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Abstract 

Background: CD161 is a promising immune checkpoint mainly expressed on natural killer (NK) cells 
and is essential for immunoregulatory functions. However, it remains obscure how CD161 correlates 
with immune infiltration and patient prognosis in pan-cancer. 
Methods: We employed HPA, TCGA, GTEx, TIMER2.0, and GEPIA2 databases as well as R language to 
analyze and visualize CD161 in cancers. Our twenty-four glioma samples were sequenced for validation. 
Results: Overall, CD161 was differentially expressed between most paired cancer and normal controls. 
Higher CD161 expression was associated with poorer overall survival (OS) in the TCGA LGG (HR = 
2.18, 95%CI = 1.79-2.66, P < 0.001) and UVM (HR = 1.32, 95%CI = 1.05-1.65, P = 0.016) cohorts. In these 
two cancer types, CD161 was significantly correlated with expression levels of recognized immune 
checkpoints and the abundance of markers of specific immune subsets, including CD8+ T cells, dendric 
cells (DCs), M2 macrophages, and exhausted T cells (Texs). In addition, CD161 was involved in several 
immune pathways in LGG and UVM, highlighting its role in regulating immune processes in the context of 
oncology. 
Conclusions: CD161 is a potential prognostic biomarker and immunotherapy target in human cancers, 
especially brain lower grade gliomas. 
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Introduction 
Cancer has gradually become the top killer 

threatening human life over the past few decades [1]. 
Fortunately, with the deeper understanding of the 
intrinsic mechanisms underlying oncogenesis, resear-
chers have launched more options for combating 
cancer [2]. Flourishing efforts to target co-inhibitory 
or immune checkpoint receptors [For example, 
cytotoxic T lymphocyte associated protein 4 (CTLA-4) 
and programmed death-1 (PD-1)] responsible for an 
immunosuppressive phenotype, have shown great 
success in the treatment across various cancer types 
[3, 4]. Despite the great success of immune checkpoint 
blockade (ICB), a significant number of patients do 
not respond to currently available immunotherapies 
or acquire resistance after a certain treatment duration 

[5]. Thus, this conundrum has attracted attention for 
exploring novel immune checkpoints that can be 
safely targeted with high anti-tumor efficacy in the 
hope of achieving high response rates and better 
therapeutic outcomes. 

CD161, encoded by killer cell lectin-like receptor 
subfamily B member 1 (KLRB1), is a C-type lectin-like 
receptor expressed on human natural killer NK cells 
[6] and various T lymphocyte subsets [7]. CD161 may 
act as a lectin, binding to terminal carbohydrate gal 
alpha (1,3) gal epitopes as well as N-acetyllactosamine 
epitopes. As for the role in immunity, activation of 
CD161 resulted in significantly enhanced anti- 
CD3-induced T cell proliferation. In addition, it also 
binds to CLEC2D/LLT1 as a ligand (similar to 
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PD-1/PD-L1 axis) and inhibits NK cell-mediated 
cytotoxicity as well as interferon-γ secretion in target 
cells. 

Leveraging single-cell RNA sequencing 
(RNA-seq) analysis of tumor-infiltrating T cells in 
glioma patients, a recent study identified a T cell 
population co-expressing a cytotoxicity program and 
natural killer cell receptors. Specifically, genetic 
inactivation of KLRB1 or antibody-mediated CD161 
blockade enhances T cell-mediated killing of glioma 
cells in vitro and their anti-tumor function in vivo [8], 
identifying CD161-CLEC2D pathway as a potential 
target for immunotherapy. Furthermore, KLRB1 was 
also expressed by a subset of tumor-infiltrating CD4+ 
and CD8+ T cells in other tumor types including 
melanoma, non-small cell lung cancer (NSCLC), 
hepatocellular carcinoma, and colorectal cancer 
indicated by several published scRNA-seq datasets 
[9-12]. 

However, studies on CD161 in other tumor types 
have rarely been reported yet, which makes it 
inconclusive whether CD161 functions as an immune 
checkpoint. More comprehensive analysis of CD161 
profile in human cancer is warranted to understand 
the intrinsic role of CD161 in tumor immunity. We 
herein conducted a pan-cancer analysis to illustrate 
the profile of CD161, including expression, mutation 
status, correlation with signatures of interest, and 
contribution to patient survival. In this study, all data 
was elicited from widely applied open databases, and 
all these analyses were performed based on webtools 
and R language, version 4.0.2. 

Materials and Methods 
Data Source and Processing 

The Cancer Genome Atlas (TCGA) is a landmark 
cancer genomics program, which has molecularly 
characterized over 20,000 primary cancer and 
matched normal samples spanning thirty-three cancer 
types until April, 2021. We collected CD161 data from 
various cancer samples in the TCGA database [13]. 
Fragments per kilobase million (FPKM) values were 
transformed into transcripts per kilobase million 
(TPM) values, and were further log transformed for 
better comparisons between samples. The genotype- 
tissue expression (GTEx) database provides publicly 
available gene expression data from fifty-four normal 
tissue sites across nearly 1000 people [14]. Normal 
samples from both TCGA and GTEx databases were 
integrated for comparisons between cancer and 
normal tissues. 

CD161 Expression Profiles 
The Human Protein Atlas (HPA) is a program 

for mapping human proteins in cells, tissues and 

organs using integration of various omics 
technologies [15, 16]. We obtained the immunohisto-
chemistry results of CD161 proteins in certain tissues 
(including tumor and normal tissues) in the tissue 
atlas and pathology atlas in HPA database. 

Survival Analysis 
We used the TCGA data and performed survival 

analysis, computed the log-rank P value and hazard 
ratio (HR) with 95% confidence interval (95%CI). The 
results were displayed as forest plots (using 
“forestplot” package in R) and survival curves (using 
“survival” package in R). 

Correlation Analysis 
The correlations between CD161 and immune 

checkpoints (including but not limited to PDCD1, 
CD28 and CTLA4) were calculated [17]. In addition, 
we examined the relationship between CD161 
expression and genomic alteration signatures, inclu-
ding tumor mutation burden (TMB), microsatellite 
instability (MSI), mismatch repair (MMR) genes as 
well as DNA methyltransferases. The mismatch repair 
mechanism plays a key role in the identification and 
repair of mismatched bases during DNA replication 
and genetic recombination [18]. MMR deficiency and 
subsequent MSI, a hypermutator phenotype 
subsequent to frequent polymorphism in short 
repetitive sequences and single nucleotide 
substitution [19], lead to accumulated TMB [20]. 
Those genetic indicators besides DNA methyl-
transferases are closely linked to tumorigenesis and 
considered as independent predictors of immuno-
therapy efficacy [21, 22]. 

Immune Infiltration and Enrichment Analysis 
Tumor purity was estimated using “estimate” 

package in R. Stromal and Immune score represented 
the abundance of stromal and immune components, 
respectively. ESTIMATE score, the sum of stromal 
and immune scores, represents tumor purity to some 
extent. Tumor IMmune Estimation Resource 2.0 
(TIMER2.0) web server is a comprehensive resource 
for systematic analysis of immune infiltrates across 
diverse cancer types [23, 24]. We assessed the 
correlations between CD161 and six infiltrating 
lymphocytes, as well as the markers for immune cell 
subsets including CD8+ T cells, total T cells, B cells, 
monocytes, tumor-associated macrophages (TAMs), 
M1 and M2 macrophages, neutrophils, NK cells, DCs, 
Th1 cells, type 2 helper T cell (Th2), Tfh cells, type 17 
helper T cell (Th17), Tregs, exhausted T cells, and 
follicular dendritic cells (FDC) [25, 26]. Those 
correlations were re-analyzed using Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2) [27, 28]. 
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RNA Sequencing of Glioma Samples 
We included twenty-four glioma samples 

diagnosed at the Department of Neurosurgery, 
Xiangya Hospital from June 2018 to July 2021. Patients 
with the presence of other cancers or serious 
underlying diseases were excluded. Their clinical 
information was summarized in Table S1. 

In brief, the fresh glioma samples were collected 
and then immediately stored in liquid nitrogen. Total 
RNA was extracted from the tissues using TRIzol 
(Invitrogen, Carlsbad, CA, USA) according to the 
instructions. Subsequently, NanoDrop and Agilent 
2100 bioanalyzer (Thermo Fisher Scientific, MA, USA) 
were used to quantify total RNA, which was purified 
and fragmented into small pieces. Then, first- and 
second-strand cDNA were synthesized. The cDNA 
fragments were further amplified by polymerase 
chain reaction (PCR) after incubating with A-tailing 
mix and RNA Adapter Index for end repair. The 
qualified double-stranded PCR products were then 
used to construct the final library (single-stranded 
circular DNA). Eventually, the 24 qualified glioma 
samples were further sequenced on a BGISEQ-500 
platform (BGI-Shenzhen, China). The gene expression 
levels were calculated using RSEM (v1.2.12). 

Statistical Analysis 
Student’s t-test and analysis of variance 

(ANOVA) test were used for comparisons between 
two groups and for comparisons of more than two 
groups, respectively. Spearman’s correlation analysis 
was used to measure the degree of correlation 
between certain variables, and the following R/rho 
values were used to judge the correlations: 0-0.19, 
‘very weak’; 0.20-0.39, ‘weak’; 0.40-0.59, ‘moderate’; 
0.60-0.79, ‘strong’; 0.80-1.00, ‘very strong’. In most 
analysis, P < 0.05 was the significance threshold. 

Results 
KLRB1/CD161 Expression Profiles in Human 
Cancers 

Consistent high expression level of KLRB1 
mRNA were observed in tumor samples of BRCA, 
CHOL, COAD, ESCA, GBM, HNSC, KIRH, KIRC, 
LGG, LIHC, LUAD, LUSC, STAD, and THCA than 
normal tissue based on both comparisons (Figure 1A). 
Considering that the number size of normal tissue in 
the TCGA database is too small to be statistically 
convincing (e.g., TCGA glioblastoma multiforme 
(GBM) cohort has only five normal controls), we 
integrated the GTEx and TCGA databases to reflect 
the KLRB1 mRNA expression landscape in a more 
convincing manner, and found that KLRB1 mRNA 
level was consistently elevated in most cancers 
including ACC, BLCA, CESC, CHOL, COAD, ESCA, 

 

 
Figure 1. KLRB1/CD161 expression levels in different cancer types. (A) The expression level of KLRB1 mRNA between tumor and normal tissues in twenty cancer types based 
on the TCGA database. (B) The expression level of KLRB1 mRNA between tumor and normal tissues in twenty-seven cancer types based on the integrated database from TCGA 
and GTEx datasets. (C-F) Representative IHC images of CD161 expression in glioma, lung cancer, brain cortex, and normal lung tissues. 
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GBM, HNSC, KIRC, LAML, LGG, LUSC, OV, PAAD, 
PRAD, SKCM, STAD, TGCT, THCA, and UCS 
compared to GTEx normal controls (Figure 1B). To 
detect the CD161 protein expression profiles in 
human tissues, we evaluated it in various tumor and 
normal tissues using the HPA database. As showed in 
immunohistochemistry results (Figure 1C & D), 
CD161 protein was mainly distributed in cytoplasm 
or membrane, and was upregulated in several cancers 
such as glioma and lung cancer compared with 
corresponding normal tissues. Detailed information 
of IHC results was summarized in Table 1. 

The Association between KLRB1/CD161 
Expression and Cancer Patient’s Prognosis 

To understand how CD161 impacts patient 
prognosis, we used cox regression model based on 
TCGA RNA-seq and clinical data to analyze the 
prognosis of thirty-three TCGA cancer types. As 

shown in Figure 2A, elevated KLRB1 mRNA 
expression was significantly related to prolonged OS 
time in ACC (HR = 0.69, 95%CI = 0.48-0.98, P = 
0.0370), BRCA (HR = 0.94, 95%CI = 0.91-0.98, P = 
0.0014), CESC (HR = 0.93, 95%CI = 0.88-0.98, P = 
0.0039), HNSC (HR = 0.94, 95%CI = 0.90-0.98, P = 
0.0016), LIHC (HR = 0.95, 95%CI = 0.92-0.99, P = 
0.0063), LUAD (HR = 0.98, 95%CI = 0.96-1.00, P = 
0.0250), OV (HR = 0.94, 95%CI = 0.88-1.00, P = 0.0490), 
SKCM (HR = 0.95, 95%CI = 0.91-0.98, P = 0.0014), and 
UCEC (HR = 0.86, 95%CI = 0.79-0.93, P = 0.0005). On 
the contrary, increased KLRB1 mRNA level was 
uniquely associated with unfavorable outcome in 
LGG (HR = 1.09, 95%CI = 1.01-1.17, P = 0.0190) and 
UVM (HR = 1.32, 95%CI = 1.05-1.65, P = 0.0160), the 
Kaplan-Meier survival curves of which were 
displayed as Figure 2B. And the survival curves with 
significance were summarized in Figure S1. 

 

 
Figure 2. Survival analysis comparing the high and low expression of KLRB1 on overall survival across different cancers in the TCGA dataset. (A) Forest plot displaying the impact 
of high expression of KLRB1 mRNA on OS across thirty-three cancer types. (B-C) The correlation between high KLRB1 mRNA expression and unfavorable prognosis in LGG and 
UVM cohorts. 
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Figure 3. Correlation between CD161 expression with immune abundance based on ESTIMATE algorithm. (A-B) The correlations between CD161 with Stromal Score, 
Immune Score, and Estimate Score in LGG and UVM were displayed as scatter plots. (C) The correlations between CD161 with Stromal Score, Immune Score, and Estimate 
Score in 24 glioma samples. 

 

Table 1. Clinical information and relative scores of immunohistochemistry results 

Protein Tissue Histological type Age Gender Location Quantity Intensity Relative score 
CD161 Glioma Malignant glioma (High grade) 47 Male C/M1 > 75% Moderate 8 
CD161 Lung cancer Squamous cell carcinoma 65 Male C/M1 > 75% Moderate 8 
CD161 Cerebral cortex Glial cells 64 Female C/M1 < 25% Weak 1 
CD161 Lung Alveolar cells 67 Female C/M1 < 25% Moderate 2 
1 C/M: Cytoplasmic/membranous. 

 

High CD161 Expression Correlates with 
Immune Infiltration in LGG and UVM 

To explore whether CD161 affects the prognosis 
of patients with LGG or UVM via interventions in 
immune infiltration, we investigated the relationship 
between CD161 and tumor purity based on the 
ESTIMATE algorithm. CD161 expression was 
positively correlated with Stromal Score, Immune 
Score, and ESTIMATE Score in both LGG and UVM 

cohorts (Figure 3A & B). And the correlations between 
CD161 and those scores across TCGA cancer types 
were displayed in Figure S2-4. We next used our 
samples to investigate whether CD161 correlates with 
tumor purity within glioma. In consistent with the 
TCGA cohort, CD161 expression was significantly 
correlated to tumor purity, as it was positively 
associated with stromal, immune and ESTIMATE 
scores (Figure 3C). 
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Figure 4. Correlation between CD161 expression with six immune infiltration levels based on TIMER algorithm. (A-B) The correlations in LGG and UVM were displayed as 
scatter plots. (C) The correlations in 24 glioma samples. 

 
Regarding specific immune infiltrates. In 

general, CD161 expression was significantly and 
positively correlated with abundance of B cells, CD4+ 
T cells, CD8+ T cells, neutrophils, macrophages, and 

dendritic cells in LGG (Figure 4A). But positive 
correlations were only identified between CD161 
expression and neutrophil infiltration in UVM (Figure 
4B). In our samples, positive correlations were 
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observed between CD161 expression and B cells, 
CD4+ T cells, neutrophils, and dendritic cells (Figure 
4C), which was similar to the results obtained from 
the TCGA cohort. 

Relationship between CD161 Expression with 
Immune Checkpoints, TMB, and MSI 

The pan-cancer correlations between CD161 and 
immune checkpoints were displayed in Figure 5. In 
most cancers, except ACC, DLBC, and THYM, robust 
and significant relationships existed between CD161 
and recognized immune checkpoints including B- and 
T-lymphocyte attenuator (BTLA), CD244, inducible T 
cell costimulator (ICOS), CD40 ligand, CD48, CD28, 
CD200 receptor 1, transmembrane and immuno-
globulin domain containing 2 (TMIGD2), CD27, 
TIGIT, and CD86. This suggested a potential synergy 
of CD161 with known immune checkpoints. 

 

 
Figure 5. Correlation between CD161 expression with expressions of immune 
checkpoint genes across thirty-three cancer types (***P < 0.001). 

 
As indicators of a series of genomes or 

transcriptomes related to cancer initiation and 
development, tumor mutation burden, microsatellite 
instability, mismatch repair, and methylation were 
independent predictors of ICB efficacy. We herein 
examine the relationship between CD161 and those 
indicators to investigate whether CD161 affects 
tumorigenesis by participating in the process of 
genetic and/or transcriptional alterations. CD161 
expression was negatively correlated with TMB in 

LUAD, PAAD, PRAD, STAD, and THCA (P < 0.001), 
while it was solely and positively correlated with 
TMB in LGG (P < 0.001) (Figure 6A). Moreover, 
MSI-low tumors expressed higher level of CD161 than 
genetically stable ones in LUSC, OV, SARC, SKCM, 
STAD and TGCT cohorts (P < 0.001, Figure 6B). In 
addition, we examined the correlation between 
CD161 expression and several essential MMR 
signatures. CD161 expression was positively 
correlated with MutL homolog 1 (MLH1), MutS 
homolog 2 (MSH2) and MutS homolog 6 (MSH6) in 
HNSC, LGG, and PAAD. In contrast, it was 
negatively correlated with these molecules in BLCA, 
BRCA, ESCA, GBM, LUAD, LUSC, SARC, THCA, and 
UCEC (Figure 6C). In terms of the relationship 
between CD161 expression and DNA methyl-
transferases, negative correlations were identified in 
BLCA, CESC, COAD, ESCA, GBM, HNSC, LAML, 
LUAD, LUSC, MESO, OV, PAAD, SARC, TGCT, 
THCA, THYM, and UCEC (Figure 6D). Despite the 
significances of these correlations, they were not such 
strong across all cancers with coefficients less than 0.6. 

CD161 impacts Patient Prognosis via 
intervening in Tumor Immunity 

To investigate the biological characteristics 
associated with CD161 in LGG and UVM, where 
CD161 was a significant risk factor. We performed 
gene set enrichment analysis (GSEA) and found that 
CD161 was mostly associated with immune responses 
(Figure 7C). Specifically, enriched KEGG pathways 
included ‘cytokine-cytokine receptor interaction’ and 
‘NK cell mediated cytotoxicity’. Meanwhile, 
HALLMARK enrichment analysis showed similar 
results that CD161 was involved in several terms such 
as ‘inflammatory response’ and ‘IL6-JAK-STAT3 
signaling’. This indicates that CD161 is involved in the 
regulation process within immune responses across 
human cancers, highly suggesting that CD161 
influences patient prognosis by intervening in the 
immuno-oncological processes. 

To clarify the specific cell types modulated by 
CD161 in tumor microenvironment, we summarized 
the correlations between CD161 expression and 
immune infiltrating levels in LGG and UVM based on 
sets of immunological markers using the TIMER2.0 
database. We adjusted these results based on tumor 
purity, revealing strong and significant correlations 
between CD161 with CD8+ T cells, DCs, M2 
macrophages, and Tex markers in both LGG and 
UVM cohorts (Table 2; Pearson’s rho > 0.6, P < 0.001). 
Further re-examination using the GEPIA2 database 
revealed consistent results (Table 3). 
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Table 2. Correlations between CD161 and immune cell markers in TIMER2.0 (***P < 0.001) 

Description Markers LGG (n = 516) UVM (n = 80) 
None Purity None Purity 
rho P rho P rho P rho P 

CD8+ T cell CD8A 0.558  *** 0.536  *** 0.693  *** 0.680  *** 
CD8B 0.491  *** 0.448  *** 0.719  *** 0.716  *** 

T cell (general) CD3D 0.741 *** 0.719 *** 0.685 *** 0.670  *** 
CD3E 0.814 *** 0.802 *** 0.727 *** 0.716 *** 
CD2 0.806 *** 0.792 *** 0.718 *** 0.708  *** 

B cell CD19 0.356  *** 0.310  *** 0.385  *** 0.360  *** 
CD79A 0.322  *** 0.309  *** 0.329  *** 0.320  *** 

Monocyte CD86 0.425 *** 0.397 *** 0.747 *** 0.737  *** 
CD115 (CSF1R) 0.264  *** 0.211 *** 0.543 *** 0.529  *** 

TAM CCL2 0.396  *** 0.373  *** 0.611  *** 0.598  *** 
CD68 0.453  *** 0.432  *** 0.285  *** 0.266  *** 
IL10 0.425  *** 0.412  *** 0.583  *** 0.564  *** 

M1 Macrophage INOS (NOS2) -0.092 0.037 -0.093 0.042 0.167 0.138 0.146  0.205 
IRF5 0.371 *** 0.335 *** 0.595 *** 0.575  *** 
COX2 (PTGS2) 0.211 *** 0.181 *** 0.350 *** 0.332 *** 

M2 Macrophage CD163 0.450  *** 0.450  *** 0.668  *** 0.654  *** 
VSIG4 0.274  *** 0.238  *** 0.613  *** 0.599  *** 
MS4A4A 0.452  *** 0.452  *** 0.724  *** 0.712  *** 

Neutrophils CD66b (CEACAM8) -0.011 0.801 -0.016 0.723 NA NA NA NA 
CD11b (ITGAM) 0.349 *** 0.311 *** 0.471 *** 0.487 *** 
CCR7 0.552 *** 0.534 *** 0.769 *** 0.762  *** 

NK cell KIR2DL1 0.159  *** 0.169  *** 0.349  *** 0.368  *** 
KIR2DL3 0.308  *** 0.313  *** 0.450  *** 0.421  *** 
KIR2DL4 0.377  *** 0.382  *** 0.509  *** 0.484  *** 
KIR3DL1 0.235  *** 0.231  *** 0.420  *** 0.391  *** 
KIR3DL2 0.209 *** 0.238  *** 0.603  *** 0.585  *** 
KIR3DL3 -0.009  0.836  0.000  0.998  0.373  *** 0.334  *** 
KIR2DS4 0.343  *** 0.333  *** 0.300  *** 0.266 *** 

Dendritic cell HLA-DPB1 0.625 *** 0.615 *** 0.661 *** 0.648 *** 
HLA-DQB1 0.527 *** 0.520 *** 0.605 *** 0.584 *** 
HLA-DRA 0.613 *** 0.604 *** 0.713 *** 0.700 *** 
HLA-DPA1 0.620 *** 0.614 *** 0.657 *** 0.641 *** 
BCDA-1 (CD1C) 0.440 *** 0.416 *** 0.554 *** 0.541 *** 
BDCA-4 (NRP1) 0.378 *** 0.405 *** 0.547 *** 0.524 *** 
CD11c (ITGAX) 0.304 *** 0.268 *** 0.549 *** 0.530 *** 

Th1 TBX21 0.519 *** 0.524 *** 0.706 *** 0.696 *** 
STAT4 0.146 *** 0.116 *** 0.488 *** 0.479 *** 
STAT1 0.393 *** 0.394 *** 0.505 *** 0.482 *** 
IFN-γ (IFNG) 0.337 *** 0.310 *** 0.514 *** 0.503 *** 
TNF-α (TNF) 0.150 *** 0.119 *** 0.619 *** 0.608 *** 

Th2 GATA3 0.450 *** 0.413 *** 0.625 *** 0.618 *** 
STAT6 0.377 *** 0.343 *** 0.191 0.089 0.162 0.158 
STAT5A 0.354 *** 0.310 *** 0.061 0.588 0.083 0.471 
IL13 -0.092 0.037 -0.075 0.100 0.086 0.447 0.034 0.768 

Tfh BCL6 -0.165 *** -0.141 *** 0.213 0.058 0.234 *** 
IL21 0.078 0.078 0.075 0.101 0.322 *** 0.274 *** 

Th17 STAT3 0.280 *** 0.283 *** 0.282 *** 0.253 *** 
IL17A 0.065 0.138 0.057 0.214 NA NA NA NA 

Treg FOXP3 0.009 0.831 0.014 0.758 0.458 *** 0.430 *** 
CCR8 0.259 *** 0.274 *** 0.428 *** 0.394 *** 
STAT5B -0.177  *** -0.111 *** 0.266 *** 0.251 *** 
TGFβ (TGFB1) 0.285  *** 0.242 *** 0.440 *** 0.419 *** 

Tex PD-1 (PDCD1) 0.528  *** 0.512 *** 0.666  *** 0.660 *** 
CTLA4 0.467  *** 0.432 *** 0.555 *** 0.534 *** 
LAG3 0.282 *** 0.304 *** 0.593 *** 0.577 *** 
TIM-3 (HAVCR2) 0.421 *** 0.396 *** 0.734 *** 0.723 *** 
GZMB 0.516 *** 0.523 *** 0.652 *** 0.643 *** 

FDC BAFF (TNFSF13B) 0.312 *** 0.014 0.758 0.642 *** 0.430 *** 
CD35 (CR1) 0.330 *** 0.287 *** 0.689 *** 0.680 *** 
CD21 (CR2) 0.068 0.125 0.010 0.829 0.272 0.015 0.246 0.031 
CD44 0.382 *** 0.353 *** -0.003 0.976 0.032 0.886 
CD29 (ITGB1) 0.373 *** 0.379 *** 0.117 0.303 0.111 0.337 
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Figure 6. Correlations between CD161 expression with ICB efficacy predictors, including (A) tumor mutation burden, (B) microsatellite instability, (C) mismatch repair genes, 
as well as (D) DNA methyltransferases across thirty-three cancer types. 

 
Figure 7. Functional enrichment of KEGG and HALLMARK terms on CD161 through GSEA. (A-B) The top three negative and positive enriched KEGG terms. (C-D) The top 
three negative and positive enriched HALLMARK terms. 
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Table 3. Correlations between CD161 and markers of CD8+ T 
cell, general T cell, M2 Macrophage, DC, Th1, and Treg in GEPIA2 
(***P < 0.001) 

Description Markers LGG UVM 
Tumor Tumor 
R P R P 

CD8+ T cell CD8A 0.56  *** 0.72 *** 
CD8B 0.51  *** 0.74 *** 

T cell (general) CD3D 0.75 *** 0.72 *** 
CD3E 0.84 *** 0.75 *** 
CD2 0.81 *** 0.75 *** 

M2 Macrophage CD163 0.49 *** 0.74 *** 
VSIG4 0.29 *** 0.62 *** 
MS4A4A 0.46 *** 0.73 *** 

DC HLA-DPB1 0.62 *** 0.67 *** 
HLA-DRA 0.61 *** 0.75 *** 
HLA-DPA1 0.61 *** 0.68 *** 

Th1 TBX21 0.54 *** 0.73 *** 
TNF-α (TNF) 0.16 *** 0.60 *** 

Treg PD-1 (PDCD1) 0.54 *** 0.67 *** 
CTLA4 0.47 *** 0.55 *** 
LAG3 0.27 *** 0.62 *** 
TIM-3 (HAVCR2) 0.42 *** 0.77 *** 
GZMB 0.55 *** 0.69 *** 

 

Discussion 
In this report, we assessed the expression of 

CD161 in 33 different cancer types, revealing clear 
differences of pan-cancer CD161 expression between 
tumor and normal tissues. Analysis based on TCGA 
and GTEx data showed that CD161 expression was 
increased in most cancers including ACC, BLCA, 
CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, 
LAML, LGG, LUSC, OV, PAAD, PRAD, SKCM, 
STAD, TGCT, THCA, and UCS compared with 
adjacent normal controls. Mainly expressed on NK 
cells, CD161 expression level may reflect the 
abundance of these two immune infiltrates in tumor 
microenvironment indirectly. And we suppose that 
CD161 plays a delicate role in tumorigenesis based on 
the differential expression profiles. 

Although new therapies, such as targeted 
therapy and immunotherapy, have encouraging great 
success, current management of cancer like glioma 
cannot reach a favorable remission [29]. Several 
identified genetic and/or transcriptional indicators 
including IDH mutation, O-6-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation, 
and 1p/19q co-deletion were found to be closely 
related to glioma prognosis [30]. Much like those 
indicators, our analyses demonstrated the potential of 
CD161 in risk stratification and prognostic prediction. 
And similar to PD-1/PD-L1 axis, CD161/CLEC2D 
pathway was suggested to mediate immune response 
in the oncologic context. Moreover, the significant 
correlation between elevated CD161 expression and 
worse prognosis in patients with LGG or UVM is 
similar to that of CD96 [31], another promising 

immune checkpoint. 
Another key finding of this study is that the 

CD161 expression is highly associated with immune 
infiltration. CD161 expression is positively correlated 
with the abundance of immune infiltrates, especially 
CD8+ T cells, DCs, macrophages, Tregs and Tfh in 
various cancers. These results were validated using 
our own samples obtained from Xiangya hospital. But 
further work will be necessary to establish whether 
CD161 exerts such functions. CD161 can affect patient 
prognosis by influencing immune processes, as 
CD161 was involved in the several immune terms 
(KEGG and HALLMARK) in LGG and UVM. 
Notably, CD161 was positively associated with 
markers of general T cell, DC, and exhausted T cell, 
suggesting CD161 impacted patient survival in an 
immunity-depended manner. Although the distinct 
infiltration landscape in different tumors may 
influence our results, it is reasonable to speculate that 
CD161 can influence the path of immune infiltrates in 
tumor microenvironment, and may alter the 
distribution and subsequent interplays with 
malignancies, leading to different survival outcomes 
in certain cancers. 

The study has some limitations. First, there is no 
experimental validation of the predicted outcomes. 
Further studies should conduct the experimental 
validation by different methods, e.g., fluorescence 
quantitative polymerase chain reaction (qPCR), 
western blotting and immunocytochemistry. In 
addition, for diseases with long-term evolution, 
especially cancers. At least in some stages, 
transcriptomic profiles do not necessarily reflect the 
proteomics. Although we compared the differences in 
CD161 expression between cancer and normal tissues 
at the mRNA and protein levels, it remains debatable 
whether the differences in the proteins are necessarily 
associated with the malignancy of cancers. Moreover, 
although we conducted validation using our own 
samples, the correlations obtained in this study may 
not be applicable in other study cohorts due to the 
high heterogeneity across different populations. 
Therefore, experimental and clinical validations of the 
predicted results are required. 

In conclusion, we applied an integrated 
bioinformatics approach, indicating that CD161 could 
mediate immune infiltration and influence patient 
prognosis in pan-cancer. Our findings demonstrate 
that CD161 has potential as a prognostic biomarker 
and provide a new orientation for the treatment of 
these malignancies. We believe that immunotherapy 
combining CD161 blockade and existing checkpoint 
inhibitors may be a highly effective and feasible 
approach against these unpleasing tumors, especially 
brain gliomas for which CD161 is a unique risk factor. 
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head and neck squamous cell carcinoma; KIRC: 
kidney renal clear cell carcinoma; KIRP: kidney renal 
papillary cell carcinoma; LAML: acute myeloid 
leukemia; LGG: brain lower grade glioma; LIHC: liver 
hepatocellular carcinoma; LUSC: lung squamous cell 
carcinoma; MESO: mesothelioma; OV: ovarian serous 
cystadenocarcinoma; PAAD: pancreatic adeno-
carcinoma; PCPG: pheochromocytoma and 
paraganglioma; PRAD: prostate adenocarcinoma; 
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SKCM: skin cutaneous melanoma; STAD: stomach 
adenocarcinoma; TGCT: testicular germ cell tumor; 
THCA: thyroid carcinoma; THYM: thymoma; UCEC: 
uterine corpus endometrial carcinoma; UCS: uterine 
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