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Abstract 

Purpose: Considerable variations in methylation profile have been found in various cancers to modulate 
tumorigenesis and affect prognosis. To provide a theoretical basis for early detection, prognosis 
evaluation and targeted treatment for patients with pancreatic ductal adenocarcinoma: PDAC, this study 
identified methylation-driven genes in PDAC and explored their prognostic performance. 
Methods: The methylation, expression and clinical data of PDAC patients were extracted from TCGA 
database. Based on the β-mixture model of the MethylMix R package, the differential methylation status 
and connection between methylation and expression degree were examined to screen out methylation- 
driven genes in PDAC. COX analyses and lasso regressions were applied to construct a linear risk model 
based on methylation-driven genes. Univariate and multivariate analyses were performed to ensure the 
risk model was an independent prognostic factor. Joint survival analyses of methylation and gene 
expression were conducted to explore the prognostic value of component genes. The methylation sites 
in the key genes were also investigated. 
Results: A total of 118 methylation-driven genes in PDAC were identified, and two genes (FOXI2, 
MYEOV) constituted the risk model whose AUC was 0.722 at one year of overall survival rate, displaying 
a better performance on survival prediction than other clinical features. Further survival analyses 
demonstrated that the expression of MYEOV and combined methylation and expression levels of the 
genes MYEOV and FOXI2 can be potential biomarkers for survival prediction and targets of drug 
manipulation of PDAC patients. Close relationships were discovered between two sites in MYEOV and 
one site in FOXI2 and the prognosis of PDAC patients. 
Conclusion: Concentrating on DNA methylation, our study identified potential biomarkers and 
developed a reliable short-term predictive model for prognosis of PDAC patients. 

Key words: Pancreatic ductal adenocarcinoma; DNA methylation; Proportional hazards models; Survival 
analysis; Prognosis 

Introduction 
Pancreatic cancer has been one of the most lethal 

malignancies with an overall 5-year survival rate less 
than 9%, which is the lowest amongst all cancer sites 
[1]. Though the incidence of pancreatic cancer is 
relatively low, only ranked as the 14th most common 
cancer, its high fatality rate still poses a great threat to 

people’s life. Due to initially insidious nature and lack 
of specific symptoms, pancreatic cancer is often 
diagnosed at an advanced stage, and only 20% of 
patients can still benefit from surgical resection[2]. 
Despite decades of considerable researches, no 
significant improvement has been made in survival 
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rate, accompanied by a still rising incidence [3]. 
Pancreatic ductal adenocarcinoma: PDAC is the most 
common type of pancreatic cancer, thus it is of great 
importance from the social perspective to screen out 
PDAC and achieve early diagnosis [4], for the early 
initiation of treatment always guarantees a less 
invasive approach and better prognosis. The 
development of new biomarkers for PDAC may lead 
to early diagnosis and thereby potential for more 
successful treatments [5]. Another problem 
confronting physicians is the lack of predictive tests 
for prognosis, so treatment protocols can only be 
made based on the basic condition of patients and the 
disease staging [6]. Therefore, to develop 
personalized targeted treatment, there is an urgent 
need to construct a reliable and practicable method 
for survival rate assessment. 

Over the past few decades, there has been a 
sustained research activity in the cancerous genomic 
alterations, and it has become increasingly apparent 
that epigenetics plays a critical role in tumorigenesis. 
As a core element of epigenetics, DNA methylation 
has an impact on multiple cellular processes including 
cell differentiation, genome stability, and gene 
imprinting [7, 8]. Aberrant DNA methylation can be 
divided into two types: hypermethylation and 
hypomethylation. DNA hypermethylation means the 
accumulation of methylation that mainly causes 
transcriptional suppression and reduced gene 
expression, while DNA hypomethylation represents 
less DNA methylation that often leads to disorder of 
chromosome stability or increased aneuploidy [9]. 
The emergence of aberrant DNA methylation is 
frequently detected in the promoter regions of 
transcription factors, resulting in the initiation and 
proliferation of cancers[10]. Given the strong 
association between methylation and tumorigenesis, 
it is vital to better understand the DNA methylation 
pattern to identify corresponding biomarkers for early 
diagnosis, prognosis and therapy. At the early stage of 
cancerization, epigenetic alterations can take place 
even before the occurrence of genetic changes, thereby 
becoming potential biomarkers for early diagnosis 
and prevention of cancers [11]. While genetic 
alterations are irreversible, epigenetic changes are 
reversible [12], making pharmacological manipula-
tions of methylation process and specific pathways 
promising in the future [13]. 

As a crucial instrument for researches on 
molecular mechanisms, bioinformatic analysis has 
been broadly utilized to explore the pathogenesis of 
tumors on a molecular level and to identify potential 
biomarkers for early diagnosis, treatment and 
prognosis [14]. It is of great importance to identify 
novel driver genes associated with PDAC through 

bioinformatics analysis for the establishment of 
prognosis evaluation protocol and targeted 
pharmaceutical treatment. 

For now, there have been studies about 
methylation-driven genes for a few types of cancer 
[14, 15], but no previous study has focused on the 
expression profiles of differentially methylated genes 
to construct a Cox model for predicting survival rate 
of PDAC patients. In this study, expression and 
methylation profiles of PDAC were downloaded from 
The Cancer Genome Atlas (TCGA). TCGA is a 
worldwide open database containing genomic and 
clinical data of various cancers, serving as a 
convenient and practical tool in the study of 
tumorigenesis [16]. The exploration of data was 
performed using the MethylMix algorithm, an R 
package aiming to find disease-specific 
hypomethylated and hypermethylated genes based 
on a β-mixed model [17]. After the identification of 
methylation-driven genes, the Cox model, lasso 
regression and Kaplan-Meier survival analysis were 
used to construct risk model and examine the 
prognostic value of the model and methylation of 
relevant genes and sites, providing a solid foundation 
for future research about early detection and 
personalized medicine. 

Methods 
Data processing and identification of 
methylation-driven genes 

Gene methylation and expression data for PDAC 
in this study were obtained from the TCGA platform. 
The inclusion criteria for patients in the TCGA 
database are as followed: Primary, untreated tumor; 
Frozen, sufficiently sized, resection samples; samples 
composed of at least 80% tumor nuclei. All available 
patients’ data in the TCGA database was included in 
the study. DNA methylation data, generated by the 
Illumina Infinium Human Methylation 450 bead chip, 
consisted of 149 pancreatic tumor samples and eight 
adjacent non-tumoral pancreas samples. The 
methylation degrees were measured by preprocessed 
β value, a parameter defined as the ratio of 
methylated to unmethylated alleles intensity ranging 
from zero (completely unmethylated) to one 
(completely methylated). Gene expression data, 
acquired through RNA sequencing (RNA‐seq), 
contained 142 tumor samples and two non-tumoral 
samples. All data were normalized using the limma 
package in R software (version 3.6.1). Subsequently, 
clinical data of PDAC patients were also extracted for 
further survival analyses. 

The MethylMix package requires tumor samples 
with both gene expression and methylation data for 
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combined transcription and methylation analysis, 
thus unqualified tumor samples were excluded. 
Subsequently, gene expression and methylation data 
of tumor samples as well as methylation data of 
non-tumoral samples were analyzed through the 
MethylMix algorithm to identify methylation-driven 
genes in PDAC. Methylation-driven genes should 
meet two requirements: (1) differentially methylated 
between non-tumoral and tumor samples, (2) 
negative correlations between gene expression and 
methylation status. First, based on the β-mixture 
model, the Wilcoxon rank sum test was employed for 
the identification of disease-specific hypomethylated 
and hypermethylated genes. Statistical analyses were 
performed applying a significance level of FDR=0.05. 
Next, the linear regression model was utilized to 
examine the correlations between gene methylation 
and expression levels. Genes with the correlation 
coefficient lower than -0.3 were included. A heatmap 
was generated by the pheatmap package to show the 
bidirectional hierarchical clustering results of all 
methylation-driven genes. 

Functional and pathway enrichment analyses 
of methylation-driven genes 

The obtained methylation-driven genes were 
submitted to The Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) for Gene 
Ontology (GO) term analysis and ConsensusPathDB 
website for functional and pathway enrichment 
analyses. DAVID (http://david.abcc.ncifcrf.gov/), an 
open online platform, serves as a functional 
interpretation tool of large gene lists to further explore 
their biological mechanisms and associations between 
molecules [18, 19]. ConsensusPathDB (http://cpdb 
.molgen.mpg.de/), a database containing a 
comprehensive integrated interaction network, 
biochemical pathways and functional data in Homo 
sapiens, provides researchers with a deeper 
understanding of cellular processes in diseases [20, 
21]. 

Predictive risk model construction and risk 
score calculation 

The following procedures were conducted to 
select methylation‐driven genes to construct the 
model. First, univariate Cox analysis was performed 
on all 142 cancer samples with survival package to 
screen out the genes with prognostic implications in 
PC. The cut-off point was P<0.05. Next, the least 
absolute shrinkage and selection operator (LASSO) 
method was applied with the glmnet R package to 
select the most useful genes weighted by their 
coefficients respectively. LASSO is a linear regression 
technique that combines regularization and variable 

selection, which can increase the precision of the 
regression model by preventing overfitting. Finally, 
the remaining genes with non-zero coefficient were 
included in subsequent multivariate Cox analysis to 
develop the prognostic model with survival package. 

After the Cox model was constructed, all 
samples were evaluated by this model. The prognostic 
risk index score was defined as follows: 

𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑏𝑖 × 𝛽𝑖𝑛
𝑖=1 . 

In this formula, β represented the expression 
level of genes in the model, and b stood for their 
coefficients in multivariate analysis. The prognostic 
risk score was calculated for all samples as described 
in the equation. 

Assessment of the model and component 
genes 

Using the median of the prognostic risk value as 
a cut-off point, patients were split into two groups: 
high-risk and low-risk groups. The Kaplan–Meier 
survival curves of patients in high and low risk 
groups were plotted to present the overall survival 
rate using survival package. Log-rank tests were used 
to assess the significance of the difference in the 
overall survival rate between the two groups. 
Time-dependent ROC curves were used to confirm 
the reliability of the prognostic model. The gene 
expression data and the corresponding clinical data of 
GEO datasets GSE62452 and GSE28735 were 
downloaded to test the reliability of the Cox model. 
The expression data of two datasets were merged and 
batch normalized using the sva and limma R 
packages. After the prognostic risk values were 
calculated for all patients with PDAC, patients were 
split into high-risk and low-risk groups according to 
the median risk score. The Kaplan-Meier survival 
analysis and time-dependent ROC analysis were 
performed on the GEO datasets as well. 

To test whether the risk score was an 
independent prognostic factor of PDAC, we 
integrated the risk score and clinical data of patients 
in from the TCGA database containing age, sex, 
grade, stage and TMN classification. Univariate and 
multivariate stratified analyses were performed with 
the survival package to ensure the reliability and 
feasibility of the predictive model. Forest plots were 
generated with the forestplot package to show the 
hazard ratio (HR) and P value of each factor. 

The prognostic performance of every gene in the 
model was assessed by both survival analysis on 
methylation levels and joint survival analyses on 
combined gene expression and methylation status, in 
which genes significantly related to patient survival 
were identified as key genes. To further investigate 
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internal prognosis-related methylated sites of these 
key genes, the correlations between methylation of 
sites and gene expression were assessed using the 
linear model. Sites with a coefficient less than -0.3 and 
P<0.05 were considered to have an impact on gene 
expression. Next, The Kaplan‐Meier curves were 
generated for pertinent methylation sites of keys 
genes by the survival package to evaluate their 
prognostic value. All analyses were judged 
statistically significant at P=0.05. 

Results 
TCGA data analysis and acquisition of 
methylation-driven genes in PDAC 

DNA methylation data were collected from 157 
samples, including 149 cancer samples and ehight 
non-tumoral samples. Gene expression data were 
obtained from 144 samples, including 142 tumor 

samples and two non-tumoral samples. Acquired data 
of PDAC from the TCGA database were normalized 
by the LIMMA package. Then, the MethylMix 
package was utilized to perform correlation analysis, 
β mixed model development and Wilcoxon rank test. 
The cut-off criteria for methylation-driven genes was 
set as |logFC| > 0, FDR < 0.05, Cor < -0.3. A total of 
118 methylation-driven genes were identified, 
including 29 hypomethylated genes and 89 
hypermethylated genes (Additional file 1, table S1). 
The result of the bilateral hierarchical cluster analysis 
was illustrated in the heatmap (Figure 1). 

Functional enrichment and pathway analyses 
of methylation-driven genes in PDAC 

The objective of this section was to investigate 
the molecular mechanism of methylation-driven 
genes in PDAC. GO functional enrichment and 
pathway analyses of these genes were performed with 

 

 
Figure 1. The heat map of methylation-driven genes in PDAC. The colors from red to green presented a tendency from hypermethylation to hypomethylation. The rectangular 
bar on the top showed the sample types, with blue representing adjacent non-tumoral pancreas tissues and red for PDAC samples. 
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DAVID and ConsensusPathDB online platform. GO 
terms with FDR<0.1 and pathways with P<0.01 were 
included. GO functional enrichment analysis results 
showed that the biological processes (BP) of these 
genes were mainly involved in transcription, 
DNA-templates; molecular functions (MF) included 
transcription factor activity, sequence-specific DNA 
binding and RNA polymerase II core promoter 
proximal region sequence-specific DNA binding, 
while the result of cellular component (CC) was not 
statistically significant (Table 1). Pathway analysis 
revealed that the methylation-driven genes were 
mainly enriched in the gene expression 
(transcription), RNA polymerase II transcription, and 
generic transcription pathways (Figure 2). 

 

Table 1. GO enrichment analysis of methylation-driven genes in 
PDAC patients 

Category Term Count PValue FDR 
BP GO:0006351~transcription, 

DNA-templated 
26 4.24E-05 0.026062 

MF GO:0003700~transcription factor activity, 
sequence-specific DNA binding 

15 5.39E-04 0.053228 

MF GO:0000978~RNA polymerase II core 
promoter proximal region 
sequence-specific DNA binding 

9 6.12E-04 0.053228 

Count: the number of enriched genes in the corresponding term. Abbreviations: 
GO, Gene Ontology; PC, pancreatic cancer; BP, biological process; MF, molecular 
function. 

 

Table 2. The result of univariate Cox analysis 

id HR HR.95L HR.95H pvalue 
FOXI2 0.873403 0.820121 0.930147 2.50E-05 
CHL1 0.792651 0.683378 0.919398 0.002138 
SOX17 0.713766 0.557803 0.913337 0.007349 
KRT19 1.376743 1.088055 1.742027 0.007749 
LIPH 1.395663 1.091058 1.785309 0.007962 
SOWAHC 1.619998 1.125863 2.331006 0.009363 
MYEOV 1.219225 1.049659 1.416184 0.009479 
NFE2L3 1.444336 1.08047 1.93074 0.013043 
LINC01475 0.86643 0.772851 0.971341 0.013949 
ID4 0.76494 0.615573 0.950551 0.015628 
CHAT 0.939725 0.893229 0.988641 0.016341 
AC005498.3 0.804927 0.671318 0.965127 0.019116 
CHODL 0.83134 0.711792 0.970966 0.019705 
NKX2-3 0.770646 0.618933 0.959547 0.019852 
ZNF730 0.91924 0.853125 0.990478 0.027023 
KCNA3 0.875242 0.77607 0.987087 0.029871 
ZNF382 0.752356 0.579333 0.977053 0.032837 
ZSCAN18 0.766412 0.599066 0.980505 0.034294 
CERS3-AS1 0.947211 0.900456 0.996394 0.035745 
LINC01197 0.833914 0.702521 0.989881 0.037873 
NCAM2 0.865201 0.7544 0.992276 0.038372 
S100A16 1.345843 1.012746 1.788496 0.040632 
SHE 0.812286 0.662708 0.995625 0.045264 
IRF4 0.881908 0.778773 0.998703 0.047656 
Abbreviation: HR, hazard ratio. 

 

Development of the risk model based on 
methylation-driven genes in PDAC 

Univariate regression analysis was performed on 

acquired methylation-driven genes to identify genes 
associated with prognosis in PDAC. Table 2 shows the 
identification of 24 methylation‐driven genes that 
were related to prognostic risk in PDAC. Lasso 
regression analysis was used to screen out genes that 
were either insignificant or redundant for 
multivariate Cox analysis. Two genes (FOXI2, 
MYEOV) resulted in non-zero coefficients after fitting 
into the LASSO regression model (Figure 3). FOXI2 
and MYEOV remained to construct an assessment 
model to predict prognosis of PDAC after multi-factor 
analysis, and the prognostic risk score= (-0.12878* 
expression level of FOXI2) + (0.161623 * expression 
level of MYEOV). The basic characteristics of FOXI2 
and MYEOV as methylation-driven genes were 
shown in Additional file 2: Figure S1 and Additional 
file 3: Figure S2. 

Prognostic values of the model and the three 
genes constructing the model 

The clinical data for 142 PDAC patients were 
downloaded from the TCGA database, including 
survival data (survival time and survival status), age, 
gender, grade, stage, TNM classification and so forth 
(Additional file 4). The prognostic risk values of 
patients containing survival data (n=142) were 
calculated, and patients were divided into low-risk 
(n= 71) and high-risk (n= 71) groups according to the 
median value. Kaplan–Meier survival curves analysis 
of the two groups demonstrated a statistically 
significant overall survival rate discrepancy (Figure 
4a). The time-dependent ROC curve was plotted to 
assess the prognostic performance of the predictive 
risk model. The area under curve (AUC) of the Cox 
model constructed by methylation-driven genes was 
0.722, 0.63, 0.563 respectively at one (Figure 4b), three 
(Figure 4c) and five (Figure 4d) years of overall 
survival rate, indicating that this method can deliver 
reliable short-term assessment of PDAC prognosis. 
The extremely low five-year survival rate of PDAC 
may account for the reduced reliability as time grows. 
The Cox model constructed in our study was further 
tested in two GEO datasets (GSE28735 and 
GSE62452). The gene expression and clinical data 
(Additional file 5) of 45 patients were included in 
GSE28735 and 69 patients were included in GSE62452. 
After the merger of these two datasets and deletion of 
patients with incomplete survival information, the 
data of 108 patients with PDAC (42 patients from 
GSE28735 and 66 patients from GSE62452) was 
obtained to perform the analysis. Results proved that 
the method also perform with sufficient reliability 
when used in other datasets, as the Kaplan-Meier 
survival analysis of the high-risk and low-risk groups 
demonstrated their difference in the overall survival 
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rate was statistically significant (Figure 4e), and the 
AUC of the Cox model was 0.599, 0.766 and 0.624 
respectively at one (Figure 4f), three (Figure 4g) and 
five (Figure 4h) years of overall survival rate. 

Patients in the TCGA database with incomplete 
or unknown clinical data were excluded, and a total of 
67 patients were eligible for later clinical analysis. Risk 
score calculated by the Cox prognostic model along 
with all the clinical factors mentioned above was then 
imported into R software for univariate and 
multivariate analysis with survival package (Figure 

5). With P<0.05 as the cut-off point in multivariate 
analysis, only tumor grade and risk score displayed 
sufficient reliability for prognostic prediction. These 
results demonstrated that the risk score was a 
statistically significant independent factor for 
prognostic evaluation, with the highest hazard ratio 
among all factors. Solely based on clinical features, 
existing methods for prognosis evaluation proved to 
be inefficient, while the risk score had better 
performance over grade, stage and TNM classification 
of PDAC. 

 

 
Figure 2. The significantly enriched pathways (P < 0.01) of methylation-driven genes. 

 
Figure 3. Gene selection through LASSO logistic regression model. (a) The tuning parameter (λ) was determined using 1000-fold cross-validation with minimum standard. 
Optimal values according to the minimum criteria are denoted by dashed vertical lines. (b) LASSO coefficient profiles of 24 genes were produced against the log (λ). 
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Figure 4. Kaplan-Meier and ROC curves for the constructed prognostic risk model. (a) The difference between high and low risk patients from the TCGA database was 
measured by the log-rank test. (b) Time-dependent ROC curve for the 1-year overall prognosis prediction of patients from the TCGA database. (c) Time-dependent ROC curve 
for the 3-year overall prognosis prediction of patients from the TCGA database. (d) Time-dependent ROC curve for the 5-year overall prognosis prediction of patients from the 
TCGA database. (e) The difference between high and low risk patients from the GEO database was measured by the log-rank test. (f) Time-dependent ROC curve for the 1-year 
overall prognosis prediction of patients from the GEO database. (g) Time-dependent ROC curve for the 3-year overall prognosis prediction of patients from the GEO database. 
(h) Time-dependent ROC curve for the 5-year overall prognosis prediction of patients from the GEO database. 

 
Figure 5. Univariate and multivariate analysis of possible prognostic elements in PDAC. (a) Forest plot of univariate survival analysis. (b) Forest plot of multivariate survival 
analysis. Abbreviation: HR: hazard ratio. T: description of primary tumor site. N: description of regional lymph node involvement. M: description of the presence or otherwise 
distance of metastatic spread. 

 
Figure 6. Kaplan-Meier survival curves for the key genes. (a) Survival analysis based on the expression level of FOXI2. (b) Survival analysis based on the expression level of 
MYEOV. 
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Figure 7. Joint survival analysis for the key genes. (a) Joint survival analysis based on the methylation and expression degree of FOXI2. (b) Joint survival analysis based on the 
methylation and expression degree of MYEOV. 

 
As for the two component genes in the model, 

survival analyses showed that while the expression of 
FOXI2 alone is not of prognostic value, the aberrant 
expression of MYEOV have significant impacts on 
prognosis (Figure 6). Joint survival analyses explored 
the influence of combined methylation and expression 
on prognosis, demonstrating hypomethylation and 
high expression of FOXI2 were associated with 
favorable prognosis, while hypomethylation and high 
expression of MYEOV were indicative of poor 
survival rate (Figure 7). 

After identifying gene FOXI2 and MYEOV as 
key genes with prognostic values, their methylation 
sites were analyzed. Gene expressions of FOXI2 and 
MYEOV were found to be negatively correlated with 
the methylation degree of various sites. Kaplan-Meier 
survival analyses of these sites were performed to 
identify methylation sites associated with the overall 
survival rate of PC. Finally, one site of gene FOXI2 
and two sites in gene MYEOV (Figure 8) were found 
to have impacts on both the expression of genes and 
the prognosis of PDAC. 

Discussion 
Pancreatic cancer is a highly malignant tumor 

with a high mortality rate that almost catches up with 
the disease incidence [22]. To provide new insights 
into the improvement of PDAC patients’ quality of 
life and prognosis, the molecular pathogenesis of 
PDAC needs to be studied in-depth for the 
identification of specific driving genes as early 
detector and prognostic markers. In recent years, 
there has been an increased recognition that more 
attention needs to be paid to epigenetic alterations of 
tumor cells, which is another major source of tumor 
cells evolution and resistance to chemotherapy and 
immune surveillance [23]. Gene methylation is a 

crucial signaling tool regulating normal genomic 
function, but some abnormal methylation events can 
act as driving factors in mediating carcinogenesis [24]. 
As the first epigenetic change identified in neoplasia, 
aberrant DNA methylation usually contributes to the 
progress of several diseases by the disturbances of 
signal pathways [25]. 

A body of study has shown that alterations of 
DNA methylation can provide valuable new insights 
into early diagnosis, prognosis assessment and 
clinical applications for pancreatic cancer. Nishizawa 
N et al. carried out three experiments to confirm that 
promoter DNA methylation of CDO1 was specific for 
PDAC [26]. Li XB et al. verified that DNA methylation 
of BNC1 and SEPT9 gene in plasma cell-free DNA 
could be utilized to develop a non-invasive detection 
method for pancreatic cancer [27]. Promoter 
methylation of ADAMTS1 and BNC1 in blood was 
identified by Eissa MAL et al. as potential biomarkers 
for early detection of pancreatic cancer [28]. Curia MC 
et al. found out high-status promoter methylation of 
PCDH10 could be meaningful to identify PDAC 
patients with high risk of disease deterioration [29]. 
Three hypomethylated genes (SULT1E1, IGF2BP3, 
MAP4K4) were found by Huiming C et al. to be 
associated with poor overall survival in pancreatic 
cancer patients [30]. Therefore, it is expected that 
advancements in the early diagnosis, personalized 
therapy and risk evaluation for PDAC will be made 
through the understanding and modification of DNA 
methylation profile. 

The main objective aim of this work was to 
investigate novel biomarkers associated with aberrant 
methylation and further develop a reliable predictive 
test for prognosis of PDAC patients, contributing to 
more accurate classification of PDAC patients for 
personalized clinical management. After obtaining 
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118 methylation-driven genes, functional enrichment 
and pathway analyses were performed to explore 
their molecular mechanisms, which revealed that the 
pathogenicity of DNA methylation aberrations 
derived from changes in both the cellular mechanisms 
and the functional interaction among genes. It can be 
postulated that these genes give rise to PDAC through 
expression dysregulation afterward, for the 
methylation-driven genes in PDAC are closely 
associated with the regulation of transcription. 

The method to construct the prognostic model 
based on the methylation-driven genes followed a 
three-step process: univariate Cox analysis, lasso 
regression and multivariate Cox analysis. As a result, 
a predictive framework for the prognosis of PDAC 
was developed based on two methylation-driven 
genes (FOXI2 and MYEOV). Survival analysis 
demonstrated significant differences in the clinical 
outcomes of the high and low risk groups, suggesting 
that this model could produce reliable results on the 
prognosis of patients with PDAC. The reliability of 
the prognostic model was further examined by the 
ROC curve and the AUC predicting 1-year overall 
survival rate was 0.722, indicating a robust 
performance in prediction. The decreasing reliability 
of the Cox model as time grows may be attributed to 

the extremely short survival time of PDAC patients, 
typically ranging from 4 to 6 months following 
diagnosis. PDAC patients of all stages still only retain 
a 5-year survival below 5% [31], thus the short-term 
prognostic evaluation is of more clinical value. The 
Cox model also showed satisfying performance when 
applied on the GEO datasets, proving its feasibility on 
other patient groups. This model has practical use in 
application of predicting prognosis of PDAC patients 
for the small number of genes involved can simplifies 
the detention procedure and reduce the cost of 
patients. 

Stratified survival analysis on major clinical 
factors and risk score proved our model was an 
independent prognostic factor for PDAC with more 
accurate outcome compared with traditional methods 
like stage, grade and TNM classification. This result 
suggested that our approach is a promising 
alternative to estimate possible survival rate of PDAC 
patients. It is also feasible to combine the risk model 
with the grade for more comprehensive patient data. 

MYEOV (myeloma overexpressed) in the model 
can be useful as an independent prognostic marker 
and may become novel therapeutic targets. A number 
of studies have already shown a strong association 
between MYEOV and multiple neoplasms including 

 

 
Figure 8. Survival and correlation analysis for the methylation sites in key genes. (a) Kaplan-Meier survival curve of methylation site in the FOXI2. (b,c) Kaplan-Meier survival 
curves of methylation sites in MYEOV. (d) Correlation between site methylation and FOXI2 expression. (e,f) Correlation between sites methylation and MYEOV expression. 
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esophageal carcinoma [32], oral squamous cell 
carcinoma [33], neuroblastoma [34], colon cancer [35] 
and so forth. Recent investigations have demonstrated 
that the overexpression of MYEOV is associated with 
poor prognosis of pancreatic cancer patients. An 
analysis examines TCGA PAAD cohort with the 
MethHC database revealed a significant reduction 
in MYEOV promoter methylation in PDAC than that 
in non-tumoral tissues, leading to MYEOV 
overexpression. MYEOV promotes pancreatic cancer 
progression by enhancing transactivity of SOX9, a 
tumorigenic gene of pancreatic cancer [36]. 
Bioinformatic evidence from a transcriptional study 
suggests that MYEOV is upregulated in PDAC and 
associated with poor clinical outcomes, which can be 
attributed to the facilitation of glycolysis of tumor 
cells in PDAC [37]. Very good agreement was 
observed when our results of MYEOV being a 
methylation-related prognostic marker for PDAC was 
compared to previous findings. MYEOV, whose 
hypomethylation and high expression were closely 
associated with low overall survival of PDAC 
patients, can act as an oncogene in PDAC and can 
therefore serve as a biomarker for the prognosis of 
patients with PDAC. 

As for FOXI2, its association to tumors has also 
been investigated. Recent research has demonstrated 
that FOXI2 promoter methylation may be associated 
with an increased risk of OSCC development in 
patients with OPLs [38]. It is also found to be 
aberrantly methylated in most colorectal cancer tissue 
relative to non-neoplastic tissue [39]. Our study is the 
first one to associate FOXI2 to PDAC, and those 
previous observations coincided with our findings 
that FOXI2 was hypermethylated in PDAC and its 
combined hypermethylation and low expression were 
indicative of poor prognosis. Since FOXI2 is 
hypomethylated in peripheral blood DNA, the 
aberrant methylation of FOXI2 in blood may be a 
potential biomarker to diagnose PDAC and assess 
prognosis of patients. 

Multiple methylated sites in genes FOXI2 and 
MYEOV were discovered to have negative 
correlations with corresponding gene expression and 
significant associations with the prognosis of PDAC. 
It can be speculated that aberrant methylation of these 
sites may contribute to the proliferation and 
progression of cancers and exert an influence on the 
prognosis of patients through the disturbance of 
regular gene expression. Furthermore, by carefully 
examining the location of methylation sites in the key 
genes, we discovered none of the two sites in gene 
MYEOV were related to CpG island (CGI) while the 
site in gene FOXI2 were all located in CGI. A review of 
studies concerning methylation and cancer has shown 

that the emergence of tumor is accompanied by 
demethylation within multiple genomic regions and 
de novo methylation of specific CGI [10]. Our result 
demonstrated the expected phenomenon since FOXI2 
was hypermethylated and MYEOV was hypome-
thylated in PDAC. The bulk of prior works in tumor 
methylation generally concerned themselves with 
CGI, but our study showed that the prognostic- 
related sites were not all confined to CGI. Thus, to 
gain an in-depth understanding of the methylation 
profile in PDAC, variations of methylation at non- 
CGI regions should also be emphasized. 

This finding of genes and sites methylation in 
PDAC has a great potential for future clinical 
application. On account of the early emergence of 
gene methylation, these methylation-driven genes can 
be potential indicators for early diagnosis, with 
studies concerning their sensitivity and specificity 
reserved for future work. The reversibility of 
methylation also makes these genes ideal therapeutic 
targets, enabling novel drugs aiming at 
methylation-driven genes with prognostic value to 
modify PDAC development from the very beginning. 
Considering that one medicine alone is often limited 
in terms of validity and some methylation alterations 
can bring about drug resistance, a combination of 
chemotherapy and methylation-oriented drugs 
targeting both of FOXI2 and MYEOV may deliver 
more satisfying results. Diagnosed patients can be 
evaluated by the risk model with higher accuracy, and 
later receive personalized treatment based on their 
estimated prognosis. The methylation level of FOXI2 
has already confirmed to be low in blood, further 
study on the expression and methylation level of 
MYEOV in blood is suggested. If the tendency of 
aberrant expression and methylation in blood 
coincides with that in tissues, it is promising to 
develop a less invasive reliable detection and 
evaluation method. 

Conclusion 
In this study, methylation-driven genes of PDAC 

were identified as candidates of detection and 
prognostic biomarkers. A new method predicting 
prognosis for PDAC patients based on 
methylation-driven genes was presented with better 
performance compared to former approaches. In 
addition, the expression level of MYEOV and 
combined methylation and expression degrees of 
gene FOXI2 and MYEOV in the model were potential 
prognostic and therapeutic markers for PDAC, and 
several sites in these genes wielded influences over 
their prognostic values. Our results came from 
bioinformatics analysis, thus requiring further cohort 
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studies to validate the findings and to elaborate on the 
potential clinical utility of such findings. 
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