
Journal of Cancer 2021, Vol. 12 
 

 
http://www.jcancer.org 

5807 

Journal of Cancer 
2021; 12(19): 5807-5816. doi: 10.7150/jca.47557 

Research Paper 

Identification of a prognostic 4-mRNA signature in 
laryngeal squamous cell carcinoma 
Cheng Zhang1, Bin Shen2, Xinwei Chen2, Shang Gao2, Xinjiang Ying2, Pin Dong2 

1. Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 
China. 

2. Department of Otorhinolaryngology-head and neck surgery, Shanghai General Hospital, Shanghai, China. 

 Corresponding author: Pin Dong, Department of otorhinolaryngology-head and neck surgery, Shanghai General Hospital, No.85 Wujin Road, Shanghai 
200080, China. E-mail: dongpin64@aliyun.com. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2020.04.29; Accepted: 2021.07.18; Published: 2021.08.03 

Abstract 

Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignancy in the 
respiratory tract and could reduce the quality of life seriously like dyspnea, dysphonia and dysphagia. 
Moreover, 5-year survival rate has decreased over the past 40 years. This study was designed to identify 
mRNAs that related to prognosis in LSCC to enable early detection and outcome improvement. 
Methods: Gene expression profiles from Gene Expression Omnibus (GEO) (GSE59102, GSE84957) and 
The Cancer Genome Atlas (TCGA) were analyzed to identify differentially expressed genes (DEGs) with 
the help of bioinformatics tools. Functional enrichment analyses including Gene Ontology (GO) and 
pathway analysis were carried out to investigate the role of those genes and underlying molecular 
mechanisms in LSCC. Cox’s regression analyses (univariate, LASSO and multivariate in order) were 
utilized to identify DEGs related with patients' overall survival and a 4-mRNA-based prognostic risk score 
model was established. Univariate and multivariate Cox’s regression analyses were then performed on 
LSCC data (90 patients left) to identify independent predictors of OS, including the signature and 
clinicopathologic variables. The prognostic value of the gene signature was further validated and the genes 
were analyzed by GEPIA to get pan-cancer expression profiles. 
Results: 444 differentially expressed mRNAs (250 up-regulated, 194 down-regulated) were identified 
based on the threshold of fold change > 2 and adjusted p value < 0.05. Univariate Cox’s regression 
analysis showed that high risk score (HR: 3.056, 95% confidence interval [CI]: 0.135-0.649, p<0.001) and 
female (HR: 0.296, 95% CI: 2.020-4.624, p=0.002) were associated with relatively poor prognosis. Further 
multivariate Cox’s regression analysis indicated that risk score and gender were independent prognostic 
factors (p<0.05). The risk score model could stratify patients into high- and low‑risk groups, which 
presents significantly differential overall survival (p= 8.252e−04). The AUCs of 1-, 3- and 5-year OS were 
0.724, 0.783 and 0.818, respectively. 
Conclusions: Our study provides evidence that the four-mRNA signature could serve as a biomarker to 
predict prognosis in LSCC, especially in long-term. 
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Introduction 
Laryngeal cancer remains one of the most 

common tumors of the respiratory tract in which 
squamous cell cancer is known to be the major 
pathological type [1]. There are estimated 177,422 new 
cases diagnosed and approximately 94,771 deaths 
reported globally in 2018 [2]. Despite advances in 
treatments, 5-year survival rate has decreased from 

66% to 63% over the past 40 years [1]. Although the 
clinical TNM staging, histopathological grading, 
history of cigarette smoking and heavy drinking will 
remain valuable, it is possible to acquire molecular 
information about host and tumor to optimize the 
management of laryngeal squamous cell carcinoma 
(LSCC) [3]. Therefore, it is necessary to stratify 
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disease-associated risks in patients early and to 
change treatment strategy, such as modality and 
intensity in multidisciplinary cancer management, as 
well as types of medicine administered in different 
risk groups. 

With the increasing application of high- 
throughput sequencing technology, changes in 
genomics and transcriptomics have provided 
essential insights into the molecular-level 
characteristics of diseases. Many researchers are 
engaged in exploring potential biomarkers for 
predicting prognosis early in head and neck 
squamous cell cancer (HNSCC) patients, one of which 
is LSCC. Accumulating evidence has shown that 
mRNA signatures had potential value in predicting 
prognosis. In the recent studies, a 6-gene prognostic 
signature (PEX11A, NLRP2, SERPINE1, UPK, CTTN 
and D2HGDH) was established and area under the 
curve (AUC) of receiver operating characteristic 
(ROC) curve in 5-year overall survival (OS) was 
increased to 0.74 by drawing [4]. Kaplan-Meier (K-M) 
survival analysis was used to verify that a signature 
(IGF1R, LAMC2, ITGB1, and IL-6) has an excellent 
association with poor survival contributed to 
radioresistance [5]. In laryngeal cancer patients, the 
prognostic accuracy of the 5-gene signature (EMP1, 
HOXB9, DPY19L2P1, MMP1 and KLHDC7B) for OS 
at 5 years was 0.862 [6]. However, more research 
focused on the extensive category and subsite-specific 
transcriptional markers for prognosis combining 
multiple databases are rarely systematically 
compared and identified. Besides, cost-effectiveness 
yet to be taken into consideration in clinical practice. 

Therefore, in this study we aimed to build a 
robust prognostic signature with minimal 
combinations of genes based on Gene Expression 
Omnibus (GEO) [7] and The Cancer Genome Atlas 
(TCGA) [8], which might be used to develop a fast 
detection kit. Subsequently, we identified four 
potential prognostic mRNAs and confirmed the 
integrated 4-mRNA signature as a novel prognostic 
biomarker that might help effectively predict overall 
survival of LSCC patients. 

Material and Methods 
Data acquirement and preprocessing 

Samples selected for study based on the 
following specific criteria: diagnosed as LSCC; 
primary, untreated tumor with a source of matched 
normal tissue; informed consent from patients to 
donate part of their tumor samples. mRNA expression 
profile series matrix files of LSCC were retrieved from 
the GEO. Normalized mRNA expression values, in 
terms of level-3 fragments per kilobase of transcripts 

per million mapped reads (FPKM) and clinical meta 
data files (overall survival times and vital status) of 
patients with LSCC were downloaded from TCGA 
datasets via the Genomic Data Commons (GDC) Data 
Portal of National Cancer Institute and were used for 
subsequent survival-related analysis (details are listed 
in Table 1). Data were collected from September 2, 
2019 to December 5, 2019. The flow chart of the entire 
study is displayed in Figure 1. 

 

Table 1. Clinicopathological characteristics of LSCC patients in 
TCGA mRNA (n=111) 

Categories n (%) 
Age at diagnosis  
< 65 70 (63.06%) 
≥ 65 41 (36.94%) 
Gender  
Male 91 (81.98%) 
Female 20 (18.02%) 
Race  
Asian 1 (0.90%) 
Black 19 (17.12%) 
White 86 (77.48%) 
Others 5 (4.50%) 
Staging system edition  
5th 4 (3.60%) 
6th 20 (18.02%) 
7th 87 (78.38%) 
Clinical stage  
I 3 (2.70%) 
II 11 (9.91%) 
III 26 (23.42%) 
IV 67 (60.36%) 
NA 4 (3.60%) 
Pathological stage  
I 2 (1.80%) 
II 9 (8.11%) 
III 14 (12.61%) 
IV 71 (63.96%) 
NA 15 (13.51%) 
Treatment type  
Pharmaceutical therapy 57 (51.35%) 
Radiation therapy 54 (48.65%) 
Status  
Alive 61 (54.95%) 
Dead 50 (45.05%) 
Abbreviations: LSCC: laryngeal squamous cell carcinoma; TCGA: The Cancer 
Genome Atlas; NA: not available. 

 
 

Strawberry-perl (version 5.30.1.1) was used to 
merge data sets of all samples from TCGA into one 
data set and convert probe IDs into gene symbols. As 
to TCGA, genome assembly Homo_sapiens.GRCh38. 
94.chr.gtf, which was downloaded from Ensembl, was 
used as a reference to map annotation. For GEO data, 
Agilent annotation files were utilized to perform the 
identifier conversion. Expression values were 
averaged when multiple probes corresponding to the 
same gene. Downstream analyses were conducted by 
using R (version 3.5.1). 
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Differential expression analysis 
The “limma” [9] package was executed for 

differentially expressed genes (DEGs) analysis in 
GEO, and Wilcoxon’s rank sum tests were conducted 
by R function “wilcox.test”. DEGs were defined as 
fold change (FC) > 2 and adjusted p value (adj. P. val) 
< 0.05, where log2FC > 1 was regarded as 
up-regulation and log2FC < -1 as down-regulation. 
Visualization of the DEGs, in form of heatmap, were 
achieved by package “pheatmap”[10] of R. 

Grouping of DEGs list 
Web tool Venny (version 2.1) [11] was used to 

overlap up- and down-regulated gene lists with 
Venn's diagrams respectively. 

Construction of enriched ontology clusters 
Aberrantly changed DEGs were submitted to 

Metascape [12], which incorporates a core set of 
default ontologies like Gene Ontology (GO) biological 
processes, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, Reactome gene sets, 
Canonical pathways and so on, for biological 
processes and pathways analysis. Default settings 
were used, including the number of genes included in 
enrichment terms ≥ 3, p value ≤ 0.01 and minimum 
enrichment factor is 1.5. 

Prognostic mRNA signature construction 
Combined expression quantity with clinical data, 

all DEGs genes associated with the OS were selected 
by using univariate Cox’s proportional hazards 
regression. “Risky” genes (Hazard ratio [HR]> 1) and 
“protective” genes (0 < HR < 1) were selected in up- 

and down-regulated DEGs respectively. 
Subsequently, least absolute shrinkage 
and selection operator (LASSO) Cox’s 
proportional hazards regression method 
(package “glmnet“) [13] and “survival“ 
[14], with a 10-fold cross-validation, 
were employed to acquire genes with 
proper weights. In order to facilitate the 
clinical application, the results were 
analyzed by using stepwise 
multivariable Cox’s regression further 
and the best fitting COX model was 
selected based on the lowest Akaike’s 
information criterion (AIC) [15]. 

We thus constructed a linear risk 
classifier model (formula as follows): 

𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = ∑ β𝑖 × 𝜆𝑖𝑛
𝑖=1 , 

where 𝜆𝑖  is the FPKM expression 
value and β𝑖 is corresponding regression 
coefficient of each individual gene. 

Identification of independent prognostic 
factors for LSCC 

The independent predictors of OS (risk_score 
model, age, gender, cTNM_stage and pTNM_stage, 
treatment_type) were identified by univariate and 
multivariate Cox’s proportional hazards regression. 

Performance of the mRNA signature 
R package “pheatmap” [10] was utilized to draw 

risk related dot plots. Patients were divided into high- 
and low-risk groups according to the median risk 
score. The survival status of the two groups can also 
be displayed by dots with different colors separately. 
By running “survival” and “timeROC” [16] package 
in R, we obtained K-M survival curves. In addition, 
log-rank tests were applied to assess prognostic 
significance. The prediction performance of the model 
was presented by time-dependent ROC and evaluated 
based on the AUC in 1-, 3- and 5-year OS. All 
statistical tests were two-sided and p-values < 0.05 
were considered statistically significant. 

Changes in genes expression of 33 cancer types 
All genes in the signature were input into GEPIA 

[17] for differential expression analysis. Four-way 
analysis of variance (ANOVA) method was used to 
calculate differential expression between tumor and 
paired adjacent normal samples from TCGA and 
Genotype-Tissue Expression (GTEx) samples, where 
genes with |log2FC| values higher than 1 and q 
values lower than 0.01 are considered differentially 
expressed genes. 

 
Figure 1. An overview of the gene model construction, red boxes represent methods used in every step. 
LSCC: laryngeal squamous cell carcinoma; GEO: Gene Expression Omnibus; TCGA: The Cancer Genome 
Atlas; ROC: receiver operating characteristic. 
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Results 
Identification of DEGs 

Twenty nine cancer samples and thirteen margin 
samples of LSCC from GSE59102 [18], 9 pairs of 
samples from GSE84957 [19] and 11 paired 
RNA-sequencing (RNA-seq) data from TCGA were 
used to identify differential genes respectively (Table 
2). According to the critical value mentioned in 
differential expression analysis, up- and 
down-regulated differential genes obtained from each 
datasets are taken into intersection analyses and 
drawn by Venn diagrams. The hierarchical-clustering 
heatmaps suggested differences in expression 
patterns between the two groups of samples in 
GSE59102, GSE84957 and TCGA (Figure 2A-2C). A 
total of 444 DEGs were identified, composed of 250 
up-regulated mRNAs and 194 down-regulated 
mRNAs (Figure 2D-2E). 

Functional enrichment analysis 
The modulation-specific biological processes and 

pathways features of these up- and down-regulated 
DEGs were then analyzed. Results were visualized by 
bar graphs and clustering networks as shown in 
Figure 3-4. Among the top 20 output terms of 

up-regulated genes, enrichment is mainly found in 
extracellular matrix organization, cell cycle, cell 
adhesion and differentiation, and pathways in cancer, 
etc. Down-regulated genes are enriched in substance 
processing, leukocyte activation, metabolic processes, 
transport of substance, and regulation of signaling. 

 

Table 2. Overview of each datasets associated with LSCC from 
GEO and TCGA 

Data 
source 

Cases of 
tumor 

Cases of 
normal 

Platform Scanned 
items 

Clinical 
files 

GSE59102 29 13 GPL6480 mRNA No 
GSE84957 9 9 GPL17843 lncRNA, 

mRNA 
No 

TCGA 111 12 NA mRNA Yes 
Abbreviations: LSCC: laryngeal squamous cell carcinoma; GEO: Gene Expression 
Omnibus; TCGA: The Cancer Genome Atlas; GSE: GEO Series; GPL: GEO Platform; 
NA: not available. 

 

Construction of 4-mRNA prognostic signature 
All differential genes were analyzed by 

univariate Cox’s proportional hazards regression. We 
obtained 32 OS-related genes in up-regulation gene 
sets and 7 in down-regulation gene sets (Table S1-2). 
In view of the classification criteria of “risk” and 
“protection” genes above, 2 up-regulated genes 
(CHTF18, SPC24) in tumor samples were excluded 

 

 
Figure 2. Heatmaps and Venn’s diagrams of DEGs. (A-C) The heatmaps of 2758, 1096 and 3157 DEGs in GSE59102, GSE84957 and TCGA respectively (fold change > 2 and adjusted 
p value < 0.05), the blue bar represents that the tissue type is normal and blue is tumor. (D-E) The Venn diagrams indicate the overlapping of DEGs in three datasets mentioned above, 
where 250 up- and 194 down-regulated DEGs are showed. DEGs: differential expression genes. 
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owing to their HR < 1. LASSO Cox’s regression was 
performed on the recognized 37 DEGs. The optimal 
value (minimum error) of tuning parameter  𝜆 , a 
constant controlling the degree of penalty, is 0.144 
(Figure 5). Thus, 6 genes (STC2, ITGA5, AQP9, 
EPHX2, TCEA3, and MMP1) were selected out and 
further analyzed by multivariate Cox’s proportional 
hazards regression to determine which one or more 
candidate genes could exhibit better predictive role. 
Consequently, we constructed a prognostic signature 
model based on the expression value of those mRNAs 
and their regression coefficients. The result is as 
follows: Risk score= 0.0494 × Expr (STC2) + 0.0866 × 
Expr (AQP9) + 0.0006 × Expr (MMP1) - 0.0721 × Expr 
(TCEA3). 

Univariate and multivariate Cox’s regression 
analyses of the prognostic signature and 
clinical characteristics predictive of OS 

Given that the AJCC cancer staging standards of 
laryngeal cancer in the 6th edition [20] are the same as 

those in the 7th edition [21], we excluded 4 cases 
clinical data of the 5th edition [22] and integrated the 
former two editions. Furthermore, we also excluded 4 
cases and 13 cases respectively for which cTNM and 
pTNM staging information was not available. 
Univariate and multivariate Cox’s regression analyses 
were then performed on LSCC data (90 patients left) 
to identify independent predictors of OS, including 
the signature and clinicopathologic variables. 
Univariate Cox’s regression analysis showed that risk 
score and gender were significantly associated with 
the prognosis of LSCC patients (Figure 6A). High risk 
score was associated with poor prognosis (HR: 3.056, 
95% confidence interval [CI]: 0.135-0.649, p<0.001). 
Male were associated with relatively good prognosis 
(HR: 0.296, 95% CI: 2.020-4.624, p=0.002). Further 
multivariate Cox’s regression analysis indicated that 
risk score and gender were independent prognostic 
factors (p<0.05) (Figure 6B). 

 

 
Figure 3. Functional enrichment analysis of up-regulated DEGs performed by Metascape. (A) Bar graph of top 20 non-redundant enrichment clusters and the color represents 
statistical significance. (B) Networks of enriched terms linked by edges representing Kappa similarity > 0.3. A Node represents each term and its size is proportional to the 
number of input genes fall into that term. Terms with the same cluster identity are marked corresponding color. (C) The same enrichment network as Figure B, darkness of the 
color indicated the p-value. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

5812 

 
Figure 4. Functional enrichment analysis of down-regulated DEGs carried out by Metascape. (A) Bar graph of top 20 non-redundant enrichment clusters and the color 
represents statistical significance. (B) Networks of enriched terms linked by edges representing Kappa similarity > 0.3. A Node represents each term and its size is proportional 
to the number of input genes fall into that term. Terms with the same cluster identity are marked corresponding color. (C) The same enrichment network as Figure B, darkness 
of the color indicated the p-value. 

 
Figure 5. Analysis of 37 prognosis-associated DEGs analyzed by LASSO Cox’s regression. (A) The left vertical bar indicates the minimum error, the right shows the largest value 
of 𝜆 such that the error is within one standard deviation of the minimum. (B) Coefficient paths of the 37 DEGs that corresponded by value of 𝜆. LASSO: least absolute shrinkage 
and selection operator. 

 

Estimations of the prognostic signature in the 
TCGA datasets 

We employed 111 of cases LSCC patients’ 
clinical files from TCGA RNA-Seq to verify the 

prognostic value of the signature. The median risk 
score was used as a cutoff value to divide the cases 
into two types of risk groups, of which 63.6% (35/55) 
patients were deceased in the high-risk group and 
26.8% (15/56) in the low-risk group (Figure 7A). K-M 
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survival curves indicate that the signature could 
clearly distinguish different risk levels, where 
high-risk group had worse OS (p= 8.252e−04) (Figure 
7B). Time-dependent ROC analysis showed that the 
AUC values of 1, 3 and 5 year survival were 0.724, 
0.783 and 0.818 respectively (Figure 7C). 

Pan-cancer expression profile of genes in 
signature 

MMP1 was over-expressed in all tumors where 
differential expression is exhibited. For instance, it is 
highly expressed in breast invasive carcinoma 
(BRCA), lung neoplasms and HNSC, etc. and lowly 
expressed in all normal tissues (Figure S1). STC2 was 

over-expressed in tumors such as colon 
adenocarcinoma (COAD), esophageal carcinoma 
(ESCA), glioblastoma multiforme (GBM) and HNSC, 
etc. and under-expressed in acute myeloid leukemia 
(LAML) and skin cutaneous melanoma (SKCM) 
(Figure S2). AQP9 was observed more down- 
regulated in all tumors found differential expressed 
like lung neoplasms, thyroid carcinoma (THYM) and 
up-regulated in ovarian serous cystadenocarcinoma 
(OV) and pancreatic adenocarcinoma (PAAD) (Figure 
S3). As to TCEA3, it was more under-expressed in 
tumors like HNSC, OV and PAAD, etc. (Figure S4). 

 

 
Figure 6. A model was identified based on univariate (A) and multivariate (B) analysis of independent predictors of OS. Bar lengths are hazard ratios (HR) for variables with 95% 
confidence intervals (95% CI), red boxes indicate HR>1, and the green boxes are the opposite. p-values < 0.05 were considered statistically significant. 

 
Figure 7. Estimations of the 4-mRNA prognostic signature in the TCGA datasets. (A) Vertical dotted line divides patients into low- and high-risk group based on the median risk 
score. Upper: curve of risk scores of all patients ranked in order of its increasing value. Lower: corresponding survival time with status for each patient. (B) Kaplan-Meier survival 
analysis of the 4-mRNA signature. (C) AUC values of 1-, 3-, and 5-years overall survival by drawing ROC curves. AUC: area under ROC curve. 
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Discussion 
Great efforts have been made to develop an 

optimal tool for predicting prognosis in LSCC 
patients, but no consensus has been reached. In this 
integrated analysis, candidates DEGs were selected by 
univariate and LASSO Cox’s regression and were 
analyzed by multivariable Cox regression further to 
identify the best prognostic gene signature. Based on 
the expression value of these DEGs and their 
regression coefficients, a prognostic risk formula was 
constructed. The prediction accuracy of the model 
was analyzed by time‑dependent ROC and evaluated 
by the area under the curve. All AUC values are all 
greater than 0.7 and show an increasing trend as the 
survival time increases. High expression of “risky” 
mRNAs (STC2, AQP9 and MMP1) and low expression 
of “protective” mRNA (TCEA3) was found to be 
significantly associated with poor prognosis. 
Furthermore, K-M analysis confirmed their 
prognostic role in LSCC. 

Taken together, the following are the issues we 
encountered and then addressed throughout the 
analysis. First of all, there are 11 tumor-adjacent 
samples that have their paired LSCC samples in the 
TCGA database, we thus used the 11 tumor samples 
instead of all to perform differential analyses. In this 
way, the inefficiency caused by a significant 
imbalance in the number of samples between groups 
is reduced [17]. Secondly, the common significant 
DEGs were obtained from the intersection analyses of 
the results from multiple datasets sources, which 
could reduce systematic and random errors due to 
sequencing platforms and sampling, therefore, 
improves the robustness of the results and leads to the 
precise interpretation of molecular landscape of 
LSCC. Thirdly, we only selected data for LSCC to 
make the signature more specific. Fourthly, 
prognostic signatures based on multiple deregulated 
mRNAs have gained much attention recently and 
have shown their potential in prognosis prediction in 
different kinds of cancer [23, 24]. Whereas, most 
single-gene biomarker researches focused more on 
basic experiments; ROC or other methods are rarely 
used to test their prediction accuracy. Last but not 
least, the basic concept of LASSO is that a penalty is 
used to shrink variable weights towards zero, with 
the result that small weights may get shrunken to zero 
and thus to prevent overfitting and improve model 
interpretability. Lambda is a hyperparameter that 
controls the strength of the penalty [25]. 

According to gene expression profiling studies, 
some aberrantly expressed mRNAs, such as HMGA2 
[26], FSCN1 [27] and LAMA3 [28], had been reported 
to be related to clinicopathological features in LSCC 

tissues. Considering that the Metascape could reduce 
the redundancy among ontology terms and monthly 
updates ensured by adopting a novel two-phase 
approach, we use the web-based portal to analyze the 
underlying biological processes and pathways of 
these DEGs involved in the genesis and development 
of LSCC. 

In the results of the functional enrichment 
analysis of the 444 DEGs, MMP1 showed strong 
associations with biological processes related to 
extracellular matrix (ECM) organization, collagen 
metabolic process and pathways related to cancer, 
uPA/uPAR pathway and basigin interactions. Except 
for MMP1, the other three signature genes were not 
identified in the following top 20 enrichment terms. 
Matrix metalloproteinases (MMPs) represent a family 
of zinc-dependent proteinases, which can degrade 
ECM components, such as collagens and 
proteoglycans, and mediate tumor invasion and 
metastasis. Moreover, many MMPs identified in 
human are expressed and contribute to HNSCC 
progression. [29]. Over-expression of MMP-1 has been 
found in all various cancers with differential 
expression [30, 31], which might indicate its 
underlying roles in those tumor phenotypes 
(Supplementary). Wang et.al found that Astrocyte 
elevated gene-1 (AEG-1) modulates the 
phosphorylation at serine 536 of the p65 subunit of 
NF-κB and enhances p65 binding to the MMP1 
promoter, and subsequently increase the expression 
of the downstream gene in HNSCC [32]. Some reports 
demonstrated that MMPs can be triggered by 
plasmin, which converted from plasminogen during 
urokinase plasminogen activator (uPA) /uPA 
receptors (uPAR) signaling pathway [33, 34]. In 
addition, a study showed that co-localization of uPA 
with MMP-1, -2, -9 was observed in advanced 
epithelial ovarian primary tumors and metastatic 
lesions. [35]. Kanekura and colleagues reported that 
coculture of basigin-expressing human malignant 
melanoma cells with dermal fibroblasts could induce 
the production of MMPs including MMP-1, MMP-2, 
MMP-3, etc. and induce invasion through a 
reconstituted basement membrane [36]. Perturbation 
of basigin may have potential therapeutic uses in the 
prevention of MMP-2 and MMP-1-dependent cancer 
metastasis [37]. 

STC2 is a glycoprotein hormone involved in 
many biological processes, especially calcium and 
phosphate homeostasis, and it can also regulate the 
progression of malignant tumors [38]. More recent 
researches revealed that downregulation of 
LINC00460 and HOTAIR could decrease STC2 via 
up-regulating microRNA-206 (miR-206) and 
promotes autophagy, proliferation, invasion and 
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migration in HNSCC [39, 40]. Moreover, a study 
showed that STC2 could upregulate the 
phosphorylation of AKT and enhance HNSCC 
metastasis via Snail-mediated increase of vimentin 
and the decrease of E-cadherin [41], which was 
proved that STC2 could activate PI3K/AKT signaling 
pathway by down-regulating miR-206 [40]. Note that 
STC2 was found over-expressed (Supplementary 
Figure) and might be directly regulated by HMGA2 at 
the transcriptional level in high-grade serous ovarian 
cancer [42]. Furthermore, HMGA2 overexpression 
appeared to be a strong feature of larynx carcinoma 
[26]. 

Evidence showed that AQP9 played a critical 
role in the transmembrane transport of As2O3 and 
modulating arsenite sensitivity in leukemia [43, 44]. In 
addition, patients treated with chemotherapy in 
AQP9 high expression subgroup showed significantly 
better disease-free survival in colorectal cancer, 
demonstrating AQP9 functions as a drug transporter 
and further sensitized tumor cells to chemotherapy 
drugs associated with RAS signaling activation [45]. 
Recently AQP9 has also been found to play opposite 
roles in progression of different cancers. A report by 
Liao et al. identified that AQP9 could inhibit growth 
and metastasis of hepatocellular carcinoma cells via 
Wnt/β-catenin pathway [46]. On the contrary, AQP9 
would promote astrocytoma cell invasion and 
motility [47] and its increase in mRNA-level was 
significantly correlated with aggressive progression 
and poor survival in clear cell renal cell carcinoma 
patients [48]. 

As a member of the transcription elongation 
factor TFIIS family in vertebrates, TCEA3 was 
significantly downregulated in cancer tissues 
compared with paired normal tissues; its 
upregulation could induce apoptosis in gastric cancer, 
ovarian cancer and rhabdomyosarcoma cell lines 
[49-51]. 

Of course, all genes in our signature have been 
reported to be involved and played crucial roles in the 
development of many other tumors, these results 
could provide potential new insights for LSCC 
research. There are still some limitations in our study. 
Firstly, due to public databases and our center 
currently lack enough clinical samples, more 
predictive gene candidates could exist but were 
missed from our study of limited scope. Furthermore, 
in terms of the inconsistency of staging system 
annotations among samples and the absence of 
smoking history has further reduced the number of 
prognostic factors and samples to be comprehensively 
analyzed. Data used in the study only consisted of OS 
and still belong to the training set category. More 
external validation that covering risk score and other 

clinical variables in independent cohorts is required. 
Secondly, in addition to changes at the RNA level, 
changes of the protein and in-depth molecular-level 
mechanism could be investigated further. 

Conclusion 
This study revealed deregulated mRNAs in 

LSCC, and discussed their possible roles in tumor 
progression. To our knowledge, the four-mRNA 
signature model has not been reported previously and 
could be promising to be a supplement to the 
individualized classification of LSCC patients, 
especially for the long-term survival. Nevertheless, 
further investigations of those DEGs and the 
signature are warranted. 

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v12p5807s1.pdf  
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