leukocytes 
on hematoxylin and eosin stained slides using deep 
learning techniques [46]. We also used the 
“Estimation of STromal and Immune cells in 
MAlignant Tumours using Expression data 
(ESTIMATE)” method for the assessment of tumor 
immune microenvironment [47]. Li et al developed a 
public resource (Tumor IMmune Estimation 
Resource, TIMER) to study tumor-infiltrating immune 
cells by computational approaches based on RNA 
sequencing [48]. The levels of specific immune cell 
infiltration, like CD8+ T cell and macrophage, 
between mutant subgroups were compared. 
Furthermore, we compared the number of 
immunogenic mutations per sample stratified by the 
KEAP1/NFE2L2 mutant status. 

The global methylation levels (β value) between 
KEAP1/NFE2L2-mutant patient subgroups and cell 
line subsets were compared to investigate epigenomic 
alterations and potential clinical associations. Next, a 
list of smoking-related DNA methylation probes was 
obtained from a previous study conducted by Vaz et 
al. Vaz et al performed two repeated experiments 
with respect to chronic-cigarette-smoking-induced 
hypermethylated probes [49].The union of all 
reported probes was extracted and their levels 
stratified by the mutant subsets were compared. 
Somatic mutation status of KEAP1/NFE2L2-mutant 
patients was analyzed to extract mutational 
signatures using the SignatureAnalyzer [50]. 
Similarities were studied based on previously 
reported thirty mutational signatures in the Catalogue 
Of Somatic Mutations In Cancer (COSMIC, https:// 
cancer.sanger.ac.uk/cosmic) to identify the potential 
clinical associations and etiologies. 

Cancer-associated drug sensitivity data of lung 
adenocarcinoma cell lines were also downloaded 
from two sub-datasets of GDSC. Drug samples that 
were tested in < 50% cell lines were excluded. The 
natural log value of the fitted half-maximal inhibitory 
concentration [LN(IC50)] of each drug was adopted to 
select caner-associated drugs which were specifically 
sensitive to mutant subtypes (C1 and C2). Many 
attempts have been made to perform in vitro 
pharmacogenomic response analyses based on the 
publicly available GDSC datasets [51-53]. The 
parameter IC50 was also adopted in previous studies 
[54-56]. The criteria for KEAP1/NFE2L2-mutant 
specific drugs were as follows: LN(IC50)C1 or C2 < 
LN(IC50)C2 or C1, P < 0.05; LN(IC50)C1 or C2 < 
LN(IC50)WT, P < 0.05; and LN(IC50)C2 or C1 ≈ 
LN(IC50)WT, P > 0.05. However, only one C2-specific 
drug could be identified using the revised criteria: 
LN(IC50)C2 < LN(IC50)C1, P < 0.1; LN(IC50)C2 < 
LN(IC50)WT, P < 0.1; and LN(IC50)C1 ≈ LN(IC50)WT, P 
> 0.1. 

Statistical analysis 
All statistical analyses in this study were 

conducted using R version 3.6.1 (R Foundation for 
Statistical Computing, Vienna, Austria) and IBM SPSS 
Statistics 22.0 (IBM, Inc., NY, USA). Comparisons of 
immunological features and drug sensitivities were 
performed using the Kruskal-Wallis H test and 
Mann-Whitney U test. Baseline characteristics and 
co-mutations were studied by the chi-square test. 
Survival curves were estimated and compared 
following the Kaplan-Meier method and the log-rank 
test. A two-tailed P-value less than 0.05 was 
considered statistically significant. 
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Results 
Identification of subtypes of KEAP1/NFE2L2- 
mutant lung adenocarcinoma 

As previously stated in the Methods section, we 
integrated five data subtypes and clustered 89 KEAP1/ 
NFE2L2-mutant lung adenocarcinoma patients into 
two subgroups (P1 and P2 groups, Figure 1A). 
Similarly, two subtypes were identified in 20 lung 
adenocarcinoma cell lines harboring KEAP1/NFE2L2- 
mutations (C1 and C2 groups, Figure 1C). Clustering 
with two classes in both patients and cell line samples 
showed the highest silhouette values (silhouette = 
0.93 and 0.83, Figure 1B and 1D). 

Clinicopathological differences of the 
KEAP1/NFE2L2-mutant subtypes 

A significant difference was found in the 

smoking status of patients among P1, P2 and 
wild-type groups (P = 0.033, Table 1). The P2 group 
consisted of the highest proportions of current 
smokers and reformed smokers for ≤15 years, while 
P1 groups consisted of more reformed smokers ≥ 15 
years (Table 1). No significant difference of 
pathological stage was found among patients of P1, 
P2 and KEAP1/NFE2L2 wild-type lung 
adenocarcinoma (P = 0.233, Table 1). Mutant samples 
contained a significantly higher proportion of female 
patients (P = 0.003, Table 1). Survival analysis showed 
no significant difference in overall survival between 
subgroups of KEAP/NFE2L2-mutant and wild-type 
lung adenocarcinoma (P = 0.212, Figure 2A). 
However, the P2-mutant subgroup was associated 
with a significantly worse survival than the P1 
subgroup (P = 0.020, Figure 2B). 

 

 
Figure 1. The SNF fused five types of datasets and consensus clustering identifies subsets of KEAP1/NFE2L2-mutant lung adenocarcinoma in patients and 
cell lines. A. Two subsets of KEAP1/NFE2L2-mutant patients were identified. B. Silhouette values of patient clustering with the k = 2 to 7. C. Two subsets of 
KEAP1/NFE2L2-mutant cell lines were identified. D. Silhouette values of cell line clustering with the k = 2 to 5. 
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Figure 2. Survival curves of lung adenocarcinoma patients in TCGA. A. Survival curves of KEAP1/NFE2L2-mutant and wild-type patients (P = 0.212). B. Survival curves 
of KEAP1/NFE2L2-mutant patient subgroups (P1 and P2) (P = 0.020). 

 

Table 1. Baseline characteristics of wild type and KEAP1/NFE2L2- 
mutant subgroups of patients with lung adenocarcinoma in TCGA 

 Wild type Mutant P1 
group 

Mutant P2 
group 

P-value 

Age 65.3 ± 9.9 67.6 ± 7.1 64.3 ± 11.2  
Gender    0.003 
Female 234 (57.2) 12 (46.2) 22 (34.9)  
Male 175 (42.8) 14 (53.8) 41 (65.1)  
Pathological Stage    0.233* 
Stage I 226 (55.3) 14 (53.8) 30 (47.6)  
Stage II 99 (24.2) 5 (19.2) 17 (27.0)  
Stage III 67 (16.4) 5 (19.2) 9 (14.3)  
Stage IV 15 (3.7) 2 (7.7) 7 (11.1)  
Unknown 2 (0.5) 0 (0) 0 (0)  
Smoking Status    0.033* 
Non-smoker 66 (16.1) 1 (3.8) 5 (7.9)  
Current smoker 96 (23.5) 5 (19.2) 16 (25.4)  
Reformed smoker (> 15 years) 105 (25.7) 12 (46.2) 11 (17.5)  
Reformed smoker (≤ 15 years) 127 (31.1) 8 (30.8) 28 (44.4)  
Unknown 15 (3.7) 0 (0) 3 (4.8)  

* Samples with unknown information were removed when comparisons were 
conducted among groups. 

 

Basic biological features of KEAP1/NFE2L2- 
mutant subtypes 

GSEA was performed in KEAP1/NFE2L2- 
mutant subtypes in both patients and cell line cohorts. 
As shown in Figure 3A and 3B, the P2 and C2 
subtypes were both enriched in the same pathways, 
such as KRAS signaling, IL2/STAT5 signaling, 
apoptosis, and interferon alpha and gamma response. 
GSEA revealed similarities between the P2 and C2 
subtypes, validating the integration and clustering 
process to some degree. 

Moreover, both P2 and C2 subtypes were 
associated with regulations of immune-related 
pathways, such as activations of T cells and 
macrophages (Supplement Figure 1A and 1B). The 
results revealed that the P2 and C2 subgroups 
displayed active immune pathways compared with 

P1 and C1 subgroups, respectively. 
The P2 subgroup was found associated with 

higher proportions of TP53 (P < 0.001), PCLO (P = 
0.011), NF1 (P = 0.029) and PTPRT (P = 0.040) 
mutations, while the P1 subgroup may have more 
patients with STK11 (P = 0.008) mutation (Supplement 
Table 1). However, we did not validate the mutational 
associations in lung adenocarcinoma cell lines due to 
the small sample size. 

Immunological features of the 
KEAP1/NFE2L2-mutant subtypes 

The tumor-infiltrating lymphocyte fractions 
were compared according to Saltz et al stratified by 
the mutation status [46]. Compared with the 
wild-type samples, lung adenocarcinoma harboring 
KEAP1/NFE2L2 had a significantly lower lymphocyte 
fractions (P = 0.001, Figure 4A). Subgroup analyses 
revealed that the P2 group exhibited significantly 
higher lymphocyte fractions compared with the P1 
group (P < 0.001, Figure 4A). We also observed that 
significant differences of ESTIMATE scores exist 
among three groups, in which P1 was related to the 
lowest score (Figure 4B, 4C and 4D). Based on TIMER, 
a significant decrease was found in the infiltrating 
levels of CD4+ T cells (P < 0.001), CD8+ T cells (P = 
0.011), B cells (P < 0.001), neutrophils (P < 0.001), 
dendritic cells (P < 0.001), and macrophages (P = 
0.008) in the mutant subgroup (Figure 3B). Moreover, 
the P1 subgroup was associated with reduced 
infiltrations of B cells (P = 0.017), CD4+ T cells (P = 
0.001), neutrophils (P = 0.002) and dendritic cells (P = 
0.006) (Figure 4E). Furthermore, the P2 subtype was 
associated with higher number of immunogenic 
mutations than the P1 group (Figure 4F). 
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Figure 3. A. The enriched pathways in Hallmark of KEAP1/NFE2L2-mutant P2 patient subgroup. B. The enriched pathways in Hallmark of KEAP1/NFE2L2-mutant C2 cell line 
subgroup. 

 
Figure 4. Immunological features of lung adenocarcinoma patients in TCGA. A. Comparison of leukocyte fraction stratified by KEAP1/NFE2L2-mutant (P1 and P2) 
and wild-type patient subgroups (mutant group vs. wild-type group, P = 0.001; P1 group vs. P2 group, P < 0.001). B. Comparison of stromal score calculated by ESTIMATE 
algorithm stratified by KEAP1/NFE2L2-mutant (P1 and P2) and wild-type patient subgroups (P1 vs. P2 vs. wild-type group, P = 0.005). C. Comparison of immune score calculated 
by ESTIMATE algorithm stratified by KEAP1/NFE2L2-mutant (P1 and P2) and wild-type patient subgroups (P1 vs. P2 vs. mutant group, P = 0.001). D. Comparison of ESTIMATE 
score calculated by ESTIMATE algorithm stratified by KEAP1/NFE2L2-mutant. (P1 and P2) and wild-type patient subgroups (P1 vs. P2 vs. wild-type group, P = 0.001). E. 
Comparison of tumor-infiltrating immune cells stratified by KEAP1/NFE2L2-mutant (P1 and P2) and wild-type patient subgroups based on TIMER database. [mutant group vs. 
wild-type group: CD4+ T cells (P < 0.001), CD8+ T cells (P = 0.011), B cells (P < 0.001), neutrophils (P < 0.001), dendritic cells (P < 0.001), and macrophages (P = 0.008); P1 group 
vs. P2 group: B cells (P = 0.017), CD4+ T cells (P = 0.001), CD8+ T cells (P = 0.375), neutrophils (P = 0.002), macrophages (P = 0.113), and dendritic cells (P = 0.006)]. F. 
Comparison of the number of immunogenic mutations per sample stratified by KEAP1/NFE2L2-mutant (P1 and P2) and wild-type patient subgroups (P1 vs. P2 vs wild-type group, 
P < 0.001). 
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Figure 5. Epigenomic features of KEAP1/NFE2L2-mutant subgroups of lung adenocarcinoma patients and cell lines. A. Volcano plot of the global DNA 
methylation difference between patient mutant subgroups (P1 and P2). B. Volcano plot of the global DNA methylation difference between cell line mutant subgroups (C1 and 
C2). C. Volcano plot of the smoking-related methylation signatures between patient mutant subgroups (P1 and P2). D. Volcano plot of the smoking-related methylation 
signatures between cell line mutant subgroups (C1 and C2). 

 

Smoking-related genomic features of the 
KEAP1/NFE2L2-mutant subtypes of lung 
adenocarcinoma 

First, the methylation levels were compared 
across mutant subgroups. 84,700 and 64,204 
differentially hypermethylated probes were found in 
the P1 and P2 groups, respectively (Figure 5A). 
Meanwhile, 8,981 hypermethylated probes were 
found in the C1 group, while 5,933 hypermethylated 
probes were found in the C2 group (Figure 5B). Next, 
unique smoking-related probes were extracted 
according to Vaz et al [49]. Both P2 and C2 groups 
displayed a similar trend of hypermethylation 
compared with the P1 and C1 groups (Figure 5C-D). 
The results suggested that smoking-related 

epigenomic alterations might play essential roles in 
KEAP1/NFE2L2-mutant subgroups. The epigenomic 
similarities confirmed a potential resemblance 
between patient and cell line mutant subsets. 

Second, we assessed the somatic mutational 
patterns of all lung adenocarcinoma patients and 
obtained four distinctive signatures (Supplement 
Figure 2A). Among them, signature 2 subgroup (W2) 
was like Signature 4 and 29 of the thirty known 
somatic mutational signatures in the COSMIC 
database, which were closely associated with smoking 
and tobacco chewing (coefficient of cosine similarity = 
0.805 and 0.740). Then, we compared the normalized 
activities of the identified W2 mutational signature 
between KEAP1/NFE2L2-mutant subgroups. We 
found that the P2 subset had significantly higher 
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activities of W2 signature than the P1 subset 
(Supplement Figure 2B, P = 0.004), which further 
indicated possible different roles of smoking in the 
mutant subgroups. 

Screening for compounds with potential 
sensitivity to the KEAP1/NFE2L2-mutant 
subtypes 

After characterizing the clinical and biological 
features of the mutant subtypes, possible 
cancer-associated drugs which were sensitive to each 
subtype were explored. More than 400 drugs and 
compounds were tested on KEAP1/NFE2L2-mutant 
and wild-type lung adenocarcinoma cell lines in 
GDSC. This part aimed to target cancer-associated 
drugs and compounds with potential specific 
sensitivity to the C1 or C2 subset. 38 drugs, which 
were potentially sensitive to the C2 mutant subtype, 
were discovered (Supplement Table 2). Although the 
criteria were adjusted, only one C1-specific 
compound was identified (Supplement Table 2). 

C2-specific drugs were found to be mainly 
composed of the following types. First, inhibitors of 
the PI3K/Akt signaling pathways, such as afuresertib, 
AZD8186 and AMG-319 might be sensitive to the C2 
subgroup compared with the C1 and wild-type 
groups (Figure 6 and Supplement Table 2). Second, 
inhibitors of IGF1R signaling, such as BMS-536924, 
linsitinib and NVP-ADW742, showed better efficacy 
in the C2 subset (Figure 6 and Supplement Table 2). 
Moreover, drugs that target Wnt and MAPK/Erk 
signaling pathways were more toxic to the C2 
subgroup (Figure 6 and Supplement Table 2). In 
addition, chemotherapy drugs, such as docetaxel, 
epothilone B and vinorelbine were found to 
preferentially kill tumor cells of the C2 subgroup 
(Figure 6 and Supplement Table 2). Nevertheless, only 
one compound (EHT-1864) was found that might be 
sensitive to the C1 subset (Figure 6 and Supplement 
Table 2). The selected compound, EHT-1864, is an 
inhibitor of Rac1, Rac2 and Rac3 and mediated the 
reorganization of actin cytoskeleton. 

 

 
Figure 6. Screened drugs with selective sensitivity toward the KEAP1/NFE2L2-mutant subtypes. A-H. Drugs that selectively killed tumor cells of the C2 subset. I. 
Drug that selectively killed tumor cells of the C1 subset. 
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Discussion 
The KEAP1/NFE2L2 mutations were observed in 

many common malignant tumors, including lung 
adenocarcinoma [11,12,19,21], which might define a 
molecular subset of rapidly progressing tumor [57]. In 
this study, the multiplatform data from TCGA were 
adopted to identify subsets of lung adenocarcinoma 
with KEAP1/NFE2L2 mutations. Clinicopathological 
and bioinformatics analyses, such as immune 
microenvironment and methylation level, were 
performed to further explore the intrinsic 
heterogeneities of KEAP1/NEFE2L2-mutant disease. 
Moreover, cell line samples were used for drug 
sensitivity screening based on public datasets. In 
addition, CUL3 mutation was not included as the 
genomic signature in this study. CUL3 belonged to the 
ubiquitin-proteasome system, which was involved in 
many oncogenic processes, and could not be 
considered as a specific KEAP1/NFE2L2 pathway 
component [58]. 

Variations in the KEAP1-NFE2L2 pathway were 
detected in more than 20% patients with lung cancer, 
which represented one of the major molecular 
subtypes [11,12]. Goeman et al revealed that 
KEAP1/NFE2L2 mutations represented a negative 
factor of survival, which defined a rapidly 
progressing molecular subtype [57,59]. The mutant 
type showed heterogeneities, and one subset was 
associated with significantly worse survival. Cai et al 
performed a similar study and divided 
KEAP1/NFE2L2-mutant lung adenocarcinoma into 
three subsets based on gene profiling. The present 
study integrated multi-omics datasets, such as 
somatic mutation, methylation, and miRNA, to 
cluster into two subsets. P2/C2 subset displayed 
active immune pathways compared with the P1/C1 
subgroups. The controversies of the prognosis 
regarding patients with KEAP1/NFE2L2 mutations 
treated with immunotherapy may be associated with 
the distinct immune microenvironment of P1 and P2 
subgroups [25]. Ricciuti B et al revealed that lung 
adenocarcinoma harboring concurrent KRAS/STK11 
and KRAS/KEAP1 mutations display distinct 
immune profiles [30]. In this work, we also observed 
different patterns of concurrent mutations between 
mutant subsets. Clinical features, somatic mutation 
signatures and methylation levels showed potential 
associations with patients’ smoking history. Previous 
studies demonstrated that smoking led to significant 
nuclear translocation of NFE2L2, which might be 
potentially fatal in smoking-related lung 
tumorigenesis [60,61]. These findings might also be 
potential evidence of distinct KEAP1/NFE2L2 
subtypes. 

Furthermore, drug sensitivities of cell lines from 
public datasets were analyzed and several subgroup- 
specific drugs were discovered in our study. Best et al 
observed that synergy between KEAP1/NFE2L2 and 
PI3K pathways promoted lung cancer progression 
with the altered immune milieu, which supported the 
compound screening results of inhibitors of PI3K/Akt 
pathways in this study [13]. Several studies revealed 
possible associations between the two pathways 
[62,63]. The pathway analyses of this study also 
revealed that PI3K/Akt pathway was enriched in the 
P2 subgroup. Vartanian et al identified alternative 
pathways critical for NFE2L2-dependent growth in 
KEAP1-mutant cell lines, including IGF1R [64]. The 
findings in this study suggested that inhibitors of 
IGF1R signaling were effective in the C2 subtype. 
Only one alternative compound existed, which 
inhibited Rac signaling to mediate the actin 
cytoskeleton. Wu et al demonstrated that KEAP1 
stabilized F-actin cytoskeleton structures and 
inhibited focal adhesion, thereby restraining 
migrations and invasions of lung cancers [65]. 
KEAP1/NFE2L2/CUL3 represented a mechanism of 
resistance to tyrosine kinase inhibitor in patients with 
EGFR-mutant non-small cell lung cancer [32]. Most 
identified compounds in our study were sensitive to 
the C2 subgroup which represented a subset with a 
worse prognosis. However, only one compound 
showed better efficacy to the C1 group with a revised 
statistical threshold, revealing difficulties in selecting 
appropriate drugs. However, the intrinsic differences 
in immune infiltrations suggested distinct immuno-
therapy strategies, especially developing drugs for the 
C2/P2 group. Also, concurrent alterations, like STK11 
and TP53, could also be potential targets in 
KEAP1/NFE2L2-mutant diseases. 

There were also limitations that should be 
mentioned in this study. First, it had a small sample 
size of mutant cell lines and patients. The study 
explored intrinsic heterogeneities of KEAP1/NFE2L2- 
mutant lung adenocarcinoma. However, further 
studies are required to better characterize and 
precisely differentiate each mutant subtype. Although 
LN(IC50) was adopted from GDSC to measure 
compound sensitivities, more experiments should be 
conducted to test drug efficacy. 

Conclusion 
Two subtypes of KEAP1/NFE2L2-mutant lung 

adenocarcinoma were identified based on both 
patient and cell line samples, and genomic and 
clinicopathological features of KEAP1/NFE2L2 
mutations were characterized. The intrinsic 
heterogeneities of KEAP1/NFE2L2 mutations was 
found to be associated with immune 
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microenvironment and smoking-related genomic 
aberrations. 
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