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Abstract 

Cancer stem cells (CSCs), dynamic subsets of cancer cells, are responsible for malignant progression. The 
unique properties of CSCs, including self-renewal, differentiation, and malignancy, closely depend on the 
tumor microenvironment. Mechanical components in the microenvironment, including matrix stiffness, 
fluid shear stress, compression and tension stress, affect the fate of CSCs and further influence the cancer 
process. This paper reviews recent studies of mechanical components and CSCs, and further discusses 
the intrinsic correlation among them. Regulatory mechanisms of mechanical microenvironment, which 
act on CSCs, have great potential for clinical application and provide different perspectives to drugs and 
treatment design. 
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Introduction 
Cancer is the second leading cause of death 

worldwide and poses a great threat to human life and 
health. A variety of treatments, including surgery, 
chemotherapy, radiation therapy, and molecule- 
targeted therapies, such as angiogenesis inhibitors, 
tyrosine kinase inhibitors, and monoclonal antibodies, 
have been widely deployed against cancer, yet the 
outcomes for patients, particularly those with the 
most aggressive cancers, remain mixed [1, 2]. 
Although many studies have been conducted on the 
tumorigenesis and metastasis of cancer, there are still 
various aspects not well understood. 

Within cancer tissues, there are several dynamic 
subsets of cancer cells considered to be cancer stem 
cells (CSCs) or stem cell-like cancer cells [3, 4]. CSCs 
are often identified with abundant expression of stem 
cell markers, long-term clonal proliferation, 
tumoriginecity, facilitating metastasis and resistance 
to chemotherapy. Since the first demonstration of the 
presence of CSCs in leukemia [5], the existence of 
CSCs has been successfully demonstrated in a variety 
of cancers [6-10]. Both clinical and experimental data 
indicate that CSCs can survive during chemotherapy 

and radiation therapy [11]. The existence of CSCs is a 
barrier that limits therapeutic effect [12], although 
CSCs may be dormant and quiescent for long periods 
of time [13]. Thorough studies on CSCs may offer 
theoretical guidance for cancer therapy in clinical 
practice. 

Many studies have demonstrated that the 
microenvironment could regulate stem cell fate by 
providing biological conditions, including those that 
are cell-to-cell, cell- or non-cell factors, and 
mechanical stimuli [14-17], which showed that 
mechanical factors could affect stem cell proliferation, 
migration, differentiation, stemness maintenance, and 
other biological behaviors [18, 19]. These mechanical 
components include matrix stiffness, fluid shear 
stress, cyclic stretching or compression, even gravity 
environments, or topological structures [20-22]. 

In recent years, the biomechanical 
microenvironment of cancer has attracted more 
attention [23]. Several studies have shown that the 
biomechanical microenvironment in solid tumors 
differs completely from that in surrounding tissues 
[24]. Throughout the process of cancer development, 
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excessive and disordered cell proliferation will lead to 
abnormal development of the biomechanical 
microenvironment, including solid stress, increased 
tissue stiffness, and an abnormal interstitial fluid 
pressure (IFP) [25]. This special biomechanical 
microenvironment might play an important role in 
maintaining the survival of CSCs and cancer- 
associated cells [26]. For example, in the process of 
hematogenous metastasis, cancer cells leave the 
primary niche and enter the circulatory system with a 
unique biomechanical microenvironment. During the 
transition through the circulatory system, cancer cells 
are subjected to hemodynamic forces, immunological 
stress, and collisions with host cells, such as blood 
cells and the endothelial cells lining the vessel wall 
[27]. These biomechanical stressors could affect cancer 
cell fate and the ability to establish metastatic foci [28]. 
Moreover, all of these biomechanical stressors could 
affect CSCs stemness during cancer progress (Table 
1). 

The biomechanical microenvironment in 
solid tumor 
Matrix stiffness 

The biomechanical microenvironment in cancer 
tissue has three unique characteristics: solid stress 
caused by unregulated proliferation of cancer cells, 
increased extracellular matrix (ECM) stiffness, and 
abnormal IFP [26]. The increasing accumulation of 
ECM changes tissue density, which eventually leads 
to a gradual change in the tissue’s stiffness [29]. It is 
generally believed that the stiffness of solid tumor is 
much higher than that of normal tissue [30]. For 
example, a normal mammary gland has a modulus of 
elasticity of less than 200 Pa, while the tumor over 4 
kPa; normal liver tissue has a stiffness between 4 and 
10 kPa, yet the stiffness of a liver cancer tends to be 20 
to 50 kPa or higher [29, 31]. As osteosarcomas arise in 

the hardest tissue of the body, the dogma stating that 
solid tumors are macroscopically harder than the 
healthy tissue from which they originate does not 
apply in this case [32]. It was shown that 
osteosarcomas are markedly weaker and softer, 
exhibiting a step-by-step bone matrix reduction and 
degradation, indicative of sequential bone structural 
failures [33]. There are also differences in stiffness 
within tumors. In the interior of a solid tumor, 
different areas show distinct stiffness profiles, and the 
stiffness in the invasion frontier is much stiffer than 
that of the central area [34]. 

Shear stress 
When cancer tissues enlarge to a certain size, 

they tend to be hypoxic. This could cause cancer cells 
or cancer-related cells to produce abnormal secretion 
of vascular endothelial growth factor (VEGF) or other 
angiogenic factors, causing disordered angiogenesis 
and lymphangiogenesis [35]. However, these 
neo-vessels are poorly functional, with irregular 
networks and high permeability [28]. Therefore, 
liquids and macromolecules are more likely to 
infiltrate the interspace, breaking the balance of 
osmotic pressure, resulting in elevated tumor IFP [36]. 
In solid tumors, the increasing number of lymphatic 
vessels around the tumor which is coupled with high 
IFP, leads to a rise in tumor fluid flux [37]. The IFP 
within solid tumors, although slower in flow rate 
compared with blood shear stress, still produces a 
certain fluid shear stress that can influence cell 
behavior (Fig. 1). In addition to the fluid shearing 
force, the flow of the interstitial fluid causes the 
concentration gradient of the solute molecules or 
signal molecules, and the concentration gradient is 
generated inside or outside the cell, contributing to 
signal transmission and the exchange of substances 
[26]. 

 

Table 1. Mechanical effects on CSCs 

Model Mechanical environment Outcome 
HCC culture on polyacrylamide gels [58] Substrate stiffness: 6-16 kPa HCCs show higher stemness on the 16 kPa substrate gels 
HCC culture on polyacrylamide gels [49] Substrate stiffness: 1-10 kPa HCCs show higher stemness on 1 kPa substrate gels 
Breast cancer cell culture on polyacrylamide gels and hypoxic 
environment [50] 

Substrate stiffness: 0.13-4.02 kPa Stiffness and hypoxic factors promote the development of 
breast CSCs 

Colorectal cancer culture on Polyacrylamide gels [51] Substrate stiffness: 2-20 kPa HCT-116 cells show higher numbers of CSC markers with 
increasing stiffness of gels 

Melanoma CSC culture on 3D fibrin gels [52] Gel stiffness: 90-1050 Pa CSCs have a better ability to maintain stem cell 
characteristics on a softer matrix stiffness 

Ovarian carcinoma cell culture on a poly-HEMA-coated 
microfluidic channel [59] 

Shear stress: 0.002-0.02 dyne/cm2 Ovarian cancer cells acquired the expression of EMT and 
CSC markers with 0.02 dyne/cm2 shear stress 

Breast cancer cell culture in a computational fluid dynamics 
module [78] 

Shear stress: 20-60 dyne/cm2 MCF7 cells show high numbers of CSC marker under 
shear stress compared with a static state 

Liver CSC culture on a parallel-plated flow chamber system 
[84] 

Shear stress: 2 dyne/cm2 Liver CSC stemness is reduced under shear stress via the 
Wnt/β-catenin signalling pathway 

Tumor culture on a stress clamp [85] Compressive stress: 5-10 kPa Tumour sphere volume is reduced under compressive 
stress 
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Figure 1. The mechanical microenvironment of cancer. CSCs are not uniformly distributed in cancer tissues. More CSCs are distributed in invasive frontiers to facilitate 
malignant metastasis. At the invasive frontier, CSCs are subjected to the forces of increased matrix stiffness, interstitial fluid pressure, and the tensile force of surrounding tissues. 
When CSCs enter the blood vessels, they are subjected to fluid shear forces generated by blood flow. These mechanical factors play important roles in maintaining the 
characteristics of CSCs. 

 
In the circulatory system, cancer cells are 

subjected to fluid shear stress generated by blood 
flow, the fluid shear stress generated by the 
circulatory system is much greater than that 
generated by interstitial flow [38, 39]. Only a small 
fraction of cancer cells, CSCs or circulating tumor cells 
(CTCs), can overcome or even exploit the effects of 
fluid shear, gradually escape the circulation and 
successfully arise metastatic tumors [40, 41] (Fig. 1). 

Compression and tension stress 
Solid stress is always present in solid cancer 

tissues. Owing to the epithelial frontier, all 
unregulated cancer cells grow in a limited space, 
which inevitably generates more solid stress in 
tumors compared with surrounding tissues [26]. The 
solid pressure within tumor reaches 45-120 mm Hg, 
so that exceeding the lymphatic or blood vessels 
pressure (6-17 mm Hg) can cause the collapse of the 
tumor blood vessels [42]. 

Solid stresses caused by tumor growth can 
induce a variety of cellular behaviors. Mechanical 
stresses generated by cells and cellular structures play 
critical roles in epithelial homeostasis, driving diverse 
behaviors, such as mammary epithelial cell branching 
morphogenesis, epithelial-to-mesenchymal transition 
(EMT), and neoplastic progression [43]. The cancer 
cells in the invasion frontier are subjected to internal 
tension caused by irregular cancer cell growth, 

compressive stress from the external ECM, and 
surrounding paratumor tissue (Fig. 2). This can be 
thought of as filling a balloon with air, and as the 
interior expands, the border cells are pressed outward 
and stretched via interaction with their surroundings. 

Matrix stiffness and CSCs 
Matrix stiffness and the stemness of CSCs 

With expansion, abnormal ECM accumulation 
results in increased stiffness of cancer tissue. Dozens 
of in vitro or in vivo experiments have demonstrated 
that cells are sensitive to reacting the stiffness of the 
substrate, regulating its migration, differentiation, 
and proliferation [30]. Engler et al. showed that 
mesenchymal stem cells (MSCs) can differentiate into 
specialized lineages with various stiffnesses of 
polyacrylamide gels (PA) gels. The results indicated 
that MSCs underwent primary neuronal 
differentiation on soft matrix stiffness (0.1-1 kPa). 
Stiffer matrices (8-17 kPa) lead MSCs to commit to 
myoblast differentiation, and a rigid matrix (25–40 
kPa) results in osteogenesis [44]. The differentiation 
potential of CSCs can also be regulated by matrix 
stiffness [45, 46]. You et al. showed that hepatoma 
carcinoma cells presented high stemness on gels with 
up to 16 kPa stiffness. Furthermore, mechanical 
signals were transmitted via the intracellular 
PI3K/Akt-mTOR-Sox2 pathway through the 
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transmembrane protein, integrin-β1 (ITGB1), 
resulting in high expression of CD133 and epithelial 
cell adhesion molecule (EpCAM) [47]. ITGB1, also 
known as CD29, is a transmembrane receptor 
encoded by the ITGB1 gene in humans. Recent studies 
have shown that ITGB1 is not only related to 
mechanical factors but also closely related to CSCs 
and cancer differentiation [48]. Schrader et al. 
demonstrated that hepatoma stem cells were more 
abundant on softer gels (1 kPa), a softer matrix can 
cause hepatoma cells to enter a quiescent and 
dormant state, increasing their stemness [49]. In 
addition, matrix stiffness significantly affects the 
stemness of lung cancer cells. The increased matrix 
stiffness (130-4020 Pa) dramatically elevates 
integrin-β1 expression for transmitting the 
mechanical force and further activates the 
intracellular integrin-linked kinase (ILK)/PI3K/Akt 
signaling pathway [50]. In colon cancer, increased 
matrix stiffness (2.0–20.0 kPa) inhibits the expression 
of stemness markers, such as CD133 and acetaldehyde 
dehydrogenase 1, by inhibiting the activation of 
yes-associated protein (YAP), PI3K, and Akt through 
integrin-β1 [51]. CSCs derived from malignant 
melanoma have a better ability to maintain stem cell 
characteristics, exhibiting stronger self-renewal 
capacity, compared with well-differentiated 
melanoma cells in a soft matrix [52]. Besides, CSCs 
have low level of histone 3 lysine residue 9 (H3K9) 
methylation, which is unresponsive to matrix stiffness 
or applied forces [52]. 

Although several studies indicated that matrix 
stiffness significantly affects the differentiation and 
survival of cancer cells, several researchers have 
shown contradictory results. Various research models 
and measurement methods used to assess tissue 
stiffness may produce varied results in certain tissues. 
In addition, the selection of different references has 
led researchers to have varying standards for softness 
and stiffness. Cancer cells from different tissues have 
varied sensitivities and adaptabilities to mechanical 
signals. For example, hepatoma cells show higher 
stemness in stiff matrix, while melanoma cells express 
higher stem cell markers in the softer matrix [51-53]. 
To obtain more accurate experimental results, 
researchers’ must be more cautious in the choice of 
stiffness. 

In fact, the cells in the body locate in three- 
dimensional (3D) environments, and the common 
methods of constructing different matrix stiffnesses 
with PA and other gels in the study usually provide 
two-dimensional (2D) matrix stiffness. By employing 
the 3D environment to simulate the mechanical 
environment of cancer cells in vivo, the precise 
information about the actual situation of cancer cells 
in the body is very necessary. Although some studies 
have shown that the stiffness of the matrix under 3D 
conditions affects the stemness of CSCs, the extant 
literature on the topic compared with the existing 2D 
conditions is far from sufficient [54]. 

Matrix stiffness is a key biomechanical force of 
the tumor microenvironment and correlates tightly 

 
Figure 2. Compression and tension stress in a solid tumor. Neoplastic growth steadily increases tumor size, providing radial tension and axial compression to cancer cells. Cells 
at the invasive frontier are subjected to tension stress during cancer expansion, and that stress arrives from all directions (green arrow). What is more is that cells at the central 
area are subjected to compression stress during tissue expansion, and that stress mainly emanates from the invasive frontier directions (blue arrow). 
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with tumor progression. The mechanical receptors on 
the cell surface, such as integrins, CD44, and ion 
channels, can sense the change of ECM and activate 
the downstream key molecules, including FAK, ILK, 
RhoA, and YAP/TAZ. Some of the signals induce 
non-CSCs reprograming and transforming into CSCs 
through highly expressing Sox2, Oct-4 and Nanog 
[47-53], finally leading to a poor prognosis. Although 
abnormal matrix stiffness increases cancer cell 
stemness, there might also be opportunities to take 
advantage of the abnormal stiffness by developing 
mechanosensitive treatment. One of the possible 
therapies is directly changing the matrix stiffness of 
the tumor by using metformin to reduce the tissue 
stiffness [55], targeting ECM components such as HA, 
or changing the secretion of cellular collagenase. 

Fluid Shear and CSCs 
Interstitial fluid pressure in cancer 

Interstitial fluid and blood can produce fluid 
shear stress on cell surfaces under physiological 
conditions. However, the neovasculature are poorly 
functional with abnormal vessel network, and have a 
very high permeability compared to mature 
microvessels. Within tumors, the increasing number 
of lymphatic vessels around tumors, which is coupled 
with high IFP, will lead to an increased tumor fluid 
flux. 

The flow rate of the interstitial flow is slow, and 
the velocity is just approximately 0.1–2 μm/s, with 
the resultant fluid shear stress being approximately 
0.01–0.2 Pa (0.1-2 dyne/cm2) [26]. Owing to advances 
in science and engineering, computational modeling 
is often used to carry out simulations and auxiliary 
experiments when evaluating interstitial flow [40, 56]. 
The studies showed that cancer cells had sensitivity to 
microfluid shear stress in vitro and responded 
accordingly. Dong et al. showed that less fluid shear 
stress could affect the cytoskeleton and shape cell 
morphology [57]. IFP can increase the migration and 
invasion of cancer cells by activating CXCR4/CXCL12 
and MEK/ERK signaling in hepatocellular carcinoma 
[58]. 

The IFP can maintain the biological properties of 
CSCs. Studies have shown that 0.02 dyne/cm2 fluid 
shear could empower ovarian cancer cells with 
stronger stemness and EMT properties through 
microRNA-199a-3p or PI3K/Akt signaling pathways 
[59]. More importantly, the contribution of the 
interstitial flow is increasing osmolality by causing an 
increase in IFP [60]. IFP can also generate 
concentration gradients around cancer cells, 
providing the necessary growth factors and signaling 
molecules for CSCs [61]. 

IFP can activate the PI3K/Akt signaling pathway 
through surface receptors, such as integrins, to 
enhance the stemness of cancer cells. Additionally, 
rectifying abnormal IFP due to angiogenesis in the 
tumor microenvironment is a promising treatment 
option. For example, acting on VEGFs-VEGFR 
signaling pathway could reduce angiogenesis to 
weaken IFP, thereby improving the prognosis of 
patients [62]. 

Blood shear stress and CSCs 
Compared to interstitial flow, blood flow has a 

faster velocity and larger coronary system. The flow 
of blood can produce greater fluid shear at 1-4 
dyne/cm2 in narrow vessels and 4-30 dyne/cm2 in 
larger vessels [39]. Before entering the peripheral 
blood circulation, cancer cells exhibit a pronounced 
dissemination ability after undergoing a series 
of changes; the biological behavior of cancer cells 
within the circulatory system is also affected by the 
action of hemodynamic forces [39]. Shear stress is the 
friction between blood flow and vascular endothelial 
cells, which regulate cell morphology and function. 
Fluid shear stress is critical for vascular remodeling 
and significantly regulates cancer cell metastasis and 
differentiation [63-65]. When enters into the blood 
circulation system, cancer cells face a completely 
different mechanical microenvironment [39]. Strong 
fluid shear stress is not suitable for cancer cell 
survival, although the harsh environment and 
immune mechanisms in the blood circulation remove 
most cancer cells, a small fraction of CSC/CTCs still 
initiate metastasis [66, 67]. Several lines of evidence 
suggest that a presumably small subset of CTCs also 
bear CSC characteristics based on their ability to give 
rise to tumors [68]. CTCs or CSCs have many similar 
characteristics, such as a high expression of cancer 
stem cell markers, CD90, CD44, and EpCAM, 
enhanced tumorigenic ability, pronounced colony 
forming ability, and greater EMT capacity [69]. 
Among them, EpCAM is one of the important 
markers used in clinical screening and identification 
of CTCs, and is commonly utilized in the study of 
CSCs and CTCs [70,71]. Therefore, several studies in 
recent years have proposed that the putative source of 
CTCs is CSCs [72]. 

Fluid shear stress can affect cancer cell migration 
through the ROCK signaling pathway, an upstream of 
the FAK and PI3K/Akt pathways, and finally impact 
the co-activation of the YAP/TAZ pathway [73]. 
YAP/TAZ, a key transcriptional coactivator in the 
Hippo pathway, has been reported in many recent 
studies to be associated with mechanical factors and 
can respond to a variety of mechanical stimuli [74]. 
Besides affecting the migration and deformation of 
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cells, fluid shear stress promotes EMT in epithelial 
cells, a process that allow cancer cells to gain CSC 
phenotype [75, 76]. Sun et al. showed that low shear 
stress inhibited sphere-forming ability, increased 
chemosensitivity, downregulated CSCs marker 
expression, and suppressed the in vivo tumorigenicity 
of liver CSCs [77]. Triantafillu et al. showed that fluid 
shear stress could promote the expression levels of 
CD24, EpCAM, Oct-4, Nanog, and other CSC 
markers, maintaining CSCs within circulatory system 
in breast cancer cell MCF-7, and this process was 
independent of EMT [78]. 

Eliminating CTCs/CSCs in blood stream is 
always an important strategy for the treatment of 
metastasis in the clinic. The mechanical signals 
provide possible treatment strategies for removing 
CTC/CSCs. For instance, YAP/TAZ might be a new 
potential target [73]. In addition, changing blood 
shear force may be a new method to eliminate 
CTCs/CSCs. At present, hemodynamic drugs that 
have been approved in the clinic, such as 
cardiovascular drugs and anticoagulants, might also 
influence tumor metastasis. An improved 
understanding of how shear stress influences 
CTC/CSCs at blood vessel could lead to the design of 
refined anti-metastatic approaches. 

Solid stress and CSCs 
Solid stress, as the major component of the 

biomechanical microenvironment, directly transmits 
mechanical signals to cells through the ECM, and 
indirectly affects cells by compressing blood vessels 
and lymph vessels [79]. 

Although many studies have shown that tensile 
and compressive stresses are potential assistors for 
cancer metastasis, none have directly indicated that 
CSCs are related to tensile and compressive stress. 
There is still inadequate explicit evidence to prove 
that tensile and compressive stress can affect the 
biological behavior of CSCs. Liang et al. suggested 
that compression significantly decreased pulposus- 
derived MSC survival, differentiation, colony 
formation, and migration. Furthermore, compression 
loading could downregulate the expression of stem 
cell-related proteins and result in cell differentiation 
[80]. Gan et al. showed that less compression 
increased anabolic response, whereas more 
compression induced the catabolic response of MSCs 
by inhibiting the expression of transient receptor 
potential cation channel subfamily V member 4 
(TRPV4) [81]. Osteocytes also respond to direct 
compressive stimuli. For instance, the differentiated 
murine osteoblastic cells MLO-A5, cultured in 3D 
scaffolds upregulated the expression of osteopontin 
and osteocalcin when exposed to a compressive 

loading regime consisting of 5% strain at 1 Hz - 2 h, 
approximately for three weeks [82]. Further 
investigation is thus needed to determine if 
mechanotransduction is maintained within cancer 
tissue when subjected to compression as well as if and 
how this prevalent mechanical stimulus influences the 
development of CSCs. Ultimately, research on the 
CSC mechanical microenvironment can provide more 
potential theoretical targets for therapeutic 
intervention of CSCs. 

Although the relationship between stress and 
CSCs needs further research, adjusting the abnormal 
solid stress may improve response to various 
treatments, such as immunotherapy. The generation 
of solid stress is closely related to the ECM 
composition. Degrading the matrix composition or 
decreasing the degree of fibrosis will help reduce 
compression and tension stress. For example, 
losartan, an antagonist of angiotensin II receptor 1, 
degrades both collagen I and HA by blocking TGF-β 
signal [83]. 

Perspectives 
The mechanical factors play key roles in 

regulating the characteristics of CSCs. CSCs and 
normal stem cells often share similar surface markers 
and signaling pathways, which would restrict the 
design of treatment regimens [13]. In fact, it is 
challenging for new therapies to target CSCs without 
affecting normal stem cells. The abnormal 
biomechanical factors, which rarely exist in the 
harmonious microenvironment of normal stem cells, 
may provide new insights for CSC-targeted 
treatment. As such, discovering the relationship 
between biomechanical factors and CSCs will greatly 
enable the generation of novel research strategies to 
investigate the occurrence, development, and 
recurrence of cancers. 
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