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Abstract 

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, which makes the 
prognostic prediction challenging. Abnormal peroxisomes can promote the development of cancers. This 
study aimed to construct a prognostic model based on peroxisome-related genes and identify its 
prognostic prediction and immune distinction abilities in HCC. 
Methods: The prognostic model was constructed based on The Cancer Genome Atlas (TCGA) and The 
International Cancer Genome Consortium (ICGC). Kaplan-Meier curve, time-dependent receiver 
operating characteristic curve and Cox analysis were used to evaluate the model. The immune status, 
tumor microenvironment, drug sensitivity and expression levels of the mRNA and protein between HCC 
and adjacent non-tumorous tissues were analyzed and compared. 
Results: A prognostic model of 9 peroxisome-related genes was established and validated. Overall 
survival was markedly higher in the low-risk group relative to the high-risk group. The risk score was an 
independent prognostic factor. Tumor-related pathways were enriched in the high-risk group and the 
HCC patients in high-risk group showed depleted immune status. Furthermore, immune checkpoint- 
related genes, cell cycle-related genes, and multidrug resistance-related genes were overexpressed in the 
high-risk group. The expression levels of prognostic genes were negatively related to the anti-tumor 
drugs sensitivity. In addition, the expression level of each prognostic gene in HCC tissues was higher than 
that in adjacent non-tumorous tissues in an independent sample cohort and the similar results were found 
in most cancer types. 
Conclusion: A signature based on the nine peroxisome-related genes is a promising biomarker of HCC 
and is beneficial to the realization of individualized treatment. 

Key words: Hepatocellular carcinoma, Peroxisome, Gene signature, Overall survival, Immune status, Tumor 
microenvironment 

Introduction 
Hepatocellular carcinoma (HCC), the most 

common form of liver cancer, is among the highly 
prevalent types of malignancy all over the world and 
ranks the third cause of cancer-related death [1]. In 
recent years, the mortality and occurrence rate of 
HCC has been reported to be increased [2]. Because of 

the rapid development and metastasis, the prognosis 
of patients with HCC is poor [3], HCC patients 
usually diagnose at an advanced stage [4], and the 
5-year survival rate is as low as 30% [5, 6]. With the 
rapid development of gene sequencing technology, 
we have a deeper understanding of the molecular 
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pathogenesis of HCC [7, 8]. High-throughput analysis 
of a large number of samples shows that accumulated 
data can be used to identify key biomarkers related to 
HCC progression [9]. However, the number of 
biomarkers associated with HCC prognosis is still 
limited. Therefore, it’s an urgent need to explore a 
novel method to guide clinical treatments and 
improve the prognosis of HCC. 

The peroxisome is a monolayer membrane 
organelle, which exists in all kinds of eukaryotic cells 
and mediates varieties of biological processes. 
Peroxisome has been considered an important site for 
the generation and removal of free radicals in cells 
[10]. The balance mechanism of free radical 
generation and scavenging in the peroxisome is 
essential to maintain the normal function of cells [11, 
12]. When the peroxisome undergoes oxidative stress, 
free radicals will be produced, which are closely 
associated with the occurrence and development of 
human tumors, and tumor progression may be 
influenced in multiple aspects [13-15]. Moreover, 
reduced or disappeared peroxisome was found in 
lung cancer and liver cancer cells [16], and changes in 
the oxidative stress pathway of peroxisomes in tumor 
cells play a very important role in mediating the 
development of liver tumors [13]. Therefore, an 
in-depth understanding of the peroxisome process in 
HCC could provide an important solution for the 
development of a new treatment method. In recent 
years, gene chips and high-throughput sequencing 
technology have made great progress, which implies 
that the genetic signature of the peroxisome can be 
used to predict the overall survival (OS) of HCC. 

In this present study, a 9-gene risk model of 
HCC with a good performance in prognostic 
prediction was established and it was validated by the 
external validation cohort. The model was further 
evaluated under various clinical settings including 
survival, clinical-pathological characteristics, immune 
infiltration, immune pathways, immune checkpoints, 
multidrug resistance-related genes and chemo-
therapy. Besides, the expression of prognostic genes 
between HCC and adjacent normal tissues was 
validated in an independent sample cohort. The 
results showed that the model could be used as an 
independent prognostic evaluation index for HCC 
patients and could provide a new perspective for 
individual treatment for HCC patients. 

Materials and Methods 
Data collection 

Transcriptome profiling data and related clinical 
data were downloaded from the Cancer Genome 
Atlas Liver Hepatocellular Carcinoma dataset 

(TCGA-LIHC, https://portal.gdc.cancer.gov/) as the 
train cohort. The International Cancer Genome 
Consortium Liver Hepatocellular Carcinoma dataset 
Japan (ICGC-LIRI-JP, https://dcc.icgc.org/) was 
regarded as the validation cohort. The downloaded 
profiles all comply with the TCGA and ICGC data 
access rules. The inclusion standard was that the 
patients pathologically diagnosed as hepatocellular 
carcinoma. The exclusion criteria were: 1) patients 
with hepatocellular metastasis and cholangio-
carcinoma; 2) patients with co-existing cancers of 
other tissues; 3) Patients whose HCC samples lacked 
RNA sequencing data; 4) patients who lack time and 
status to survive; and 5) the follow-up with 0 day. A 
peroxisome-related gene set including 104 genes was 
retrieved from the Molecular Signatures Database 
(MsigDB, https://www.gsea-msigdb.org/gsea/ 
index.jsp), (Table S1). 

Identification of differentially expressed genes 
(DEGs) between HCC and adjacent 
non-tumorous tissues 

The R package “limma” was used to identify 
DEGs between 365 HCC and adjacent non-tumorous 
tissues with the false discovery rate (FDR) < 0.05. 
Protein-protein interaction (PPI) networks of 
differently expressed peroxisome-related genes were 
constructed by using the STRING database. 

Establishment and validation of a 
peroxisome-related prognostic model 

We firstly carried out univariate Cox regression 
analysis to find prognostic genes among the DEGs 
and identify the prognostic value of the DEGs for OS. 
Subsequently, the least absolute shrinkage selection 
operator (LASSO) Cox regression analysis was further 
performed to narrow down the number of candidate 
genes. The risk score was calculated by the following 
equation: Score =e sum (each gene’s expression × 
corresponding coefficient). And all HCC patients 
were divided into high- and low-risk groups on 
account of the median value of risk score. To validate 
the reliability of this classification, we performed 
principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) to display the 
distribution of different groups using the "Rtsne" R 
package. The Kaplan-Meier curve analysis (log-rank 
test) was used to evaluate the survival difference 
between two groups via the "Survival" R package. The 
time-dependent receiver operating characteristic 
(ROC) curves were plotted, and the area under the 
curve (AUC) values were calculated with the 
application of the “SurvivalROC” R package to assess 
the predictive ability. Then, we further validated the 
predictive capacity of this model in the ICGC cohort. 
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Identification of Independent prognostic 
factors for OS in HCC 

Univariate and multivariate Cox regression 
analyses were performed to confirm whether the 
model could be independent of other clinical 
parameters (including gender, age, histological grade, 
and tumor stage) in predicting OS of HCC patients. 

Evaluation of immune status in different risk 
groups 

We calculated the relative infiltrations of 
immune cell types and immune functional pathways 
by single sample gene set enrichment analysis 
(ssGSEA), analyzing tumor microenvironment (TME) 
in different risk groups. Six immune subtypes were 
defined to measure immune infiltrates in immune 
infiltration [17]. The association between the risk score 
and immune infiltration subtypes in TME was 
analyzed by analysis of variance (ANOVA). Tumor 
stemness features extracted from HCC transcriptomic 
were measured by stemness score based on RNA 
methylation (RNAss) [18], and Wilcoxon test was 
carried out to analyze the RNAss in different risk 
groups. 

Immune checkpoint genes, cell cycle-related 
genes, multidrug resistance genes expression 
in different risk groups 

Wilcoxon test was carried out to analyze the 
expression of immune checkpoints genes, cell 
cycle-related genes and multidrug resistance genes in 
different risk groups, respectively. Pearson 
correlation was used to analyze the correlation 
between the risk scores and the genes. 

GO and KEGG Functional Enrichment 
Analyses 

To explore main biological functions and 
signaling pathways in different risk groups, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were 
conducted through gene set enrichment analysis 
(GSEA) in GSEA software 4.1. FDR < 0.05 was 
regarded as statistically significant. 

Anti-tumor drugs sensitivity analysis 
The NCI-60 database was accessed through the 

CellMiner interface, which contains 60 different 
cancer cell lines from 9 different types of tumors 
(https://discover.nci.nih.gov/cellminer). Pearson 
correlation was used to analyze the correlation 
between the prognostic gene expression and the 263 
anti-tumor drugs proved by the FDA or obtained 
from clinical trials. The 263 drugs were showed in 
Table S2. 

qRT-PCR analysis 
The real-time quantitative-polymerase chain 

reaction (qRT-PCR) assays were used to validate the 
mRNA expression levels of the 9 prognostic genes 
screened above in 20 paired samples of HCC and 
adjacent non-tumorous tissues. The samples were 
from the First Affiliated Hospital of Wenzhou Medical 
University. And this study was approved by the 
Review of Ethics Committee in Clinical Research of 
the First Affiliated Hospital of Wenzhou Medical 
University. Written informed consents were obtained 
from all patients for the use of the biospecimens for 
research purposes. Total RNA was extracted with the 
Trizol reagent following the manufacturer’s 
instructions (Servicebio). Then cDNA was 
synthesized using reverse transcriptase that provided 
by Thermo. RT-PCR analysis was performed using 
FastStart Universal SYBR Green Master (Roche) by 
ABI StepOne (Applied Biosystems). The primers used 
are shown in Table S3. 

Immunohistochemical analysis 
The protein expression of prognostic 

peroxisome-related genes between HCC and adjacent 
non-tumorous tissues was evaluated in 10 paired 
samples by the Immunohistochemistry (IHC) method. 
Samples were fixed with 10% formalin, dehydrated 
with alcohol, xylene transparentized, embedded with 
paraffin immersion wax, and sectioned with paraffin 
microtome. The sections were dewaxed with 
conventional xylene and dehydrated with gradient 
alcohol. After the antigen was repaired, the 
endogenous peroxidase was blocked by H2O2 (3%) 
for 25 minutes, and the nonspecific bindings were 
blocked by 10% rabbit serum or 3% bovine serum 
albumin for 30 minutes. IHC staining was carried out 
for the protein expression of ABCC5, BCL10, FDPS, 
ITGB1BP1, MSH2, PABPC1, PRDX1, SLC25A19, and 
YWHAH using specific primary antibodies at 4 °C 
overnight, followed by staining with species-specific 
secondary antibodies labeled with horseradish 
peroxidase. The information of the antibodies was 
provided in Table S4. After the slices were stained 
with diaminobenzidine and counterstained with 
hematoxylin, the sample was dehydrated, 
transparent, sealed, observed, and photographed. 

Statistical analyses 
All statistical analyses were performed in R 

software (Version 4.0.2). Gene expression levels 
between HCC and adjacent non-tumorous tissues 
were analyzed by the Wilcoxon test. Differences in 
proportions were assessed by the Chi-squared test. 
Kaplan-Meier analysis was used in different groups 
for OS. Univariate and multivariate Cox regression 
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analyses were used to screen independent predictors 
for OS. Mann-Whitney test was used to compare the 
ssGSEA scores of immune cells or the activity 
immune pathways in different risk groups. Spearman 
correlation was carried out to analyze the associations 
between the risk score and immune checkpoint- 
related genes, cell cycle-related genes, and multidrug 
resistance-related genes. Pearson correlation was 
utilized to analyze the relationship of the prognostic 
gene expression to drug sensitivity. A two-tailed P < 
0.05 was considered to be statistically significant. 

Results 
Figure 1 shows the process of establishing the 

gene signature and the prognostic model of this 
study. According to the criteria for the inclusion and 
exclusion of HCC patients, we ultimately identified 

and included 365 patients from TCGA dataset and 231 
patients from ICGC dataset. The detailed clinical 
characteristics are summarized in Table 1. 

Identification of DEGs related to peroxisome 
in the TCGA cohort 

More than half of the 104 peroxisome-related 
genes (71/104, 68.3%) were differentially expressed 
between tumor and adjacent non-tumorous tissues. 
Univariate Cox regression analysis showed that 29 
DEGs were related to OS (Figure 2A). Figure 2B-C 
implies that 28 genes in the TCGA cohort had 
significantly prognostic relevance (excluded FABP6 
gene that was not expressed in most samples). The 
interactions among these candidate genes were 
shown in PPI and correlation network (Figure 2D-E). 

 

 
Figure 1. Flow chart of data collection, analysis and experiment. 
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Figure 2. Identification of candidate peroxisome-related genes in the TCGA cohort. (A) Venn diagram to identify DEGs between HCC and adjacent normal tissues. 
(B) Expression of the 28 overlapping genes between HCC and adjacent normal tissues. (C) Univariate Cox regression analysis identifying prognostic variables with HR with 95% 
CI and P values. (D) The protein-protein interaction network of candidate genes. (E) The correlation network of candidate genes. DEGs, differentially expressed genes; TCGA, 
the Cancer Genome Atlas. 

 

Establishment of the prognostic model in the 
TCGA cohort 

LASSO Cox regression analysis was performed 
to establish a prognostic model based on the 
above-mentioned 28 DEGs. Subsequently, a 9-gene 
signature was identified, consisting of ABCC5, BCL10, 
FDPS, ITGB1BP1, MSH2, PABPC1, PRDX1, SLC25A19, 
and YWHAH (Figure S1). The risk score was 
calculated as follows: score = 0.238 * expression level 
of ABCC5+ 0.144 * expression level of BCL10 + 0.022 * 
expression level of FDPS + 0.137 * expression level of 
ITGB1BP1 + 0.026 * expression level of MSH2 + 0.011 * 
expression level of PABPC1 + 0.185 * expression level 
of PRDX1 + 0.031 * expression level of SLC25A19 
+0.016 * expression level of YWHAH. The median risk 
score of the TCGA cohort served as the unified cut-off 
for dividing HCC patients into high- and low-risk 
groups (Figure 3A). Moreover, we observed that the 

high-risk group had a significantly higher percentage 
of HCC patients with worse clinicopathological 
characteristics, such as an advanced tumor stage and a 
later histological grade (Table 2). As shown in Figure 
3B, HCC patients in the high-risk group presented a 
shorter survival time and more occurrences of death. 
PCA and t-SNE analyses showed that patients in the 
two groups were distributed in two different 
directions (Figure 3E-F). Conformably, the Kaplan- 
Meier curve indicated that the prognosis of the 
high-risk group had a significantly shorter OS than 
that of the low-risk group (P<0.001) (Figure 3I). 
Time-dependent ROC curves of the prognostic model 
at 1, 2, and 3 years were 0.760, 0.679, and 0.656, 
respectively, indicating a good predictive 
performance (Figure 3J). According to the optimal 
cut-off expression value of each prognostic gene, 
survival analysis showed that the high expression 
levels of the 9 genes were all correlated to the poor 
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prognosis (P<0.05) (Figure S2A-I). Moreover, Figure 
S3 implies that the expression of each prognostic gene 
in HCC was distinctly higher than that in adjacent 
non-tumorous tissues (P<0.001). 

 

Table 1. Clinical characteristics of the HCC patients used in this 
study 

 TCGA-LIHC cohort ICGC-LIRP-JI cohort 
No. of patients 365 231 
Age (median, range) 57 (16-90) 67 (31-89) 
Gender   
Female 119 (32.6%) 61 (26.4%) 
Male 246 (67.4%) 170 (73.6%) 
Grade   
Grade 1 55 (15.1%) NA 
Grade 2 175 (47.9%) NA 
Grade 3 118 (32.3%) NA 
Grade 4 12 (3.3%) NA 
Unknown 5 (1.4%) NA 
Stage   
I 170 (46.6%) 36 (15.6%) 
II 84 (23.0%) 105 (45.5%) 
III 83 (22.7%) 71 (30.7%) 
IV 4 (1.1%) 19 (8.2%) 
Unknown 24 (6.6%) 0 (0%) 
Survival status   
Alive 235 (64.4%) 189 (81.8%) 
Deceased 130 (35.6%) 42 (18.2%) 

 

Table 2. Baseline characteristics of the patients in different risk 
groups 

Characteristics TCGA-LIHC cohort ICGC-LIRP-JI cohort 
High risk Low risk P 

value 
High risk Low risk P value 

Age       
< 60 year 84(23.0%) 81(22.2%) 0.717 22(9.5%) 22(9.5%) 0.975 
≥ 60 year 98(26.8) 102(27.9%)  93(40.3%) 94(40.7%)  
Gender       
Female 55(15.1%) 64(17.5%) 0.333 33(14.3%) 28(12.1%) 0.432 
Male 127(34.8%) 119(32.6%)  82(35.5%) 88(38.1%)  
Grade       
G1+G2 97(26.6%) 133(36.4%) <0.001 - -  
G3+G4 83(22.7%) 47(12.9%)  - -  
unknown 2(0.5%) 3(0.8%)  - -  
Stage       
I + II 120(32.9%) 134(36.7%) 0.044 62(26.8%) 79(34.2%) 0.027 
III + IV 52(14.2%) 35(9.6%)  53(22.9%) 37(16.0%)  
unknown 10(2.7%) 14(3.8%)  0(0.0%) 0(0.0%)  

 

External validation of the prognostic model in 
the ICGC cohort 

To verify whether the prognostic model is 
robust, we used the independent cohort (ICGC) for 
external validation. Similar to the results of the TCGA 
cohort, HCC patients were stratified into a high-risk 
group and a low-risk group based on the median 
value from TCGA (Figure 3C). And the high-risk 
group showed significantly poorer OS relative to the 
low-risk group (Figure 3D). PCA and t-SNE analyses 
also indicated that patients in two groups were 
distributed in discrete directions (Figure 3G-H). The 

Kaplan-Meier curve demonstrated that HCC patients 
in the high-risk group had a shorter survival time 
(Figure 3K). In the ICGC cohort, time-dependent ROC 
curves at 1, 2, and 3 years were 0.648, 0.613, and 0.637, 
respectively (Figure 3L). 

Independent prognostic value of the 9-gene 
signature 

Univariate and multivariate Cox regression 
analyses were performed to examine the predictive 
capability of the prognostic model. As shown in 
Figure 4A, univariate Cox regression analysis 
revealed that the risk score and the tumor stage were 
significantly associated with OS of HCC (P < 0.001). 
Further, multivariate Cox regression analysis 
indicated that the risk score was an independent 
prognostic factor affecting long-term survival in the 
TGCA cohort. Figure 5A shows that the AUC of the 
risk score, the stage and the risk score combined with 
the tumor stage at 3-year OS is 0.675, 0.652 and 0.722, 
respectively. The results mentioned above showed 
that the combined model had better prediction 
accuracy for OS. The same prognostic significance of 
the risk score was verified using the data obtained 
from the ICGC cohort (Figure 4B, 5B). 

Risk score and prognostic genes in different 
clinical characteristics groups 

The risk score distributed in different clinical 
characteristics groups (including gender, age, 
histological grade, and tumor stage) in HCC patients 
based on the TCGA and ICGC data is shown in Figure 
6A-G, respectively. The risk score was higher in the 
high histological grade and advanced tumor stage in 
the TCGA cohort, and a similar conclusion was seen 
in the ICGC cohort (There were no data about the 
histological grade of LICH in the ICGC cohort). 
Furthermore, combining prognostic gene expression 
levels with clinical characteristics of HCC patients 
indicated that the expression of MSH2 had significant 
differences in clinical characteristics (Figure S4A-D). 

Relationship between risk score and immune 
status 

Immune cells’ infiltration in different risk groups 
was analyzed to investigate the impact of risk score on 
TME. In the high-risk group, the infiltration of aDCs, 
iDCs, Macrophages, and Th2 cells was significantly 
increased in the TCGA and ICGC cohorts (P< 0.01), 
implying that high expression of peroxisome-related 
genes may promote the release of these immune cells 
(Figure 7A-B). In terms of immune function, we 
observed that type II IFN response in the low-risk 
group was significantly stronger than that in the 
high-risk group (Figure 7C-D). 
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Figure 3. Prognostic analysis of the 9-gene signature model in the TCGA cohort and ICGC cohort. TCGA cohort (A, B, E, F, I, J), ICGC cohort (C, D, G, H, K, L). 
(A, C) The distribution and median value of the risk scores. (B, D) Distributions of the overall survival (OS) status. (E, G) PCA plot (F, H) t-SNE analysis (I, K) Kaplan-Meier 
curves for OS of patients in the high-risk group and low-risk group. (J, L) Time-dependent ROC curves for OS. ICGC, International Cancer Genome Consortium. 

 
Figure 4. Results of the univariate and multivariate Cox regression analyses regarding OS TCGA cohort (A, C), ICGC cohort (B, D). (A, B) Univariate Cox 
regression analyses to screen OS-related factors. (C, D) Multivariate Cox regression analyses to screen OS-related factors. 

 
Subsequently, we estimated the risk score in 

different immune subtypes in HCC patients. Six 
immune subtypes defined to measure immune 
infiltrates in tumor immune response, numbered from 
lowest to the highest relative abundance of cytotoxic 
cells, were C1 (wound healing), C2 (INF-γ dominant), 
C3 (inflammatory), C4 (lymphocyte depleted), C5 

(immunologically quiet), and C6 (TGF-β dominant) 
[19]. No patient sample belonged to the C5 immune 
subtype in HCC. As shown in Figure 7E, the high-risk 
score was significantly correlated with C1 and C2, and 
the low-risk score was correlated with C3, C4, and C6. 
And the high levels of all the prognostic genes were 
positively related to the C1 and C2, showing their 
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promoting role in the process of HCC. Correlations of 
the 9 prognostic genes with the 6 immune types were 
shown in Figure S5. 

Tumor cells can gradually lose a differentiated 
phenotype and acquire progenitor and stem-cell-like 
features in the cancer progression [20]. Study suggests 
that an abundant population of tumor cells with 
stemness features may be a signal of poor prognosis in 
HCC patients [21]. Then the correlation between the 
risk model and tumor stemness measured by RNAss 
was explored. As shown in Figure 7F-G, RNAss was 

higher in the high-risk group than that in the low-risk 
group, and RNAss was positively with the risk score. 
What’s more, we observed that prognostic genes had 
a positive association with RNAss except for ABCC5, 
BCL10, and YWHAH (P< 0.0001) (Figure S6A). These 
results revealed that the high expression of prognostic 
genes in HCC correlated to increased cancer cell 
stemness was consistent with the fact that increased 
expression of prognostic genes supported worse 
survival. 

 

 
Figure 5. The area under the curve (AUC) of clinical characteristics, risk score, and the risk score combined with tumor stage at 3-year OS. (A) TCGA 
cohort, (B) ICGC cohort. 

 
Figure 6. The risk score in different groups stratified by clinical characteristics. TCGA cohort (A-D), ICGC cohort (E-F). (A, E) Age, (B, F) gender, (C) tumor grade, 
(D, G) tumor stage. 
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Figure 7. Immune status between different risk groups and the association of risk score with RNAss. TCGA cohort (A, C), ICGC cohort (B, D). (A, B) The 
scores of 16 immune cells. (C, D) The boxplots showing the 13 immune-related functions. (E) Comparison of the risk scores between different immune infiltrate subtypes. (F) 
The different scores of RNSss between HCC and adjacent normal tissues. (G) The relationship of risk score with RNAss. P values are shown as: ns, not significant; *, P < 0.05, 
** P < 0.01, ***, P < 0.001. 

 
Immune checkpoint-associated genes play an 

important role in the process of cancer [20]. We 
further explored correlations of the expression levels 
of immune checkpoint-associated genes in different 
risk groups. We found that PD-L2 and Galectin9 were 
overexpressed in the high-risk group compared with 
the low-risk group in the TCGA cohort (Figure 8A-B). 
Furthermore, the expression levels of PD-L2 and 
Galectin9 were all positively correlated with the risk 
score in the TCGA cohort (Figure 8A-B), implying 
that the prognostic model conducted in this study can 

distinguish the expression levels of the immune 
checkpoint-associated genes. What’s more, the similar 
conclusion was shown in the ICGC cohort (Figure 
8C-D). 

GO and KEGG functional enrichment analysis 
To further explore whether biological functions 

and pathways are correlated with the risk score 
signature, GO and KEGG were carried out in different 
groups in the TCGA cohort. We found that some 
cancer-related gene sets were significantly gathered in 
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HCC patients with a high-risk score. As shown in 
Figure 9, significant functions associated with 
tumorigenesis were enriched in the high-risk group 
defined by the 9−gene signature with the FDR<0.05, 
including Cell cycle G1-S phase transition, Regulation 
of autophagy, Apoptotic mitochondrial changes, 
Focal adhesion, Cell cycle pathway, Erbb signaling 
pathway, Notch signaling pathway, P53 signaling 
pathway, Wnt signaling pathway and Pathways in 
cancer. The detailed information is displayed in 
Figure S7-8. We found that cell cycle related 
pathways were upregulated in the high risk group, so 
we further looked into cell cycle related genes in 
different groups. As shown in Figure 10A-D, CDK2, 
CDK4, Cyclin and CDC25A were highly expressed in 
the high risk group, and all of them were positively 
associated with the risk score in the TCGA cohort. The 
results in the ICGC cohort were consistent with the 
TCGA cohort (Figure 10E-H). 

Analysis of the correlation between the risk 
model and multidrug resistance-related genes 
and chemotherapeutics 

To evaluate the model in the clinic for HCC 
treatment, we further explored correlations of the 
expression levels of multidrug resistance-related gens 
and the risk score in different risk groups. We found 
that the expression of MRP1, MRP3 and MRP5 were 
higher in the high-risk group than that in the low-risk 
group (Figure 11A-C). Furthermore, the expression 
levels of MRP1, MRP3 and MRP5 were all positively 
correlated with the risk score (Figure 11D-F), 
implying that the prognostic model conducted in this 

study can distinguish the expression levels of 
multidrug resistance-related genes. Based on the 
above findings, correlations of the risk score and 
sensitivity of antitumor drugs were performed and 
the results in Figure 12 showed that the prognostic 
genes were negative correlatively to some 
chemotherapy drug sensitivity. Among them, 
Fluorouracil, Doxorubicin, lenvatinib and epirubicin 
can be used in the clinical treatment of liver cancer, 
and Lenvatinib is a first-line targeted drug for the 
treatment of HCC. The more specific details are 
presented in Table S2 and Table S5. Those findings 
indicated that the model could act as a potential 
predictor for multidrug resistance-related genes and 
chemosensitivity. 

Validation of the differential expression of 
prognostic genes between HCC and adjacent 
non-tumorous tissues 

To validate the different mRNA and protein 
expression levels of the 9 prognostic genes (ABCC5, 
BCL10, FDPS, ITGB1BP1, MSH2, PABPC1, PRDX1, 
SLC25A19, and YWHAH) between HCC and adjacent 
non-tumorous tissues, qRT-PCR and IHC were 
performed. As shown in Figure 13, all the prognostic 
genes were highly expressed in HCC tissues than that 
in adjacent non-tumorous tissues, suggesting the 
same conclusion shown in the TCGA cohort and 
Figure S3. Moreover, we conducted comparisons of 
expression of prognostic genes between normal and 
tumor samples across TCGA cancer types in Figure 
14. Compared with the expression levels in normal 
samples, ABCC5, FDPS, ITGB1BP1, MSH2, PABPC1, 

 

 
Figure 8. Immune checkpoint genes expression in different risk groups and correlations of the immune checkpoint genes expression levels and the risk 
score. (A, B) TCGA cohort, (C, D) ICGC cohort. 
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PRDX1, SLC25A19 and YWHAH showed significantly 
high expression levels in most cancer types, while 
BCL10 was expressed lowly in most cancer types 
except for CHOL, LIHC, ESCA and STAD. These 
findings indicated that the expression of most 
prognostic genes in other tumors was consistent with 

that of HCC, which could further study the 
application value of this model in other tumors. At the 
same time, it also showed a significant inter-tumor 
heterogeneity considering the expression levels of 
some prognostic genes. 

 

 
Figure 9. Gene set enrichment analysis of biological function and pathway. (A) GO, Gene Ontology. (B) KEGG, Kyoto Encylcopedia of Genes and Genomes. 
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Figure 10. Expression of cell cycle related genes in different risk groups. (A-D) TCGA cohort, (E-H) ICGC cohort. 

 
Figure 11. Expression of anti-tumor drug genes in different risk groups. (A-C) TCGA cohort, (D-F) ICGC cohort. 
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Figure 12. Scatter plots of the association between the prognostic gene expression and anti-tumor drugs sensitivity. (A) ABCC5, (B) BCL10, (C) FDPS, (D) 
ITGB1BP1, (E) MSH2, (F) PABPC1, (G) PRDX, (H) SLC25A19, (I) YWHAH. 

 

Discussion 
HCC is a fatal disease with high incidence and 

poor prognosis [22, 23]. A large number of HCC 
patients are diagnosed at an advanced stage, which 
means that effective treatments are mostly lost [24]. 
The development of high-throughput sequencing 
provides an opportunity to identify biomarkers that 
predict prognosis for HCC and to enhance treatment 
to improve clinical outcomes for HCC [25, 26]. 
Therefore, it is necessary to identify key molecular 
markers that can affect the prognosis of HCC, so as to 
better achieve individualized survival prediction with 
better accuracy. 

In the present study, gene expression data were 
retrieved from TCGA and ICGC databases to classify 
prognostic DEGs between HCC and adjacent 
non-tumorous tissues. Then, a prognostic risk model 

including nine genes, which were selected by 
univariate Cox and LASSO Cox regression, was 
established. The risk model consisted of ABCC5, 
BCL10, FDPS, ITGB1BP1, MSH2, PABPC1, PRDX1, 
SLC25A19, and YWHAH was effective and stable to 
predict the prognosis of HCC patients through 
external validations. 

Among the 9 prognostic genes, ABCC5 is 
aberrantly upregulated in several human 
malignancies [27-29] and is responsible for the 
multidrug resistance phenotype causing HCC 
treatment failure based on the drug efflux pumps 
[30-32]. BCL10, a key participator in the regulation of 
DNA double-strand breaks repair [33], is commonly 
involved in promoting the growth and invasion of 
cancer cells [34-36]. Overexpression of FDPS leads to 
activation of oncogenic signaling and changes in the 
prenylation of small GTPases [37]. ITGB1 functions as 
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an oncogene in different types of human cancers [38, 
39] and the overexpression of ITGB1 is found to 
promote the growth and metastasis of HCC cells [40]. 
As far as we know, there is no report about ITGB1BP 
and HCC. The team of Hinrichsen pointed that 
up-regulation of MSH2 is positively related to the 
occurrence and metastasis of HCC [41]. Previous 
research strongly showed that PABPC1 plays a role in 
HCC and can accelerate cell proliferation [42]. High 
expression of PRDX1 in HCC tissues corresponds to 
adverse clinical outcomes, and the mechanism may be 
related to promoting tumor angiogenesis and 
regulating cell migration and invasion [43-45]. A 

recent report showed that SLC25A19 is up-regulated 
in 43 breast cancer specimens, indicating its roles in 
breast cancer [46]. The members of YWHAH are 
reported to be overexpressed in the cancerous area of 
various malignancies and they contribute to the 
carcinogenesis, including HCC [47-49]. Given the 
importance of the 9 peroxisome-related genes in kinds 
of cancer types, these genes might be potential 
prognostic biomarkers for HCC patients. However, 
the specific molecular mechanism of the 9 genes in 
HCC needs further exploration. 

 

 

 
Figure 13. Verification of the expression level of prognostic genes between HCC and adjacent normal tissue in an independent HCC cohort. (A) The 
mRNA expression level of prognostic genes in HCC and adjacent normal tissue detected by qRT-PCR. (B) Representative IHC images of prognostic genes in tumor and adjacent 
normal tissue. 
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Figure 14. Expression box diagram of gene expression in pan-cancer. (A-I) The gene expression of ABCC5, BCL10, FDPS, ITGB1BP1, MSH2, PABPC1, PRDX1, SLC25A19 
and YWHAH between tumor and adjacent normal tissue in pan-cancer. 

 
Owing to the development of microarray and 

next-generation sequencing technologies, many 
multigene prognostic models have been developed to 
predict survival for HCC patients [50, 51]. However, 
this is the first study about a prognostic model in 

HCC patients constructed using multiple peroxisome- 
related genes. The novel prognostic model was 
further evaluated under various clinical settings 
including survival. Based on the risk score signature, 
survival analysis displayed a significant difference in 
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OS between high- and low-risk groups, and high-risk 
patients always encountered death earlier than 
low-risk patients. The ROC curves suggested that our 
prognostic model had good accuracy, and the AUC 
values of 1-, 2-, and 3-year showed the good 
predictive value of the model in both short- and 
long-term follow-ups. The findings above indicated 
that the prognostic model we constructed was capable 
of general application. Besides, the risk score was an 
independent prognostic indicator in HCC in both 
training set and testing set and the ability of 
prognostic prediction was further enhanced when the 
risk score combined with the tumor stage. 

Furthermore, the immune status was different 
between the two groups. It is noteworthy that the 
high-risk group had a higher infiltration proportion of 
aDCs, iDCs, macrophages, and Th2 cells, as well as 
higher expression levels of immune checkpoints 
(PD-L2 and Galectin9). On the contrary, the patients 
in the high-risk group had lower activity of type II 
IFN response, which is described as a key to activate 
cell-mediated immune responses to control 
intracellular pathogens [52], suggesting the low 
anti-tumor immune response in the high-risk group. 
In terms of these immune cells, immune checkpoints, 
and multidrug resistance-related genes, the function 
of tumor infiltration has also been reported to be 
related to survival in HCC [53]. ANOVA showed that 
the more aggressive subtypes of immune infiltration 
(C1 and C2) were observed in the high-risk group, 
suggesting a positive correlation of prognostic gene 
expression with poor prognosis. Collectively, the 
evidence for the association between risk scores and 
immune highlighted the importance of the 
peroxisome-related gene signature in prognostic 
prediction and treatment for HCC patients. 
Compared with other prognostic models of HCC, our 
analysis provides clear additional evidence that the 
risk score model based on the prognostic genes is 
directly linked to immune infiltration, immune 
pathways and immune checkpoints. However, further 
research, including in vivo and in vitro validation, as 
well as clinical trials, is needed to evaluate the 
correlation between peroxisome-related genes and 
immune regulation more accurately in HCC. 

Cancer stem cells (CSCs) have been classified as 
a small subset of tumor cells with the characteristics to 
influence self-renewal and differentiation, which 
makes it hard to eliminate the tumor [54]. CSCs have 
been identified in numerous solid tumors, such as 
breast cancer, colon cancer, and HCC [55-57]. We 
further analyzed the relationship of the expression of 
peroxisome-related genes with RNAss in HCC. 
Interestingly, the findings were consistent with the 
fact that the expression of stem cells in various tumors 

correlates inversely with the outcome [58]. This 
strongly suggested that the model we established had 
the ability to identify the score of CSCs and provided 
the possibility that targeting those genes might inhibit 
the process of HCC via affecting CSCs. 

Accumulating evidence has indicated that 
chemotherapy of HCC is facing drug resistance, 
which leads to unsatisfactory therapeutic effect [59]. 
The high expression of multidrug resistance-related 
genes and the decrease of drug sensitivity have drawn 
the eyes [60, 61]. Thus, the further focus was on the 
prognostic model in the HCC chemotherapy. 
Consistently, the findings exhibited that MRP1, MRP3 
and MRP5 were overexpressed in the high-risk group 
than that in low-risk group, and the lower drug 
sensitivity was observed in the higher expression 
levels of each prognostic gene. The results suggested 
that lower expression of prognostic genes benefited 
the treatment with chemotherapy of HCC patients. 

Conclusion 
This study demonstrated that a novel signature 

constructed by the 9 peroxisome-related genes to 
predict the prognosis for HCC patients by the TCGA 
and ICGC cohorts. And we evaluated the novel 
prognostic model under various clinical settings 
including survival and clinical-pathological 
characteristics, immune infiltration, immune 
pathways, immune checkpoints, multidrug 
resistance-related genes and chemotherapy. Last, an 
independent sample cohort was carried out to 
validate the mRNA and protein expression levels of 
the 9 peroxisome-related genes. To sum up, this 
prognostic model can accurately predict the OS of 
HCC, distinguish the immune status of HCC, and the 
risk score is related to anti-tumor drugs. It is essential 
to systematically explore the potential role of 
peroxisome-related prognostic genes in HCC 
progression, and provided new possibilities for HCC 
therapeutic intervention. 
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