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Abstract 

Purpose: The interplay of inflammation and immunity affects all stages from tumorigenesis to 
progression, and even tumor response to therapy. A growing interest has been attracted from the 
biological function of MICALL2 to its effects on tumor progression. This study was designed to verify 
whether MICALL2 could be a prognostic biomarker to predict kidney renal clear cell carcinoma (KIRC) 
progression, inflammation, and immune infiltration within tumor microenvironment (TME). 
Methods: We firstly analyzed MICALL2 expressions across 33 cancer types from the UCSC Xena 
database and verified its expression in KIRC through GEPIA platform and GEO datasets. The 
clinicopathological characteristics were further analyzed based on the median expression. Kaplan-Meier 
method, univariate and multivariate analyses were applied to compare survival outcomes. ESTIMATE and 
CIBERSORT algorithms were performed to assess immune infiltration, and a co-expression analysis was 
conducted to evaluate the correlation between MICALL2 and immunoregulatory genes. Enrichment 
analysis was finally performed to explore the biological significance of MICALL2. 
Results: MICALL2 was highly expressed in 16 types of cancers compared with normal tissues. MICALL2 
expression increased with advanced clinicopathological parameters and was an independent predictor for 
poor prognosis in KIRC. Moreover, MICALL2 closely correlated with inflammation-promoting signatures 
and immune infiltration including T cell exhaustion markers. Consistently, MICALL2 involved in the 
regulation of signaling pathways associated with tumor immunity, tumor progression, and impaired 
metabolic activities. 
Conclusion: MICALL2 can function as a prognostic biomarker mediating inflammation, immune 
infiltration, and T cell exhaustion within the microenvironment of KIRC. 
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Introduction 
Tumor microenvironment (TME), a fertile soil 

for cancer progression, is composed of immune cells, 
bone marrow-derived inflammatory cells, fibroblasts, 
various signal molecules, extracellular matrix, and 

blood vessels [1]. As the basic characteristics of TME, 
immunity and inflammation involve in all stages of 
tumor development, but their relationship is still 
vague so far [2, 3]. The anti-tumor and tumor- 
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promoting immune and inflammatory mechanisms 
coexist in developing tumor, which will affect the 
choice of treatment strategies and the efficacy at 
different stages [4]. Moreover, there is only a small 
portion of patients who respond well to 
immunotherapy [5]. Therefore, it remains a challenge 
to explore appropriate biomarkers for predicting 
which cohort will benefit most from immunotherapy. 
In recent years, researchers have developed the 
ESTIMATE algorithm and CIBERSORT tool to assess 
immune infiltration in TME [6, 7]. The single sample 
Gene Set Enrichment Analysis (ssGSEA) has also been 
applied to quantify various immune signatures, such 
as check-point, inflammation-promoting [8, 9]. All 
these methods will help to find the potential 
biomarkers to predict immune and inflammatory 
response with which we can better select those 
responding well to immunotherapy or the combined 
therapy. 

Accumulating evidence has shown that the 
molecule interacting with CasL (MICAL) family 
participates in cytoskeleton dynamics, which is 
composed of two MICAL-L homologues (MICAL-L1, 
-L2) and three MICALs (MICAL1-3) [10]. MICAL-L2, 
with an alternative name as molecule interacting with 
CasL-like 2, is encoded by MICALL2 gene [11]. 
Previous studies have demonstrated the crucial role of 
MICALL2 in cytoskeleton reorganization, tight 
junction assembly, and neurite outgrowth [12-14]. 
Interestingly, MICALL2 also regulates the epithelial 
cell adhesion, repulsion, and even scattering [15, 16]. 
Therefore, in recent years, more attention has been 

gradually attracted from its biological function to the 
effects of MICALL2 on cancer progression. Silencing 
of MICALL2 can suppress the invasion, metastasis, 
and proliferation of ovarian cancer via regulating 
canonical Wnt/β-catenin pathway and epithelial- 
mesenchymal transition (EMT) [17]. Gastric cancer 
cell migration is also potentiated through MICALL2 
enhancing the stability of epidermal growth factor 
receptor (EGFR) [18]. In addition, MICALL2 binds to 
c-Myc and reduces its ubiquitin-dependent 
degradation, thus promoting the cell proliferation of 
non-small cell lung cancer (NSCLC) [19]. However, it 
remains poorly understood whether MICALL2 can be 
developed as an ideal biomarker to predict cancer 
progression and patient prognosis. Furthermore, it 
remains to be verified whether MICALL2 is correlated 
with immune infiltration and inflammation in TME.  

As shown in the flow process diagram (Figure 
1), we evaluated MICALL2 differential expressions 
across 33 cancer types and their corresponding 
normal tissues. Then we conducted the preliminary 
exploration on the role of MICALL2 expression in 
pan-cancers. Based on the significant results, we 
hypothesized that MICALL2 expression had close 
relation to patient prognosis, immune infiltration, and 
tumor progression in kidney renal clear cell 
carcinoma (KIRC) which was mainly investigated in 
the follow-up bioinformatics analyses. In addition, the 
potential biological functions or pathways of 
MICALL2 were screened using the gene set 
enrichment analysis (GSEA). Finally, two Gene 
Expression Omnibus (GEO) datasets were introduced 

 

 
Figure 1. The flow process diagram of MICALL2 bioinformatics analysis. 
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for further validation analysis. All these findings 
revealed that MICALL2 could serve as a prognostic 
biomarker to predict the inflammatory and immune 
response within the TME, providing theoretical 
support for the precision treatment of KIRC. 

Material and methods 
Data Acquisition 

For pan-cancer analysis, the clinicopathological 
and transcriptome data containing 33 cancer types 
were provided by UCSC Xena database (http://xena. 
ucsc.edu). KIRC dataset with normal kidney tissues 
(N) = 72, and KIRC samples (T) = 539, was provided 
by TCGA database (https://portal.gdc.cancer.gov). 
The inclusion criteria can be found on the website 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bi
n/study.cgi?study_id=phs000178.v3.p3). GSE53757 
(N = 72, T = 72) and GSE40435 (N = 101, T = 101) 
datasets were obtained from Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm. 
nih.gov/geo/).  

Gene Expression Profiling Interactive Analysis 
(GEPIA) 

GEPIA platform (http://gepia.cancer-pku.cn/), 
was used to compare MICALL2 expression levels 
between normal samples and tumor samples by 
matching TCGA normal and Genotype-Tissue 
Expression (GTEx) data (|log2FC| Cutoff =1, P-value 
Cutoff = 0.01). 

Immunohistochemistry (IHC) staining of 
clinical KIRC samples 

We analyzed 8 pairs of KIRC and adjacent 
samples from the First Affiliated Hospital of 
Wenzhou Medical University. After 65℃ baked for 2 
h, the slices then underwent dewaxing and antigen 
retrieval. 3% hydrogen peroxide was used to 
inactivate endogenous enzymes for 10 min. Following 
PBS washing and block by bovine serum albumin, the 
slices underwent 4℃ overnight incubation with 
MICALL2 antibody (#bs-18936R, Bioss Inc) 37℃ 30 
min incubation with the secondary antibody. Next, 
DAB color rendering and hematoxylin redye were 
performed for 5-10 min and 3 min, respectively. The 
measurement of integrated optical density (IOD) was 
conducted by Image Pro Plus 6.0 image software. 

Survival Analysis 
Based on MICALL2 median expression, the 

patients were divided into high-MICALL2 and 
low-MICALL2 groups. Kaplan-Meier (K-M) method 
was introduced to analyze Overall Survival (OS), 
Disease-Specific Survival (DSS), Progression-Free 
Interval (PFI) by R packages “survival” and 

“survminer”. Cox regression was further applied for 
the impact assessment of clinicopathological factors 
(pathological grade, clinical stage, T classification, and 
M classification, age, gender), and MICALL2 
expression on survival based on univariate and 
multivariate analyses. 

MICALL2 Expression and Immunity 
The ESTIMATE algorithm [7] was applied to 

assess immune infiltration (ImmuneScore, 
StromalScore, ESTIMATEScore, and TumorPurity), 
followed by the comparisons of immune infiltration 
between low-MICALL2 and high-MICALL2 
expression groups by R software packages “estimate” 
and “limma”. The tool CIBERSORT [6] was applied 
for integrative analysis between MICALL2 expression 
and 22 tumor-infiltrating immune cells (TIICs). The 
ssGSEA using R package “GSVA” was applied for the 
quantification of 11 immune signatures, including 
MHC class I, APC co inhibition, chemokine receptors 
(CCR), APC co stimulation, T cell co-inhibition, 
check-point, T cell co-stimulation, inflammation- 
promoting, parainflammation, Type I IFN response, 
and Type II IFN response [20]. The R packages 
“reshape2” and “RColorBrewer” were applied to 
perform a co-expression analysis of MICALL2 and 
immunoregulatory genes associated with major 
histocompatibility complex (MHC), immunosup-
pression, immune activation, chemokines, and 
chemokine receptors [21].  

The Biological Significance of MICALL2 
Expression in KIRC 

The GSEA software (version 4.1.0) was applied 
to perform functional enrichment analysis of 
MICALL2 in KIRC. As the reference, the annotated 
“c2.cp.kegg.v7.4.symbols.gmt” was introduced to 
explore the potential biological pathways that 
MICALL2 may regulate in KIRC. 

GEO Datasets Validation Analysis 
The GSE53757 and GSE40435 datasets were used 

to validate MICALL2 expression difference between 
KIRC samples and normal tissues. For GSE53757 
dataset, the differentially expressed genes (DEGs) 
were identified to screen the biological functions and 
signaling pathways between low-MICALL2 and 
high-MICALL2 expression samples by “limma” 
package (P-value <0.05; |logFC| >0.5). The 
enrichment tools such as Gene Ontology (GO) term, 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were then introduced to analyze the DEGs 
using R packages clusterProfiler, enrichplot, and 
ggplot2.  
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Statistical Analysis 
The comparisons of between-group MICALL2 

expressions were conducted by Wilcoxon test. The 
correlation concerning MICALL2 expression was 
analyzed by Spearman’s correlation test. K-M 
method, univariate and multivariate analyses were 
introduced to compare survival outcomes. Statistical 
analyses were performed with GraphPad Prism 
(version 8.3) and R software (version 4.1.0). Statistical 
differences were confirmed when P values were less 
than 0.05. 

Results 
Differential MICALL2 expression between 
normal and tumor tissue samples 

UCSC Xena database was introduced to analyze 
the differential expression of MICALL2 across 33 
cancer types and their corresponding normal tissues 
(Figure 2A). Our results suggested that MICALL2 was 
highly expressed in 16 types of cancers (BLCA, BRCA, 
CESC, CHOL, COAD, HNSC, KIRC, KIRP, LIHC, 
LUAD, LUSC, PRAD, READ, STAD, THCA, and 
UCEC) compared with their corresponding normal 
tissues. In contrast, MICALL2 levels were 
downregulated in PCPG tissues relative to normal 
tissues. We next preliminarily explored the role of 
MICALL2 expression in pan-cancers. Based on the 
significant results, we hypothesized that MICALL2 
expression had close relation to patient prognosis, 
tumor progression, and immune infiltration in KIRC 
which was mainly investigated in the follow-up 
bioinformatics analyses. Then we performed paired 
comparison analysis on KIRC dataset from TCGA 
database, showing that MICALL2 was upregulated in 
KIRC samples compared with paired normal samples 
(Figure 2B). Consistently, higher MICALL2 
expressions in KIRC than normal tissues were 
validated by IHC staining (Figure 2C-2D), GEPIA 
platform (Figure 2E), GSE53757 (Figure 2F), and 
GSE40435 datasets (Figure 2G). The heatmap by 
pairwise comparison also presented the significantly 
differential expression of MICALL2 in GSE40435 
dataset (Figure 2H). 

 

High MICALL2 levels associate with advanced 
clinicopathological characteristics in KIRC 
patients 

Differential MICALL2 expression was further 
examined according to the clinicopathological 
characteristics including age, gender, pathological 
grade, clinical stage, T classification, M classification, 
and N classification (Table 1). MICALL2 expressions 
in groups of G3/G4, Stage III/Stage IV, T3/T4, and 

M1 were significantly higher than those in groups of 
G1/G2, Stage I/Stage II, T1/T2, and M0, respectively 
(Figure 3A-3D). But there was no statistical difference 
in MICALL2 expression between ≤65 and >65, 
between Female and Male, between N0 and N1 
(Figure 3E-3G). Therefore, our findings revealed that 
MICALL2 expression was positively correlated with 
tumor progression. 

 

Table 1. Characteristics of patients with KIRC 

Characteristics Variables KIRC Cases (N=537) Percentages (%) 
Age ≤65 352 65.55 
 >65 185 34.45 
Gender Male 346 64.43 
 Female 191 35.57 
Pathological grade G1/G2 244 45.44 
 G3/G4 285 53.07 
 Unknown 8 1.49 
Clinical stage I/II 326 60.71 
 III/IV 208 38.73 
 Unknown 3 0.56 
T classification T1/T2 344 64.06 
 T3/T4 193 35.94 
M classification M0 426 79.33 
 M1 79 14.71 
 Unknown 32 5.96 
N classification N0 240 44.69 
 N1 17 3.17 
 Unknown 280 52.14 

 Abbreviations: KIRC, kidney renal clear cell carcinoma. 
 

MICALL2 is an independent predictor for poor 
prognosis in KIRC patients 

To reveal the association between MICALL2 
levels and prognosis in KIRC patients, we performed 
K-M survival analyses, finding that KIRC patients 
with lower MICALL2 levels had a longer OS, DSS, 
and PFI (Figure 4A-4C) compared with those with 
higher MICALL2 levels. Cox regression was further 
applied for the impact assessment of 
clinicopathological factors and MICALL2 expression 
on survival based on univariate and multivariate 
analyses. In univariate analysis, the significant 
predictors of survival included age (hazard ratio, HR, 
1.03; 95% confidence interval, 95% CI, 1.02-1.04; P 
<0.001), pathological grade (HR, 2.24; 95% CI, 
1.82-2.76; P <0.001), clinical stage (HR, 1.88; 95% CI, 
1.64-2.15; P <0.001), T classification (HR, 1.90; 95% CI, 
1.60-2.25; P <0.001), M classification (HR, 4.40; 95% CI, 
3.21-6.05; P <0.001), and MICALL2 expression (HR, 
1.16; 95% CI, 1.11-1.20; P <0.001) (Table S1). 
Furthermore, these clinicopathological factors and 
MICALL2 expression were included in multivariate 
analysis, showing that age (HR, 1.04; 95% CI, 
1.02-1.05; P <0.001), pathological grade (HR, 1.37; 95% 
CI, 1.08-1.74; P =0.01), and MICALL2 expression (HR, 
1.12; 95% CI, 1.07-1.17; P <0.001) were important 
independent predictors for poor prognosis in KIRC 
patients (Table S1, Figure 4D). 
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Figure 2. Differential expression of MICALL2 between normal and tumor tissue samples. MICALL2 expression in pan-cancers and their corresponding normal 
samples from UCSC Xena database. (B) Paired comparison analysis of MICALL2 expression between KIRC tissues and their matched normal tissues from TCGA database. 
(C-D) The immunohistochemical staining of KIRC samples and the quantitative analysis of MICALL2 shown as average optical density (IOD of positive area/tissue area under 
visual field). Scale bar=50μm. (E-G) The validation of differential MICALL2 expression by GEPIA platform, GSE53757, and GSE40435 datasets. (H) The heatmap of MICALL2 
expression by pairwise comparison in GSE40435 dataset. (*P <0.05, **P <0.01, ***P <0.001).  

 

MICALL2 correlates with the majority of 
co-expressed immunoregulatory genes 

To explore the role of MICALL2 in 
immunoregulation, we firstly performed a pan-cancer 
co-expression analysis on the immunoregulatory 
genes encoding MHC, immunosuppression, immune 
activation, chemokine receptors, and chemokines 
proteins (Table S2). Among the co-expressed 
immunoregulatory genes, the majority were 
positively correlated with MICALL2 (Figure 5A-5E). 

Furthermore, the heatmaps also revealed the positive 
correlation between MICALL2 and T cell exhaustion 
markers, such as programmed cell death protein 1 
(PD-1/PDCD1), CD160, cytotoxic T-lymphocyte- 
associated protein 4 (CTLA-4), lymphocyte activation 
gene 3 (LAG3), and T-cell immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif 
(ITIM) domain (TIGIT). Therefore, we further 
analyzed the expression difference of immuno-
regulatory genes between high-MICALL2 and 
low-MICALL2 KIRC. Among the immunoregulatory 



 Journal of Cancer 2022, Vol. 13 

 
https://www.jcancer.org 

1219 

genes with significantly different expressions, the 
majority, such as T cell exhaustion markers, had a 
higher expression in high-MICALL2 group compared 
with low-MICALL2 group (Figure 6A-6E).  

MICALL2 is a critical factor to influence 
immune infiltration in the TME  

The results in Figure 7A-7D revealed the 
immune and stromal compositions in the TME of 
KIRC. MICALL2 expression was positively correlated 
with Immune score (P <0.001), and ESTIMATE score 
(P <0.001). But it was negatively correlated with 
Tumor purity (P <0.001), and there was no significant 
difference in Stromal score (P =0.054). MICALL2 
expression had a positive correlation with the 
expression of common checkpoint genes such as 
CTLA4, PDCD1, LAG3, TIGHT, inducible T cell 

costimulator (ICOS), and indoleamine 2,3- 
dioxygenase 2 (IDO2) (Figure 7E-7J). But there was a 
negative correlation between MICALL2 expression 
and programmed cell death ligand 1 (PD-L1/CD274) 
expression (Figure 7K), and no significant difference 
between MICALL2 expression and IDO1 expression 
(Figure 7L). Next, we applied the CIBERSORT tool to 
analyze the correlation of MICALL2 expression with 
TIICs (22 immune cell types). Among them, 3 kinds of 
TIICs were positively correlated with MICALL2 
expression, including T cells regulatory (Tregs), T 
cells follicular helper, and T cells CD8, while 6 kinds 
of TIICs were negatively correlated with MICALL2 
expression, including T cells CD4 memory resting, B 
cells naive, Macrophages M2, Dendritic cells resting, 
Mast cells resting, and Neutrophils (Figure 8A-8I).  

 

 
Figure 3. The correlation of MICALL2 expression with clinicopathologic characteristics in KIRC. MICALL2 expression was positively correlated with (A) 
pathological grade, (B) clinical stage, (C) T classification, (D) M classification. But no statistical difference in MICALL2 expression was found (E) between ≤65 and >65, (F) 
between Female and Male, (G) between N0 and N1.  
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Figure 4. Prognostic value of MICALL2 in KIRC patients. (A-C) K-M analysis of the association between MICALL2 levels and OS, DSS, and PFI in KIRC. (D) The forest 
plot showing multivariate Cox regression analysis of predictive factors including age, gender, pathological grade, clinical stage, T classification, M classification, and MICALL2 
expression. (*P <0.05, **P <0.01, ***P <0.001). Abbreviations: K-M, Kaplan-Meier; PFI, Progression-Free Interval; DSS, Disease-Specific Survival; OS, overall survival. 

 
We also assessed the ratio differentiation of 22 

immune cell types. As shown in Figure 9A, the 
immune cell fractions of Tregs, T cells follicular 
helper, and T cells CD8 were higher in the 
high-MICALL2 group compared with the 
low-MICALL2 group. In contrast, the immune cell 
fractions of T cells gamma delta, Macrophages M2, 
Dendritic cells resting, Mast cells resting, Eosinophils, 
and Neutrophils were lower in the high-MICALL2 
group than the low-MICALL2 group.  

We further analyzed 11 immune signatures 
including pathways, checkpoints, and functions 
(Table S3). The immune signatures of MHC class I, 
APC co stimulation, CCR, checkpoint, inflammation- 
promoting, T cell co-stimulation, and Type I IFN 
response, had higher ssGSEA scores in the 
high-MICALL2 group than the low-MICALL2 group. 
In contrast, the ssGSEA score of Type II IFN response 
in the high-MICALL2 group was lower than that in 

the low-MICALL2 group (Figure 9B). 

MICALL2 regulates the signaling pathways 
related to tumor immunity, tumor 
progression, and cancer metabolism 

To analyze the biological significance of 
MICALL2, KIRC samples from TCGA database were 
divided into two groups. Then GSEA was introduced 
to assess those enriched KEGG pathways between 
these two groups. The genes in MICALL2 
high-expression group were mainly enriched in 
Cytosolic DNA-sensing pathway, Glycerophospho-
lipid metabolism, Hedgehog signaling pathway, 
Homologous recombination, MAPK signaling 
pathway, JAK-STAT signaling pathway, Notch 
signaling pathway, Phosphatidylinositol signaling 
system, Spliceosome, VEGF signaling pathway 
(Figure 10A). The genes in low-expression group 
were significantly enriched in metabolic pathways 
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related to Biosynthesis of unsaturated fatty acids, 
Butanoate metabolism, Citrate cycle TCA cycle, 
Glycolysis/gluconeogenesis, peroxisome, Propanoate 
metabolism, Proximal tubule bicarbonate reclamation, 
Pyruvate metabolism, Steroid biosynthesis, Valine, 

leucine and isoleucine degradation (Figure 10B). 
These findings revealed that MICALL2 could involve 
in the regulation of signaling pathways associated 
with tumor immunity, tumor progression, and cancer 
metabolism. 

 

 
Figure 5. The co-expression analysis of MICALL2 and immunoregulatory genes in pan-cancer. The heatmaps presenting the correlations of MICALL2 expression 
with immunoregulatory genes related to (A) MHC, (B) immunosuppression, (C) immune activation, (D) chemokine receptors, and (E) chemokines. (*P <0.05, **P <0.01, ***P 
<0.001). Abbreviations: MHC, major histocompatibility complex. 
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Figure 6. The expression difference of immunoregulatory genes between high-MICALL2 and low-MICALL2 KIRC. The box plots showing that those 
immunoregulatory genes with significantly different expressions between high-MICALL2 group and low-MICALL2 group, including (A) MHC genes, (B) immunosuppressive 
genes, (C) immune activation genes, (D) chemokine receptors, and (E) chemokines. (*P <0.05, **P <0.01, ***P <0.001).  

 

Biological functions and signaling pathway of 
the DEGs associated with MICALL2 
expression 

In the GSE53757 dataset, the patients were 
divided into high-MICALL2 group and low- 
MICALL2 group based on MICALL2 median 
expression level. As shown in the volcano map 
(Figure S1A), a total of 1299 DEGs were identified 
with 582 downregulated genes and 717 upregulated 
ones, of which the top 30 ones were visualized on the 

heatmap based on |logFC| values (Figure S1B). The 
GO enriched DEGs significantly focused on T cell 
activation, regulation of immune effector process, 
regulation of cell-cell adhesion, neutrophil activation, 
and positive regulation of cytokine production 
(Figure S1C). In KEGG pathway analysis, the DEGs 
mainly focused on chemokine signaling pathway, 
cytokine-cytokine receptor interaction, JAK-STAT 
signaling pathway, NF-kappa B signaling pathway, 
and cell adhesion molecules (Figure S1D). 
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Figure 7. Association of MICALL2 with the TME Composition and checkpoint gene expression. Immune score, (B) Stromal score, (C) ESTIMATE score, and (D) 
Tumor purity were analyzed through ESTIMATE algorithm calculation to reveal the immune and stromal composition in TME. (E-L) The correlation analysis between MICALL2 
expression and the expression of the common checkpoint genes. Abbreviations: TME, tumor microenvironment. 

 

Discussion 
The interplay of inflammation and immunity 

affects all aspects from tumorigenesis to progression, 
and even tumor response to therapy [22]. The 
therapeutic prospect of renal cell carcinoma (RCC), a 
highly immunogenic and vascularized cancer type 
[23], has been recently revolutionized via 
immunotherapy stimulating the immune system and 
anti-angiogenesis therapy inhibiting RCC 
angiogenesis [24]. However, RCC microenvironment, 
extensively characterizing angiogenesis, inflam-
matory, and immune signatures, exhibits the different 
responses to immune checkpoint blockade and 
anti-angiogenic therapeutics [25]. It remains a 
challenge to explore predictive and prognostic 
biomarkers for existing regimens management and 
targeting drug development. The most common 
subtype KIRC, also known as clear cell RCC (ccRCC), 

accounts for 75-80% of RCC cases [26]. For the first 
time, this present study integratedly assessed the 
effects of MICALL2 in patient prognosis, tumor 
progression, inflammatory, and immune signatures of 
KIRC. 

In this study, we analyzed the expressions of 
MICALL2 across 33 cancer types, finding that 
compared with the corresponding normal tissues, 
MICALL2 was highly expressed in 16 types of cancers 
including KIRC while MICALL2 levels were 
downregulated in PCPG tissues. We also verified the 
high expression of MICALL2 in KIRC through GEPIA 
platform and GEO datasets. In accordance with the 
pan-cancer analysis, prior studies showed that 
MICALL2 is highly expressed in ovarian cancer, 
gastric cancer, and lung cancer demonstrated by 
western blot or immunohistochemical staining 
[17-19]. In addition, MICALL2 expressions increased 
with higher pathological grade, clinical stage, T 
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classification, and M classification. Consistently, Zhu 
et al. found that the highly expressed MICALL2 
closely correlates with advanced clinicopathological 
parameters in ovarian cancer [17]. These findings 
above indicated that MICALL2 could be an oncogene, 
which plays a key role in KIRC progression. 
Interestingly, the DEGs associated with MICALL2 
expression were significantly enriched in functional 
regulation of cell-cell adhesion, and cell adhesion 
molecules, which are consistent with a previous study 
reporting MICALL2 regulation in the epithelial cell 
adhesion, repulsion, and even scattering [15, 16]. 

Furthermore, MICALL2 may involve in the regulation 
of signaling pathways associated with cancer 
progression, such as JAK-STAT signaling pathway, 
MAPK signaling pathway, and VEGF signaling 
pathway. To date, no research has reported the 
association between MICALL2 and survival 
outcomes. According to our results, K-M method 
revealed that the KIRC patients with higher MICALL2 
levels had a shorter OS, DSS, and PFI, while 
multivariate analysis suggested MICALL2 as an 
independent predictor for poor prognosis of KIRC 
patients.  

 

 
Figure 8. Correlation of MICALL2 expression with TIICs in KIRC. (A-I) Scatter plots showing that 9 kinds of TIICs were significantly correlated with MICALL2 
expression. Abbreviations: TIICs, tumor-infiltrating immune cells. 
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Figure 9. The immune infiltration difference between high-MICALL2 and low-MICALL2 groups. (A) The comparison of immune cell fraction (22 immune cell 
types). (B) The comparison of 11 immune signatures by ssGSEA algorithm. Abbreviations: ssGSEA, single sample Gene Set Enrichment Analysis. 
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Figure 10. KEGG enrichment analysis of MICALL2 in KIRC from TCGA dataset. The enriched gene sets in MICALL2 high-expression group (nominal P <0.05). (B) 
The enriched gene sets in MICALL2 low-expression group (nominal P <0.05). Curves in different colors indicate different pathways or functions. Abbreviations: KEGG, Kyoto 
Encyclopedia of Genes and Genomes. 

 
In recent years, significant changes occur in 

KIRC immunotherapy, ranging from traditional 
immunoenhancement causing frequent immune- 
related adverse events by interferon alpha (IFN-α) 
and interleukin 2 (IL-2) to the more efficacious and 
less toxic immune normalization with programmed 

cell death 1 (PD-1) or cytotoxic T lymphocyte- 
associated antigen 4 (CTLA-4) antibodies in advanced 
KIRC [27]. In this study, T cells CD8 were positively 
correlated with MICALL2 expression. Moreover, 
high-MICALL2 group possessed higher ssGSEA 
scores in the immune signatures of MHC class I, APC 
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co stimulation, checkpoint, CCR, T cell co-stimulation, 
and Type I IFN response. However, researchers have 
revealed that T cells CD8 expressing T cell exhaustion 
markers cannot perform their usual function due to 
the persistent exposure to antigenic stimulation [28]. 
One example of T cell exhaustion in KIRC is that 
TNFRSF9+ CD8+ T cells, exhibiting both effector and 
exhaustion phenotypes, are demonstrated as an 
adverse prognostic indicator [29]. Our results showed 
the increased immunosuppressive subset of CD4+ T 
cells called Tregs [30], and the upregulated T cell 
exhaustion markers such as TNFRSF9, CD160, 
CTLA4, LAG3, and TIGIT, finally leading to immune 
escape and T cell dysfunction in advanced KIRC. The 
accumulation of T follicular helper cells (Tfh), a CD4+ 
T cell subset essential for B cell response shaping, can 
produce a negative or positive prognostic effect on 
multiple cancer types. A recent study has reported 
that the interaction of CD8+ exhausted T cells and Tfh 
plays a critical role in the anti-tumor immune 
response induced by anti-PD-L1/PD-1 immuno-
therapy [31]. Our results showed a positive 
correlation between MICALL2 expression and Tfh, 
indicating that Tfh could also involve in the T cell 
exhaustion and affect the immunotherapeutic effect 
on KIRC. The DEGs associated with MICALL2 
expression were significantly enriched in T cell 
activation, regulation of immune effector process, 
cytokine-cytokine receptor interaction, and 
chemokine signaling pathway.  

Growing evidence suggests that chronic 
inflammation increases cancer risk, but their specific 
association remains unclear [22, 32]. The 
inflammatory TME is a complex network composed 
of inflammatory cells, cytokines, chemokines, 
chemokine receptors, and signaling pathways [4]. Our 
findings indicated high-MICALL2 group had higher 
ssGSEA scores in the immune signature of 
Inflammation-promoting. The molecular mechanisms 
to promote inflammation-mediated tumorigenesis by 
enrichment analysis were closely related to JAK-STAT 
signaling pathway, NF-κB signaling pathway, 
cytosolic DNA-sensing pathway, cytokine-cytokine 
receptor interaction, and chemokine signaling 
pathway, which have been summarized in prior 
studies [33, 34]. Notably, increasing evidence has 
revealed the crucial interaction between JAK-STAT 
and NF-κB signaling pathway in developing 
inflammation-induced tumor [33]. Simultaneous 
activation of STAT3 and NF-κB in stromal and tumor 
cells leads to the secretion of tumor-promoting 
factors, such as IL-6, and VEGF, triggering a positive 
feedback loop among inflammation, immunity, and 
tumorigenesis [35, 36]. These findings above indicate 
that it could be a therapeutic strategy to normalize or 

remodel the inflammatory TME of KIRC by targeting 
the inflammatory factors or enriched pathways. 

Unlike traditional Warburg effect, the subversive 
findings reveal that cellular programming drives 
immune cells and cancer cells to preferentially obtain 
glucose and glutamine, respectively [37]. Therapeutic 
strategies targeting cell-selective nutrients partition-
ing can be developed to regulate the metabolic 
activities in specific cell populations of TME [38]. Here 
we found the impaired metabolism pathways in both 
high-MICALL2 and low-MICALL2 groups, so more 
studies are expected to figure out the correlation 
between these metabolism pathways and specific cell 
populations. 

To date, this is the first report to demonstrate 
that MICALL2 could be a prognostic biomarker 
associating with cancer progression, inflammatory, 
and immune signatures of KIRC. Due to the highly 
heterogeneous, adaptive, and dynamic TME, more 
basic and preclinical studies are expected to further 
verify the specific molecular mechanism of MICILL2 
in regulating the inflammatory and immune 
functions, and the corresponding signaling pathways 
we enriched above. In addition, novel drugs targeting 
MICALL2 signaling should also be developed for the 
treatment of KIRC. It should be noted that, for KIRC, 
single agent therapy potentially causes drug 
resistance and limited therapeutic efficacy [39]. 
Further clinical studies are required to test the 
combined efficacy of anti-MICALL2 therapy with 
immune checkpoint blockade or anti-angiogenic 
therapeutics. 

Conclusion 
Here we reported for the first time that 

MICALL2 is highly expressed in multiple cancer 
types and can serve as an independent predictor for 
poor prognosis in KIRC patients. MICALL2 
expression is correlated with inflammation- 
promoting response, immune cell infiltration, and T 
cell exhaustion within the microenvironment of KIRC. 
Furthermore, MICALL2 can regulate the signaling 
pathways related to tumor immunity, tumor 
progression, and cancer metabolism. Our findings 
could provide a molecular basis of MICALL2 as a 
prognostic biomarker for the precise and personalized 
treatment of KIRC. 
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