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Abstract 

Background: The tumor microenvironment evidently affects treatment response and clinical outcome. 
This study aims to construct a tumor microenvironment-based crosstalk between immunotherapy and 
epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in lung adenocarcinoma.  
Methods: We used ESTIMATE algorithm to calculate stromal and immune scores. Differentially 
expressed genes (DEGs) were extracted based on the comprehensive analysis of immune score groups 
and EGFR-TKI resistance samples. The independent prognostic value of the five selected genes was 
assessed by univariate/multivariate Cox regression analysis, survival analysis and the receiver operating 
characteristic (ROC) curve. Correlation analysis was performed using Spearman's rho value through 
TIMER 2.0. 
Results: The Kaplan–Meier survival curve show that patients with higher immune scores have 
significantly better overall survival. We identified 1328 DEGs from immune score groups and 806 DEGs 
from the EGFR-TKI resistance cohort GSE123066. A total of 19 co-regulated genes were found, and the 
Cox regression model produced a significant statistical prognosis for five genes (CENPF, CYSLTR1, GLDN, 
PIGR and SCGB3A1). Multivariate Cox regression analysis showed that the selected five gene signatures 
could be used as independent prognostic indicators. Furthermore, GSEA and correlation analysis 
demonstrated that CENPF was positively correlated to the signalling pathway which related to EGFR-TKI 
resistance and the well-known bypass gene. 
Conclusion: Our findings indicate that CENPF, CYSLTR1, GLDN, PIGR and SCGB3A1 are independent 
prognostic biomarkers associated with acquired EGFR-TKI resistance and tumor immune cell infiltration 
in lung adenocarcinoma, and CENPF may be a potential target that can improve immunotherapy efficacy 
and overcome the acquired EGFR-TKI resistance. 

Key words: lung adenocarcinoma, tumor environment, immune cell infiltration, immunotherapy, EGFR-TKI 
resistance 

Introduction 
Lung cancer is one of the most frequently 

diagnosed malignancies and the leading cause of 
cancer related deaths [1]. It is categorised into 
adenocarcinoma (LUAD), squamous cell type and 

large cell type, and LUAD accounts for more than 40% 
of all lung cancer cases [2]. It has been reported that 
the activating mutations in tyrosine kinase domain of 
EGFR in LUAD were found 10%-15% in the American 
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and Europe and 40%-50% in Asia [3]. Small molecule 
epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR-TKIs) are clinically effective for the 
first-line treatment of EGFR-mutated NSCLC [3-5]. 
However, the efficacy is transient, and the acquired 
resistance to EGFR-TKI is inevitable after 9–14 months 
of treatment [6-9].  

The tumor microenvironment (TME) is consist of 
various cells, including endothelial cells, fibroblasts, 
immune cells and extra-cellular components that 
surround the tumor cells [10]. The TME can critically 
influence tumor initiation, progression and metastasis 
and plays a vital role in therapeutic efficacy [11]. 
Oncogenic alterations can promote an 
immunosuppressive TME through reduced tumor 
antigen expression and T-cell infiltration in tumor 
beds [12]. Tumor or stromal cells might result in 
microenvironment-induced drug resistance through 
secreting soluble factors, and tumor-associated 
macrophages have been generally considered the 
main regulators of therapeutic response in the TME 
[13].  

Immune checkpoint plays a prominent role of 
immune suppression in tumors and their 
microenvironment [14]. In addition, tumors with low 
levels of immune infiltration are associated with the 
low rate of response to programmed death-1 (PD-1) 
inhibitors [15]. PD-1 inhibitors, such as nivolumab 
and pembrolizumab, are another important treatment 
for NSCLC. Compared with docetaxel, PD-1 
inhibitors could prolong the overall survival of 
NSCLC patients who had been treated with 
platinum-based doublet chemotherapy [16, 17]. 
Moreover, a previous study found that PD-1 
inhibitors are less effective in treating NSCLC patients 
with EGFR mutations, and low levels of both 
programmed death-ligand 1 (PD-L1) and CD8+tumor 
infiltrating lymphocytes in the TME might be the 
basis of this adverse clinical response [18]. Although 
immune-checkpoint inhibitors and EGFR-TKIs have 
shown promising clinical results for LUAD [19-21], 
the link between the two treatment remains unclear.  

ESTIMATE is one of the widely used algorithms 
for quantifying the stromal and immune components 
in the TME of malignant tumor tissues [22]. It has 
shown effectiveness in a variety of malignancies, 
including breast cancer, urothelial cancer, multiple 
myeloma and neck squamous cell carcinoma [23-29] 

In this study, we estimated the immune 
components of the TME and the EGFR-TKI resistance 
related genes and then identified reliable prognostic 
biomarkers for LUAD. The newly found genes might 
render tumor cells more sensitive to EGFR-TKIs and 
immunotherapy for LUAD patients.  

Material and Methods 
Data collection  

The gene expression profiles and phenotype data 
such as pathological factors, and the survival outcome 
of the LUAD cohort, were obtained from The Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer. 
gov/). Criteria for patient selection: Primary Site is 
bronchus and lung; Project ID is TCGA-LUAD; 
Workflow Type is HTSeq-Counts; Data Category is 
Transcriptome Profiling; Data Type is Gene 
Expression Quantification. The profiles of 526 LUAD 
and 59 adjacent normal lung tissues were included in 
the study.  

Gene set GSE123066 profiles were obtained from 
Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/). According to the selection 
criteria, three gefitinib-sensitive samples (GSM34 
94550, GSM3494551, GSM3494552) and three 
gefitinib-resistant samples (GSM3494553, GSM349 
4554, GSM3494555) were included.  

Independent validation set GSE26939 profiles 
were obtained from Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/). 

Estimation of stromal and immune cells and 
identification of deferentially expressed genes 

The stromal and immune scores of the TCGA 
data were calculated by using R package ‘ESTIMATE’ 
[22]. Survival curves were constructed based on 
Kaplan–Meier (K-M) by using R package ‘survival’, 
the log‐rank test P < 0.05 was set as the cut-off. The 
DEGs were screened by using the R package ‘limma’ 
[30], | Log2 (fold change) | ≥ 1.0 and p-value < 0.05 
were set as the cut-off. 

Function and pathway enrichment analysis of 
DEGs 

The gene ontology (GO) analysis and the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed by the 
R package ‘clusterProfiler’[31], the false discovery rate 
(FDR) and p-value < 0.05 was set as the cut-off. 

Validation of prognostic value of selected 
genes for LUAD  

Univariate Cox hazards regression analysis was 
used to analyse the commonly regulated genes and 
confirm their estimated regression coefficients (β), 
and p < 0.05 was considered to have prognostic value. 
Kaplan–Meier plotter (www.kmplot.com/lung) [32] 
were used to verify the prognostic value of the 
selected genes. Immunohistochemical staining of 
prognostic genes obtained from The Human Protein 
Atlas (https://www.proteinatlas.org/) [33]. 
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Prognostic signature construction and risk 
score calculation 

The risk score formula: risk score = β gene [1] × 
Expression gene [1] +βgene [2] × Expression gene [2] +... +βgene 

[n] × Expression gene [n]. LUAD patients above the 
median risk score would be divided into the high-risk 
group, and the rest would be divided into the low-risk 
group. The ROC based on three-year survival and 
K-M survival curves were utilised to evaluate the 
diagnostic efficacies. The effects of risk score and 
clinicopathological variables on the overall survival 
were confirmed by multivariate Cox hazards 
regression analysis.  

GSEA enrichment analysis  
Among the 526 LUAD-TCGA samples, the top 

100 samples (CENPF_pos) exhibited high levels of 
CENPF expression, and the bottom 100 samples 
(CENPF_neg) displayed low levels of CENPF 
expression. Then, we performed GSEA with the 
signal-to-noise measure to rank the genes in terms of 
their association with the LUAD groups (CENPF_pos 
vs. CENPF_neg). 

PPI network construction and module analysis  
The protein-protein interaction (PPI) network 

was obtained from the STRING database [34] 
(http://string-db.org). The PPI network was 
subsequently visualised using the Cytoscape [35] 
software, and the “cytohubba” plug-in was used for 
modular analysis to identify the top 10 hub genes. 

Correlation analysis 
The correlation between CENPF and the 

EGFR-TKI resistance associated genes [6] in the 
LUAD was identified through TMIE2.0 (https:// 
cistrome.shinyapps.io/timer/), with the Spearman’s 
rho value and the estimated statistical significance [36, 
37]. 

Results  
Workflow of the current work is displayed in 

Figure 1. 

Tumor progression was associated with 
immune scores  

From the ESTIMATE analysis, immune scores 
ranging from -1284.72 to 3045.14 were generated, 
while the stromal scores ranged from -1842.88 to 
2093.33 for the 585 LUAD patients enrolled in this 
study. To detect the correlation between the 
stromal/immune scores and tumor progression. We 
divided the tumor stage into stage I + stage II and 
stage III + stage IV groups. The result shows the 
tumor progression is significantly negative correlated 
with the immune scores. The patients in the stage I + 
stage II group obtained higher immune scores than 
those in the stage III + stage IV group (Figure 2A, p < 
0.05). There was no significant association between 
the stromal scores and tumor progression (Figure 2B, 
p = 0.13).  

Immune score was positively correlated with 
overall survival  

Based on the median 
value of the stromal and 
immune scores, we divided 
the 526 patients into the high 
score groups and low score 
groups. The K-M survival 
curves showed that the overall 
survival of patients in the high 
immune score group were 
significantly better than that in 
the low immune score group 
(Figure 2C, log‐rank test p < 
0.05). Furthermore, there was 
no statistical difference in 
overall survival between high 
and low stromal score groups 
(Figure 2D, log‐rank test p = 
0.11). The correlations of the 
immune score groups and the 
clinicopathological variables 
are summarised in Table 1.  

 

 
Figure 1. Workflow of the current work. 
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Figure 2. Immune scores are associated with stage of LUAD progression and their overall survival. (A) The immune score is significantly negative associated with 
tumor progression (p < 0.05). (B) The stromal score is insignificantly associated with the early stage compared with the advanced stage (p = 0.13). (C) K-M curves showed that 
the overall survival of patients in the high immune score group were significantly better than that in the low immune score group (p < 0.05). (D) K-M survival curves show that 
there is no statistically significant difference in the stromal scores groups (p = 0.11). 

 

Table 1. Immune score expression and clinicopathological factors 
in TCGA cases. 

Characteristics Immune score P-value 
High (n=235) Low (n= 291) 

Age   0.0104 
≤65 94 154  
>65 130 129  
unknown 11 8  
Smoking History   0.0175 
smoked 113 171  
non- smoked 122 120  
Gender   0.0354 
male 97 147  
female 138 144  
Pathologic Stage   0.0341 
I 141 145  
II 56 66  
III 26 58  
IV 9 17  
no reported 3 5  
T_stage   0.0786 
T1 85 87  
T2 121 163  
T3 21 27  
T4 5 14  
Tx 3 0  
N_stage   0.0751 
N0 161 180  
N1 43 52  
N2 22 52  
N3 1 1  
Nx 8 6  
M_stage   0.381 
M0 158 196  
M1 8 17  
Mx 69 78  

Validation of the LUAD datasets from TCGA 
and identification of different expression genes 
based on the immune score groups 

The principal component analysis (PCA) result 
indicates an acceptable intra-group data repeatability 
for immune scores. The distances between samples in 
the low immune scores group were short, while those 
between samples in the high immune scores group 
were also short in dimension-1 (Dim1) (Figure 3B). 
From the comparison of the low and high immune 
score groups, we identified 1328 different expression 
genes, including 166 up-regulated genes and 1162 
down-regulated genes. The heatmap (Figure 3A) and 
the volcano plot (Figure 3C) show the representatives 
of the DEGs. 

GO and KEGG enrichment analyses 
For the biological processes (BPs), the DEGs 

were primarily enriched in the T cell activation, the 
leukocyte cell–cell adhesion, the regulation of T cell 
activation, the regulation of lymphocyte activation, 
the regulation of leukocyte cell–cell adhesion, the 
regulation of cell–cell adhesion, leukocyte migration 
and leukocyte proliferation. For the cell component 
(CC), the DEGs were primarily enriched in the 
external side of the plasma membrane, the secretory 
granule membrane, the tertiary granule MHC protein 
complex, the MHC class II protein complex, the 
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tertiary granule membrane, the endocytic vesicle and 
the membrane raft. For the molecular function (MF), 
the DEGs were mainly enriched in the cytokine 
receptor activity, the carbohydrate binding, the 
cytokine activity, the cytokine binding, the 
immunoglobulin binding, the chemokine binding, the 
chemokine activity and the cytokine receptor binding 
(Figure 3D). 

The KEGG pathway analysis showed that all the 
DEGs were primarily clustered in the cytokine–
cytokine receptor interaction, the hematopoietic cell 
lineage, the cell adhesion molecules, the viral protein 
interaction with cytokine and cytokine receptor, 
phagosome, rheumatoid arthritis, staphylococcus 
aureus infection, graft-versus-host disease, allograft 
rejection and autoimmune thyroid disease (Figure 
3E). 

Identification of DEGs in GSE123066 cohort 
and function enrichment analysis 

By comparing three Gefitinib-resistant samples 
and three Gefitinib-sensitive samples, 806 DEGs were 
identified, including 327 up-regulated genes and 479 
down-regulated genes. The heatmap (Figure 4A) and 
the volcano plot (Figure 4B) show the representatives 
of the DEGs.  

GO functional enrichment analysis revealed that 
the DEGs in the BP category were mainly enriched in 
the positive regulation of cell adhesion, extracellular 
structure organisation, extracellular matrix 
organisation, cell junction assembly, cell–substrate 
adhesion, female pregnancy, multi-multicellular 
organism process and cell junction organisation 
terms. For the enriched CC terms, the DEGs were 
primarily enriched in the collagen-containing 

 

 
Figure 3. Identification of DEGs with immune scores in LUAD and GO/ KEGG pathway enrichment analysis. (A) Heatmap of DEGs with immune scores. (B) PCA 
of samples with immune scores in LUAD. (C) The volcano graph shows the distribution of DEGs based on the immune score. The X axis represents the fold changes of DEGs, 
and the Y axis represents the adjusted p-value. Red dots present up-regulated genes and blue dots present down-regulated genes (log2 fold change >1.0, p-value < 0.05). (D) GO 
enrichment analysis of DEGs. (E) The KEGG pathway enrichment analysis of DEGs. 
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extracellular matrix, the cell–cell junction, the apical 
plasma membrane, the apical part of the cell, the 
basolateral plasma membrane, the complex of 
collagen trimers, the lateral plasma membrane and 
the cell–substrate junction. For enriched MF terms, the 
DEGs were primarily enriched in cell adhesion 
molecule binding, extracellular matrix structural 
constituent, peptidase regulator activity, extracellular 
matrix structural constituent conferring tensile 
strength, cell adhesion mediator activity, cell–cell 
adhesion mediator activity, actin binding and 
extracellular matrix binding (Figure 4C).  

The KEGG pathway revealed that all the DEGs 
were primarily enriched in the PI3K-Akt signalling 
pathway, the MAPK signalling pathway, the tight 
junction, the cell adhesion molecules, the leukocyte 
transendothelial migration, small cell lung cancer and 
the TGF-beta signalling pathway (Figure 4D). 

Identification of common DEGs in immune 
score group and EGFR-TKI resistance group 

The comparison based on immune scores and 
EGFR-TKI resistance indicates that 166 genes were 
up-regulated in the low score group, and 327 genes 
were up-regulated in the Gefitinib resistant group. 
Venn diagram revealed that only one gene CENPF 
was simultaneously contained within the two 
examined datasets (Figure 4E). 

Similarly, 1162 genes were down-regulated in 
the low score group, and 479 genes were 
down-regulated in the Gefitinib resistance group. A 
Venn diagram reveals that 18 genes, namely, LCP1, 
CD14, SPOCK2, LMO2, CYSLTR1, FRMD3, GLDN, 
DHRS9, TMEM100, SERPINA1, CST6, PIGR, 
SCGB3A1, MMP7, SHISA3 and AZGP1, were 
simultaneously contained within the two examined 
datasets (Figure 4F). 

 

 
Figure 4. Identification of DEGs in GSE123066 and GO/ KEGG pathway enrichment analysis of DEGs. (A) Heatmap of DEGs with immune scores. (B) Volcano 
maps show the distribution of DEGs. The X axis represents the fold changes of DEGs, and the Y axis represents the adjusted p-value. Red dots present up-regulated genes and 
blue dots present down-regulated genes (log2 fold change >1.0, p-value < 0.05). (C) GO enrichment analysis of DEGs. (D) The KEGG pathway enrichment analysis of DEGs. (E) 
Venn diagram shows the number of commonly up-regulated gene in low immune score group and EGFR-TKI resistance group. (F) Venn diagram shows the number of commonly 
down-regulated gene in low immune score group and EGFR-TKI resistance group. 
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Table 2. Identification of prognostic genes. 

Name Descriptions Immune score group 
low vs. high 

EGFR-TKI group 
resistant vs. sensitive 

Univariate analysis 

log2FC P.Value log2FC P.Value HR 95% CI logrank P coef 
CENPF  centromere protein F 1.0418 3.11E-15 1.2755 1.07E-06 1.2 1.1 - 1.3 0.0017 0.15 
CYSLTR1 cysteinyl leukotriene receptor 1 -1.1463 7.25E-30 -2.5646 2.88E-09 0.89 0.8 - 0.98 0.022 -0.12 
GLDN gliomedin -1.3117 2.36E-22 -1.5769 2.87E-10 0.91 0.84 - 1 0.044 -0.09 
PIGR polymeric immunoglobulin receptor -1.4312 2.01E-09 -1.6955 3.75E-10 0.94 0.9 - 0.98 0.004 -0.065 
SCGB3A1 secretoglobin family 3A member 1 -1.6343 4.55E-09 -5.0593 4.98E-15 0.93 0.9 - 0.97 0.00055 -0.069 

log2FC, log2 fold change; P.Value, Nominal P Value; HR, hazard ratio; CI, confidence interval; coef, regression coefficient. 
 

Filter out prognostic genes from common 
DEGs and constructed prognostic risk 
signature model 

The univariate Cox hazards regression analysis 
revealed that five genes (i.e., CENPF, CYSLTR1, 
GLDN, PIGR and SCGB3A1) were significantly related 
to the OS and their estimated regression coefficients 
were confirmed (P < 0.05, Table 2). Then, we 
constructed the K-M survival curves to validate the 
prognostic value of the selected genes. Remarkably, 
the high levels of CEBPF expression could 
significantly predict a poor OS, and the low levels of 
the CYSLTR1, GLDN, PIGR and SCGB3A1 expressions 
could significantly predict a poor OS (log-rank test p < 
0.05, Figures 5A–E). Multivariate Cox regression 
analysis was performed with the following factors: 
gender, age, smoking history, AJCC stage and risk 
score. The results show that the risk score is still 
significantly related to OS (Figure 5F). 

According to the following formula: risk score = 
(0.15 × Exp CENPF) + (−0.12 × Exp CYSLTR1) + (−0.09 × Exp 
GLDN) + (−0.065 × Exp PIGR) + (-0.069 × Exp SCGB3A1), we 
calculated the risk scores for LUAD patients in the 
TCGA. The sets were divided into the high- (n = 263) 
and low-risk groups (n = 263). Based on the median 
risk score, 263 patients were divided into high-risk 
group and the rest into low-risk group. The K-M 
curve shows that the OS of the low-risk group is 
significantly higher than the high-risk group (p < 0.05, 
Figure 6A). The K-M curve and ROC curves of the 
independent validation set GSE26939 showed that the 
OS of the low-risk group is significantly higher than 
the high-risk group (p < 0.05, Figure 6B). 
Immunohistochemical staining analysis of prognostic 
genes in lung cancer tissues from The Human Protein 
Atlas showed that the expression levels of CENPF 
were significantly higher than that in the normal lung 
tissue, the expression levels of CYSLTR1 were 
significantly lower than that in the normal lung tissue, 
the expression levels of GLDN were significantly 
higher than that in the normal lung tissue and the 
expression levels of PIGR were significantly lower 
than that in the normal lung tissue (Figure 6C). The 
expression levels of SCGB3A1 were not provided in 
The Human Protein Atlas. 

GSEA analysis of CENPF with EGFR-TKI 
resistance related pathways and genes 

We ranked 526 LUAD samples by their relative 
CENPF expression in the TCGA dataset and 
compared the top 100 samples (CENPF_High) and the 
bottom 100 samples (CENPF_Low) through GSEA 
KEGG enrichment analysis. Given the limited space, 
only the top 20 pathways are listed in Table 3 (NOM 
p-value < 0.05, FDR < 0.25).  

The results indicate that the CENPF_High tumor 
samples enrich the gene signatures associated with 
“small cell lung cancer” and “ErbB signalling 
pathway” compared with CENPF_Low samples 
(Figures 7A–B). The transcriptional expression 
profiles of the 45 core genes in the ErbB signalling 
pathway are presented in a heatmap (Figure 7C). To 
identify the significant module, the STRING online 
database and Cystoscope software were used to 
merge the 45 core genes. The PPI network of the core 
genes was constructed (Figure 7D), and the most 
significant module was obtained using the 
Cystoscope plug-in ‘cytohubba’ (Figure 7E and Table 
4).  

 

Table 3. KEGG pathway enrichment analysis by GSEA. 

KEGG pathway name NES NOM p-val FDR 
CELL_CYCLE 2.052  0.000  0.029  
LYSINE_DEGRADATION 2.043  0.000  0.016  
HOMOLOGOUS_RECOMBINATION 2.014  0.000  0.018  
DNA_REPLICATION 1.975  0.000  0.023  
OOCYTE_MEIOSIS 1.922  0.000  0.037  
MISMATCH_REPAIR 1.897  0.000  0.040  
NUCLEOTIDE_EXCISION_REPAIR 1.878  0.000  0.044  
UBIQUITIN_MEDIATED_PROTEOLYSIS 1.871  0.000  0.046  
BASE_EXCISION_REPAIR 1.861  0.000  0.045  
SPLICEOSOME 1.855  0.000  0.043  
SMALL_CELL_LUNG_CANCER 1.846  0.000  0.044  
PROGESTERONE_MEDIATED_OOCYTE_M
ATURATION 

1.842  0.000  0.042  

RNA_DEGRADATION 1.816  0.002  0.052  
PURINE_METABOLISM 1.786  0.004  0.068  
PYRIMIDINE_METABOLISM 1.775  0.006  0.070  
PATHWAYS_IN_CANCER 1.768  0.000  0.070  
ONE_CARBON_POOL_BY_FOLATE 1.761  0.004  0.070  
CHRONIC_MYELOID_LEUKEMIA 1.756  0.000  0.071  
ERBB_SIGNALING_PATHWAY 1.754  0.002  0.069  
CYSTEINE_AND_METHIONINE_METABO
LISM 

1.752  0.004  0.066  

NES: normalized enrichment score; NOM p-val: Nominal P Value; FDR: The false 
discovery rate. Gene sets with NOM p-value < 0.05 and FDR q-value < 0.25 are 
considered as significant. 
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Figure 5. Validation of selected prognostic genes for LUAD (A–E) K-M survival curves for each selected DEGs. Red curves represent high level of gene expression and 
black curves represent low level of gene expression in LUAD (log-rank test p < 0.05). Overall survival in months. (F) Multivariate Cox regression analysis of the association 
between clinicopathological factors and risk score. 

 

Correlation analysis of CENPF expression with 
tumor infiltering immune cells and EGFR-TKI 
resistance related genes  

The TIMER database was utilised to evaluate the 
correlations of the CENPF expression with the tumor 
infiltering immune cells and the known EGFR-TKI 
resistance related genes. The infiltering levels of the B 
cells and the dendritic cell were associated with 

cumulative survival, that is, a high level predicts good 
prognosis (log-rank test p < 0.05, Figure 8A). The 
CENPF expression was positively associated with 
infiltering neutrophil (Cor = 0.106, p < 0.05), whereas 
the CENPF expression was negatively associated with 
infiltering B cells (Cor = -0.111, p < 0.05) and 
Macrophage (Cor = -0.077, p < 0.05, Figure 8B). 
Moreover, a positive correlation existed between the 
CENPF expression and the known EGFR-TKI 
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resistance related genes, namely, PIK3CA (Cor = 0.42, 
p < 0.05), KRAS (Cor = 0.425, p < 0.05), BRAF (Cor = 
0.404, p < 0.05) and IGF1R (Cor = 0.206, p < 0.05, 
Figure 8C). 

Discussion 
In the current work, we tried to identify 

prognostic genes based on the TME which may be 
related with the EGFR-TKIs resistance and the 
efficiency of immunotherapy in LUAD.  

First, we find immune score was positively 
correlated with overall survival and advanced tumor 
stage have a lower immune score than the early stage. 
Immune suppression leads to tumor progression via 
modulating the TME in various ways, such as 
recruitment of immunosuppressive cells, 
tumor-associated myeloid-derived suppressor cells, 
tumor-associated macrophages, and Tregs to tumor 
sites by migratory and survival factors [38]. Then, we 
identified 1328 DEGs and GO term analysis revealed 
that many of these DEGs were related to the TME 

which suggested the immune cells played an 
important role in LUAD and the extracellular matrix 
molecules was closely associated with the 
establishment of the LUAD [39, 40]. In addition, 
KEGG pathway enrichment analysis shows that the 
DEGs were mainly involved in cell adhesion 
molecules and cytokine–cytokine receptor interaction, 
suggesting that the immune system was critical to 
form the complex LUAD tumor-microenvironment 
[41, 42]. These findings indicate that the up-regulation 
of the DEG in the low immune score group might be 
associated with the regulation of the TME, and 
immunosuppression was formed through this 
regulation, promoting tumor progression.  

Next, we analysed 806 DEGs from EGFR-TKI 
resistance cohort GSE123066. GO term analysis 
reveals that many of the DEGs to be enriched in the 
positive regulation of cell adhesion and extracellular 
matrix organisation, collagen-containing extracellular 
matrix and cell-cell junction, and extracellular matrix 
structural constituent. Consistent with previous 

 

 
Figure 6. Validation of selected prognostic genes for LUAD (A) K-M overall survival curve for risk score groups and ROC curves in the TCGA dataset (p < 0.05). (B) K-M 
overall survival curve for risk score groups and ROC curves in the GSE26939 (p < 0.05). (C) Immunohistochemical staining analysis of prognostic genes in lung cancer tissues from 
The Human Protein Atlas. 
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studies, the extracellular matrix serves as a 
microenvironmental clue to promoting EGFR-TKI 
resistance in lung cancer [43, 44]. Moreover, KEGG 
pathway enrichment reveals that the DEGs were 
mainly enriched in the PI3K-Akt signalling pathway, 
the MAPK signalling pathway, the tight junction, the 

cell adhesion molecules, leukocyte transendothelial 
migration, small cell lung cancer and the TGF-beta 
signalling pathway, and those pathways have been 
shown to be closely associated with promoting the 
acquired EGFR-TKI resistance and the TME [4, 45, 46].  

 

Table 4. Identification of hub genes by cytoHubba. 

Gene Name MCC DMNC MNC Degree EPC Ec Centricity Bottle Neck Radiality Betweenness Closeness Stress Clustering Coefficient 
HRAS 4.8356E+11 0.8347 39 39 18.13 0.5 2 2.97727 88.73941 41.5 700 0.57085 
KRAS 4.8351E+11 0.8675 37 37 18.23 0.5 1 2.93182 59.99892 40.5 584 0.6036 
AKT1 4.8247E+11 0.8229 39 39 18.29 0.5 4 2.97727 88.31896 41.5 702 0.56275 
MAPK1 4.7951E+11 0.8515 35 35 17.49 0.5 2 2.88636 79.52542 39.5 588 0.60336 
MTOR 4.7521E+11 0.9829 29 29 17.29 0.5 6 2.75 16.07856 36.5 216 0.74138 
MAP2K1 4.7029E+11 0.9032 30 30 16.69 0.5 3 2.77273 43.3339 37 352 0.67356 
GRB2 4.6987E+11 0.8481 37 37 17.89 0.5 4 2.93182 76.8446 40.5 590 0.59009 
SHC1 4.4966E+11 0.9771 30 30 17.01 0.5 1 2.77273 17.16792 37 242 0.72874 
MYC 4.3484E+11 0.9868 26 26 15.4 0.5 1 2.68182 10.86406 35 148 0.77231 
AKT2 4.2943E+11 0.9955 24 24 15.28 0.5 1 2.63636 8.93873 34 116 0.80072 

 
 

 
Figure 7. GSEA analysis of CENPF with EGFR-TKI resistance related pathways and genes. (A) GSEA indicated significant enrichment of EGFR-TKI resistance related 
pathway, small cell lung cancer pathway in the high expression level of CENPF. (B) ErbB signalling pathway in the high expression level of CENPF. (C) Heatmap of 45 core genes 
for enrichment of ErbB signalling pathway. (D) Based on the STRING database, a core genes PPI network was constructed. (E) Top 10 hub genes from core genes ranked by 
CytoHubba methods. 
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Figure 8. Correlation analysis of CENPF expression with tumor infiltering immune cells and EGFR-TKI resistance related genes. (A) Cumulative survival was 
significantly related to the B cell infiltering level and dendritic cell infiltering level (log-rank test p < 0.05). (B) CENPF expression was negatively associated with infiltering B cells 
(Cor = -0.111, p < 0.05) and macrophage (Cor = - 0.077, p < 0.05). (C) CENPF expression was positive correlated with PIK3CA (Cor = 0.42, p < 0.05), KRAS (Cor = 0.425, p < 
0.05), BRAF (Cor = 0.404, p < 0.05) and IGF1R (Cor = 0.206, p < 0.05). 

 
We then identified 19 common DEGs that were 

involved in the immune score group and the 
EGFR-TKI resistance cohort GSE123066. Five of these 
common DEGs were proved to be related with the 
overall survival. CENPF, CYSLTR1, GLDN, PIGR and 
SCGB3A1 were selected as the prognostic biomarkers 
associated with TME immune cell infiltration and the 
acquired EGFR-TKI resistance.  

We are particularly interested in CENPF which is 
the expression up-regulated in the low immune score 
group and EGFR-TKI resistance samples, and the 
expression level of CENPF was negatively related 
with the overall survival for LUAD. Centromere 
Protein F (CENPF) is related to the cell cycle and cell 
proliferation in several malignant tumors [47]. A 
previous study showed that the high expression level 
of CENPF in NSCLC indicated a poor clinical 
prognosis [48]. 

To further identify the functions of CENPF in 
LUAD, we performed KEGG enrichment by GSEA 
method. The result showed that small cell lung cancer 
and the ErbB signalling pathway were obviously 
enriched in CENPF high expression phenotype. These 
results are consistent with the GSE123066 KEGG 
analysis results, indicating that the high expression 
level of CENPF is related to the promotion of acquired 
EGFR-TKI resistance. Additionally, 45 core genes 
were identified in the enrichment of the ErbB 
signalling pathway, and 10 hub genes (i.e., HRAS, 
KRAS, AKT1, MAPK1, MTOR, MAP2K1, GRB2, SHC1, 

MYC, AKT2) were screened according to the 
Cytoscape plug-in cytoHubba. The mutations of 
KRAS, AKT1 and MAPK1 have been reported as 
bypass mutations which are another common 
mechanism of the acquired EGFR-TKI resistance that 
can activate the same key downstream effectors as 
EGFR, thereby promoting the growth and survival of 
tumor cells [45, 49]. Downstream of PI3K-AKT, 
increased mTOR expression is related to EGFR-TKI 
resistance in clinical samples [50]. 

The TIMER database shows that the high level of 
B cell infiltration is associated with good cumulative 
survival rate, and there is a significant negative 
correlation between the CENPF expression and the B 
cell infiltration. These findings indicate that CENPF 
may regulate the immune cell infiltration in LUAD. 
Furthermore, the CENPF expression was positively 
related with PIK3CA, KRAS, BRAF and IGF1R which 
are bypass mutations identified in acquired 
EGFR-TKI resistance patients, and all of them 
predicted a poor response to EGFR-TKI therapy 
[51-54]. These results validate the probable function of 
CENPF in promoting acquired EGFR-TKI resistance.  

In conclusion, we extracted a series of genes 
related to the tumor microenvironment based on the 
immune score calculated by the ESTIMATE 
algorithm. Then we used GEO dataset to filter out 
genes related to EGFR-TKI resistance. Survival 
analysis and Cox hazards regression analysis were 
performed to validate prognostic value. Finally, we 
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systematically identified that CENPF, CYSLTR1, 
GLDN, PIGR and SCGB3A1 are novel independent 
prognostic biomarkers associated with acquired 
EGFR-TKI resistance and immune infiltration for 
LUAD patients. Furthermore, GSEA analysis and 
TIMER2.0 were performed to detect the correlation of 
CENPF with bypass genes and tumor-infiltrating 
immune cells. However, further mechanism 
investigation has not been conducted, we believe 
these genes may provide novel insights for new 
targets to overcome EGFR-TKI resistance and 
regulation of the immune infiltration in LUAD. 
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