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Abstract 

Background: It has been confirmed in many tumors that RNA-binding proteins (RBPs) will affect the 
progress of cancer, but there is still a lack of large-scale research in gastric cancer (GC). 
Methods: We obtained 13 microarray mRNA expression profiles of the GPL570 platform, and 
extracted expression from them after integration to analyze the expression differences of RBPs. 
Enrichment analysis studies the role of these RBPs in GC. Univariate, Lasso and multivariate Cox 
regression analysis are used to identify independent prognostic hub RBPs, thereby constructing and 
verifying a prognostic signature. External data and rt-PCR verified the expression of hub RBPs. 
Results: We have identified 51 dysregulated RBPs in GC. Enrichment analysis shows that it can mainly 
participate in RNA decomposition, modification, processing, etc. and affect the progress of GC. After 
multiple statistical analysis, six independent prognostic RBPs of GC were determined and a prognostic 
signature was developed. According to the median risk value, the training cohort was divided into 
high-risk and low-risk groups. Considering the clinical characteristics, in training, testing, and complete 
cohorts, the overall survival rate of the high-risk group was significantly lower than that of the low-risk 
group, which was confirmed by the time-dependent receiver operating characteristic curve. Univariate 
and multivariate Cox regression analysis of independent prognostic ability of risk score. In addition, we 
constructed and verified a nomogram based on the prognostic signature, showing accurate prediction 
performance. rt-PCR and external data verification are consistent with our conclusions. 
Conclusion: This study analyzed the overall expression of RPBs in GC and explored its mechanism. A 
new prognostic signature was developed and verified. A nomogram has also been established and verified, 
which helps to improve the treatment strategy for GC. 
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Introduction 
Gastric cancer (GC) is a malignant tumor that 

originates from epithelial cells of the gastric mucosa. 
The risk factors include: race, environment, 
Helicobacter pylori infection, high-salt diet, moldy 
food, obesity, smoking and other factors. According to 
the latest statistics, there are 1,033,701 new cases of 
GC and 782,685 deaths each year, accounting for 5.7% 
and 8.2% of all tumors, respectively [1]. Reports in 
2010 showed that the incidence of gastric cancer in 
China accounted for as high as 42.6% of the world, 
and it continues to increase [2]. This is because GC 

only shows upper abdominal discomfort in the early 
stage, belching and other symptoms are similar to 
gastritis, gastric ulcer and other chronic gastric 
diseases [1, 3]. There are no other specific symptoms, 
which makes it easy to be ignored, and it is mostly in 
the late stage when discovered. At present, the main 
ways to treat GC include: surgery, chemotherapy, and 
molecular targeted therapy. However, these 
treatments have the characteristics of easy relapse and 
drug resistance, which make the 5-year survival rate 
of GC less than 30% [4]. Due to the late detection of 
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GC, the prognosis is poor. Therefore, it is particularly 
important to find biomarkers that can accurately 
predict GC. 

RNA-binding proteins are critical regulators of 
transcriptional and posttranscriptional gene 
expression possessing multiple biological functions. 
There are highly species-conservative and play a key 
role in maintaining homeostasis of gene expression [5, 
6]. Multiple evidences suggest that RBPs is involved 
in various important cellular processes, such as cell 
transport, localization, development, differentiation 
and metabolism. In addition, RBP participates in 
almost every step of post-transcriptional regulation, 
supervises the formation and function of transcripts, 
and maintains cell homeostasis, such as RNA 
shearing, transport, sequence editing, intracellular 
localization, and translation control by identifying 
special RNA binding domains and RNA interactions 
[7, 8]. At present, 1,542 cancer-related RBPs genes 
have been identified in cancer cells by RNA-seq 
screening technology [8]. More and more studies have 
shown that RNA modification mediated by RBPs 
plays a crucial role in the origin and progression of 
cancer [9, 10]. They greatly changed the growth and 
proliferation of tumor cells, avoided immune 
surveillance, induced angiogenesis and activated 
metastasis [11]. It has been observed that the 
expression of RBPs in multiple tumors is 
dysregulated, and regulate the function of oncogene 
or tumor suppressor gene [12-15]. Therefore, by 
revealing the basic mechanism of RBP expression and 
its potential functions, it helps to find new cancer 
treatment targets and provide new ideas or methods. 

In GC, some reports indicate that the expression 
of RBPs is unregulated and causes the abnormal 
expression of its target proteins, and these target 
proteins are closely related to the prognosis of GC. For 
example, RBFOX3 is highly expressed in GC and 
predicts a poor prognosis, which can promote the 
growth and progression of GC by binding to AP-2β to 
activate the HTERT signal [16]. In GC stem cells, 
Lin28B can maintain cell stemness by binding to 
NRP-1 to activate Wnt/β-catenin signal transduction 
[17]. In addition, PTBP3 can mediate CAV1 alternative 
splicing to promote GC metastasis [18]. The above 
studies suggest that RBPs play an important role in 
GC, which gives us a preliminary understanding of 
RBPs in GC. However, there is no report on the 
overall analysis of research in GC. Therefore, we 
downloaded 13 microarray GC and healthy tissue 
expression data from Gene Expression Omnibus 
(GEO) on the GPL570 platform, and completely 
analyzed the abnormal expression of RBPs between 
tumor samples and normal samples. Systematically 
explored their potential functions and molecular 

mechanisms. Combined with clinical data, these 
differentially expressed RBPs are screened for genes 
with prognostic value, some of which may serve as 
potential biomarkers for diagnosis and prognosis. In 
addition, the prognostic signatures constructed based 
on these prognostic RBPs can accurately predict the 
development of GC patients and have very good 
application prospects. 

Materials and methods 
Identification of differentially expressed RNA 
binding proteins (DERBPs) 

We downloaded the original data containing 
primary gastric cancer. The 13 microarrays are all on 
the GPL570 platform, and the gastric cancer samples 
are all obtained by surgical resection. The data of each 
microarray is shown in Table 1. The RMA algorithm 
of the “affy” package is used to extract the expression 
data of each data set [19], and the “sva” package is 
used to remove batch effects and merge all data sets 
[20]. The P value of the differentially expressed genes 
between the merged data was analyzed by the eBayes 
test of the “limma” package [21]. The threshold for 
determining differentially expressed genes (DEGs) is 
set to |log2 fold change (FC)| ≥ 1.0 and false 
discovery rate (FDR) <0.05. Based on the RNA- 
binding protein database RBPTD (http://www.rbptd. 
com/) [22], we selected differentially expressed 
RNA-binding proteins (DERBPs) from these DEGs 
that met the screening criteria. 

 

Table 1. GEO data sets included in this study 

GEO 
datasets 

Year Country Platform Sample Tumor 
(n) 

Normal 
(n) 

GSE66229 2015 USA GPL570 GC/Normal 300 100 
GSE54129 2017 China GPL570 GC/Normal 111 21 
GSE13911 2008 Italy GPL570 GC/Normal 38 31 
GSE19826 2010 China GPL570 GC/Normal 12 15 
GSE79973 2016 China GPL570 GC/Normal 10 10 
GSE51725 2013 Japan GPL570 GC/Normal 8 2 
GSE15459 2009 Switzerland GPL570 GC 200 0 
GSE51105 2014 Australia GPL570 GC 94 0 
GSE35809 2012 Singapore GPL570 GC 70 0 
GSE57303 2014 China GPL570 GC 70 0 
GSE34942 2014 Singapore GPL570 GC 56 0 
GSE22377 2011 Germany GPL570 GC 43 0 
GSE38749 2012 Brazil GPL570 GC 15 0 

 

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) gene function 
enrichment analysis 

The GO database has three categories, namely 
Biological Process (BP), Cellular Component (CC) and 
Molecular Function (MF). Each describes the 
molecular functions that gene products may perform. 
The cellular environment and the biological processes 
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involved. The KEGG database helps to research genes 
and expression information as a whole network. 
KEGG integrates data on genomes, chemical 
molecules and biochemical systems, including 
metabolic pathways (PATHWAY), drugs (DRUG), 
diseases (DISEASE), gene sequences (GENES), and 
genomes (GENOME). 

Identify prognostic-related RBPs 
In order to identify RBPs related to prognosis, 

we used a series of complete statistical analyses. We 
first use the “survival analysis” package to perform 
single-factor Cox regression analysis on the probe ID 
of DERBPs. Subsequently, based on the results of the 
previous step, Lasso regression was used for further 
screening to obtain RBPs that are significantly related 
to the prognosis of GC patients. In addition, we also 
used multivariate Cox regression analysis to test the 
results of Lasso regression and found hub RBPs that 
can independently predict the prognosis of GC. 

Construction and verification of the prognostic 
model of RBPs 

We randomly divide all GC samples into 
training set (n=248) and validation set (n=244). We 
first used multivariate Cox regression analysis in the 
training set to construct a risk ratio model for 
predicting the prognosis of GC based on hub RBPs. 
We first used multivariate Cox regression analysis in 
the training set to construct a risk ratio model for 
predicting the prognosis of GC based on hub RBPs. 
We obtained the HR of hub RBPs, the 95% confidence 
interval of HR and the regression coefficient (β) of the 
corresponding gene. According to the expression of 
each gene and the regression coefficient, we can 
calculate the risk score of each patient according to: 
Risk score=β1*Exp1+β2*Exp2+βi*Expi. The GC 
patients were divided into high-risk and low-risk 
groups based on the median risk score, and 
Kaplan-Meier survival curve was drawn. The 
difference in OS between the two groups was 
analyzed by log-Rank test. We also draw a 5-year 
ROC curve with “SurvivalROC” package, and 
calculate the AUC value to evaluate the predictive 
ability of the predictive model. In addition, we also 
collected the clinical information of these chips 
(Supplementary Table 1), and evaluated the risk 
scores and clinicopathological characteristics of the 
HR value and P value through single factor and 
multivariate Cox regression analysis to determine 
whether the risk value is an independent prognostic 
factor for GC patients. In order to verify the signature 
we built, we not only used the validation set to verify 
the model built using the same method, but also 
conducted an overall analysis of all GC samples to 

verify the prognostic model of RBPs. 

Bioinformatics analysis 
We used the chi-square test to analyze the 

relationship between the expression of each hub RBPs 
and the clinicopathological characteristics of patients 
with GC, and search for the potential mechanisms that 
affect tumor progression. In addition, in order to 
study the differences between different risk groups, 
we first analyzed the relationship between high and 
low risk groups and clinicopathological 
characteristics, and secondly, we also used Gene Set 
Enrichment Analysis (GSEA) to further analyze the 
overall differences between different risk groups [23]. 
We use GSEA4.0 based on the molecular signature 
database (MSigDB), with hallmark7.1 as the control 
gene and |NSE|> 1, FDR <0.001 as the screening 
conditions to identify the development mechanism of 
GC in the high-risk group. 

RBPs nomogram construction and verification 
We use “rms” to draw a nomogram based on the 

RBPs prognostic risk model, and obtain the 
corresponding score by analyzing the expression level 
of each hub RBPs, and adding the scores of all hub 
genes to obtain the corresponding total score. By 
drawing a vertical line on the total score line, we can 
predict the probability of survival for patients with 
GC in 1 to 5 years. In addition, in order to test the 
prediction ability of the nomogram, we draw a 5-year 
calibration curve by analyzing the survival 
probabilities of the predicted value and the actual 
value at the quartile of all GC patients. If the actual 
value is close to the predicted value, the nomogram 
has good predictive performance. 

Verification of hub RBPs expression and 
prognosis 

In order to verify the prognosis of hub RBPs, we 
used Kaplan-Meier Plotter (http://kmplot.com/) to 
verify it in the GSE29272 data set [24]. For the 
verification of hub RBPs expression, we first use the 
GEPIA network tool for verification, which contains 
data from the TCGA and GTEx databases [25]. In 
addition, we also collected surgical samples from 10 
pairs of gastric cancer patients. The process was 
approved by the patient’s informed consent and the 
ethics committee of the Second Affiliated Hospital of 
Nanchang University. After homogenizing the clinical 
samples, the Trizol (Thermo Fisher, USA) method was 
used to extract total RNA. The obtained RNA was 
reverse transcribed using reverse transcription kit 
RR047A (Takara, Japan). ACTB was used as the 
internal reference gene, and the mRNA expression of 
hub RBPs was analyzed by fluorescence quantitative 
PCR using the RR820 kit (Takara, Japan) on the 
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7900-HT system (Thermo Fisher, USA). The primers 
used are all synthesized by Shanghai Shenggong 
Company, and the sequences of all primers are in 
Supplementary Table 2. 

Results 
Identify DERBPs 

The flowchart of this study is shown in Fig. 1, 
and the details of the GEO data set included in this 
study are shown in Table 1. After extracting 
expression data from each data set, removing batch 
effects and merging, a single expression data of 179 
normal stomach and 1027 GC tissues were obtained. 
After the difference analysis of the “limma” package, 
we obtained 1430 probe differences (1102 genes) that 
met the screening conditions, and used R to draw the 
heat map and volcano map. After further screening, 
we got 70 One probe ID (51 genes) representing RBPs, 
of which 25 RBPs were up-regulated and 26 genes 
were down-regulated (Table 2). 

GO and KEGG gene function enrichment 
analysis 

We performed GO and KEGG functional 
enrichment analysis on these DERBPs. The results 
suggest that 51 DERBPs are enriched in 
posttranscriptional regulation of gene expression, 
mRNA binding, nucleicase activity, regulation of 
cellular amide metabolic process, catalytic activity, 
acting on RNA, nuclear acid phosphodiester bond 
hydrolysis, RNA catabolic process, AU-rich element 
binding, RNA modification, debtinase activity, 
mRNA processing, regulation of mRNA metabolic 

process, DNA modification, ribonucleoprotein 
complex biogenesis (Table 3). For the KEGG 
functional enrichment analysis, we did not find an 
item that met the filter criteria. 

Identification of prognostic-related hub RBPs 
In this study, we collected a total of 492 samples 

with clinical information for further research. First, 
the univariate Cox regression analysis was used to 
analyze the relationship between 70 RBPs probes and 
prognosis, and the results suggested that 42 RBPs 
probes were related to the prognosis of GC patients 
(Fig. 2A). Subsequently, Lasso regression further 
analyzed the results of the previous step and screened 
the RBPs probes that are significantly related to the 
prognosis. We obtained 9 key RBPs probes that are 
significantly related to the prognosis of GC patients 
(Fig. 2B and C). In addition, we also used multivariate 
Cox regression analysis of these 9 key probes, and the 
results showed that 6 hub RBPs probes (6 RBPs) are 
independent prognostic factors for patients with GC. 
Among them, HR>1 includes KIAA0101, WIPF3, 
COL5A2, RBPMS2, and HR<1 includes DAZ1 and 
NOVA1. 

Construction of a prognostic model of GC 
based on RBPs 

We randomly divided 492 GC samples with 
clinical information into training set (n=248) and test 
set (n=244). We first assign the corresponding 
regression coefficients (β) to the 6 hub RBPs in the 
training set, and then synthesize their expression 
levels to construct a prognostic model. Each GC 
patient gets a risk score according to the following 

formula: Risk score= -0.058 
*ExpDAZ1+ 0.3524 *ExpKIAA0101+ 
0.2045 *ExpWIPF3 + 0.2687 
*ExpCOL5A2 + 0.4544 * EXPRBPMS2 
+ -0.2872 * ExpNOV1, divided into 
high-risk group and low-risk group 
based on the median Risk group. The 
KM curve indicated that the survival 
rate of GC patients in the high-risk 
group was significantly lower than 
that in the low-risk group (Fig. 3A), 
and the 5-year AUC was calculated as 
0.713 (Fig. 3B). The distribution of 
survival status indicated that the 
survival time and number of patients 
in the high-risk group was lower in 
the risk group, low (Fig. 3C). 

 

 

 
Figure 1. Work flow chart of this research. 
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Figure 2. Identify prognostic-related hub RBPs. A Univariate Cox regression analysis identified prognostic-related RBPs in the entire cohort. B Selecting the best parameters for 
gastric cancer in LASSO regression analysis. C Multivariate Cox regression analysis identified prognostic-related hub RBPs. 

Table 2. 51 differentially expressed RNA binding proteins 

Upregulate RNA binding protein Down-regulate RNA binding protein 
Prob ID Gene ID Log2FC P Prob ID Gene ID Log2FC P 
203820_s_at IGF2BP3 2.83  1.46E-68 225939_at EIF4E3 -1.03  9.43E-64 
203819_s_at IGF2BP3 2.62  1.52E-61 235004_at RBM24 -1.03  8.64E-27 
201291_s_at TOP2A 2.06  1.60E-72 204422_s_at FGF2 -1.04  6.92E-28 
201292_at TOP2A 1.87  4.50E-68 219778_at ZFPM2 -1.06  1.64E-19 
209408_at KIF2C 1.65  9.88E-89 232676_x_at MYEF2 -1.06  1.08E-28 
211519_s_at KIF2C 1.21  5.58E-63 222771_s_at MYEF2 -1.21  6.44E-29 
204822_at TTK 1.62  2.78E-54 212328_at LIMCH1 -1.07  6.54E-42 
202870_s_at CDC20 1.61  2.41E-64 212327_at LIMCH1 -1.10  6.49E-50 
223229_at UBE2T 1.55  1.17E-76 208281_x_at DAZ1 -1.09  6.49E-08 
203358_s_at EZH2 1.53  4.76E-76 208282_x_at DAZ1 -1.32  4.91E-09 
221258_s_at KIF18A 1.42  8.18E-64 207909_x_at DAZ1 -1.33  2.36E-09 
204603_at EXO1 1.40  5.88E-87 207912_s_at DAZ1 -1.78  8.96E-11 
221730_at COL5A2 1.39  1.21E-65 205141_at ANG -1.09  3.31E-36 
221729_at COL5A2 1.36  1.16E-67 239587_at TLR3 -1.09  1.79E-35 
225827_at AGO2 1.33  2.04E-119 206042_x_at SNRPN -1.11  1.10E-48 
213310_at AGO2 1.12  1.45E-74 201522_x_at SNRPN -1.15  2.00E-51 
211762_s_at KPNA2 1.32  5.99E-93 218651_s_at LARP6 -1.15  4.93E-43 
201088_at KPNA2 1.11  2.68E-86 207158_at APOBEC1 -1.19  2.60E-22 
204444_at KIF11 1.28  4.36E-47 213397_x_at RNASE4 -1.20  1.86E-49 
201926_s_at CD55 1.27  2.67E-41 205158_at RNASE4 -1.23  2.58E-43 
1555950_a_at CD55 1.24  8.41E-41 56256_at SIDT2 -1.20  2.36E-104 
201925_s_at CD55 1.20  1.92E-38 205794_s_at NOVA1 -1.23  2.71E-52 
202503_s_at KIAA0101 1.23  2.11E-41 201495_x_at MYH11 -1.23  1.40E-25 
218984_at PUS7 1.20  3.75E-90 207961_x_at MYH11 -1.77  2.79E-41 
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Upregulate RNA binding protein Down-regulate RNA binding protein 
Prob ID Gene ID Log2FC P Prob ID Gene ID Log2FC P 
206632_s_at APOBEC3B 1.15  6.95E-22 228133_s_at MYH11 -1.89  4.34E-34 
205895_s_at NOLC1 1.14  1.08E-98 201497_x_at MYH11 -2.15  3.31E-41 
214697_s_at PTBP3 1.12  3.86E-56 201496_x_at MYH11 -2.44  2.35E-40 
201614_s_at RUVBL1 1.10  1.36E-101 209309_at AZGP1 -1.46  2.04E-22 
203612_at BYSL 1.08  3.49E-87 221868_at PAIP2B -1.57  1.20E-111 
213175_s_at SNRPB 1.07  1.04E-93 206160_at APOBEC2 -1.60  1.09E-102 
203022_at RNASEH2A 1.05  1.33E-68 228802_at RBPMS2 -1.65  5.45E-51 
225841_at HENMT1 1.04  5.88E-49 229849_at WIPF3 -1.66  1.14E-64 
218239_s_at GTPBP4 1.00  6.11E-82 221667_s_at HSPB8 -1.66  8.68E-38 
- - - - 227719_at SMAD9 -1.76  2.84E-50 
- - - - 201785_at RNASE1 -1.91  1.43E-87 
- - - - 227198_at AFF3 -1.92  3.17E-74 
- - - - 205200_at EXOSC7 -2.21  1.62E-98 

 

 
Figure 3. Prognostic analysis of 6-RBPs signature in the train cohort. A The survival analysis of 6-RBPs signature in the testing cohort. B 5-year time-dependent ROC for survival 
prediction models. C The distribution of risk score, OS and OS status of prognostic 6-RBPs signature in the testing cohort. D Univariate Cox regression analysis on the prognosis 
of clinicopathological characteristics and risk scores in patients with gastric cancer. E Multivariate Cox regression analysis on the prognosis of clinicopathological characteristics 
and risk scores in patients with gastric cancer. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

4977 

Table 3. Gene Ontology enrichment analysis results of differentially expressed RBPs 

Accession Ontology Description P-value FDR 
GO:0010608 BP posttranscriptional regulation of gene expression 1.62E-10 2.11E-07 
GO:0034248 BP regulation of cellular amide metabolic process 2.51E-07 8.20E-05 
GO:0090305 BP nucleic acid phosphodiester bond hydrolysis 2.78E-06 6.04E-04 
GO:0006401 BP RNA catabolic process 9.62E-06 1.79E-03 
GO:0009451 BP RNA modification 1.09E-04 1.43E-02 
GO:0006397 BP mRNA processing 1.21E-04 1.43E-02 
GO:1903311 BP regulation of mRNA metabolic process 1.71E-04 1.86E-02 
GO:0006304 BP DNA modification 3.43E-04 3.44E-02 
GO:0022613 BP ribonucleoprotein complex biogenesis 4.07E-04 3.79E-02 
GO:0003729 MF mRNA binding 3.75E-08 2.45E-05 
GO:0004518 MF nuclease activity 2.14E-07 8.20E-05 
GO:0140098 MF catalytic activity, acting on RNA 1.17E-06 3.06E-04 
GO:0017091 MF AU-rich element binding 8.90E-05 1.43E-02 
GO:0019239 MF deaminase activity 1.10E-04 1.43E-02 

 
 
Using univariate Cox to analyze the relationship 

between risk value and clinicopathological 
parameters and overall survival (Fig. 3D), T stage 
[HR=1.712, 95%CI (1.252-2.342)], N stage [HR=1.910, 
95%CI (1.503-2.428)], AJCC stage [HR=2.107, 95%CI 
(1.622-2.736)] and risk value [HR=1.798, 95%CI 
(1.460-2.214)] are related to prognosis. Multivariate 
Cox regression analysis further showed (Fig. 3E) that 
N stage [HR=1.600, 95%CI (1.078-2.376)] and risk 
score [HR=1.702, 95%CI (1.342-2.159)] are 
independent of GC patient prognostic factors. There 
are 112 samples in the high-risk group in the training 
set and 132 samples in the low-risk group. The KM 
curve indicates that the high-risk group has a worse 
prognosis (Fig. 4A), 5-year AUC=0.681 (Fig. 4B), and 
the survival status diagram is similar to the training 
set (Fig. 4C). Single-factor Cox regression analysis 
shows that the risk value of T stage, N stage, M stage, 
AJCC stage is related to OS (Fig. 4D). Multivariate 
Cox regression shows that Age, N stage, M stage, and 
risk values can independently predict the prognosis of 
GC patients (Fig. 4E). In addition, we combined the 
training set and the validation set to form a complete 
prognostic model. The K-M curve showed that the 
low-risk group had a better prognosis (Fig. 5A), 5-year 
AUC=0.702 (Fig. 5B), and the survival status chart 
indicated that the high-risk group had lower survival 
time and number of survivals (Fig. 5C). Single-factor 
Cox regression analysis shows that T stage, N stage, 
M stage, AJCC stage, and risk scores are related to 
prognosis (Fig. 5D). Multivariate Cox regression 
analysis suggests that Age, N stage, M stage, and risk 
values have the ability to independently predict GC 
(Fig. 5E). 

Bioinformatics analysis 
We used the chi-square test to analyze the 

clinicopathological characteristics and hub RBPs (Fig. 
6A), with different risk groups. The results show that 
AJCC stage, N stage, T stage, Gende and survival 

status are related to high and low risk values. Among 
the 6 hub RBPs, RBPMS2, KIAA0101 and NOVA1 are 
related to 6 or more clinicopathological features, while 
WIPF3, COL5A2 and DAZ1 are only related to a few 
clinicopathological features (Fig. 6B). In addition, in 
order to study the differences between the high and 
low risk groups of GC patients, we used GSEA to 
analyze them. The results indicate (Fig. 7) that the 
samples of the high-risk group were mostly enriched 
in epithelial-mesenchymal transition, KRAS signal 
up-regulation, NOTCH signal, TGF-β signal, 
Angiogenesis, Hedgehog signal, IL2/STAT5 signal, 
Hypoxia, Myogenesis, Coagulation, UV response UP, 
Apical junction, APICAL SURFACE. 

Nomogram drawing and verification 
Based on the complete prognosis model we 

constructed, we established a nomogram to predict 
the survival rate of GC in 1-5 years (Fig. 8A). By 
detecting the expression levels of the 6 hub RBPs and 
obtaining the corresponding scores, the total scores 
obtained can intuitively predict the short-term 
survival probability of patients with GC, which will 
provide clinicians with precise and individualized 
diagnosis and treatment. In order to verify the 
accuracy of the nomogram, we calculated the 
predicted survival rate of 492 samples as the X-axis 
and the actual survival rate as the Y-axis to draw a 
5-year calibration curve. The results indicate (Fig. 8B) 
that the predicted survival rate of the nomogram is 
almost equal to the actual survival rate, and the slope 
of the drawn curve is almost 1, indicating the accurate 
predictive ability of the nomogram. 

Expression and prognostic verification of hub 
RBPs 

Use K-M plotter to analyze 6 hub gene prognosis 
prompts (Fig. 9A), high expression of DAZ1, NOVA1 
suggests a better prognosis (P<0.05), increased 
expression of KIAA0101, WIPF3 prompts a poor 
prognosis (P<0.05), high expression of COL5A2, 
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RBPMS2 It is nega-tively correlated with prognosis, 
but it is not statistically significant (P=0.1). We used 
GEPIA to verify the expression of 6 hub RBPs, which 
contains the se-quencing data of TCGA and GTEx. 
GEPIA analysis results showed (Fig. 9B) that the 
expression of KIAA0101 and COL5A2 in GC tissues 
was significantly higher than that in normal tissues 
(P<0.05), and the expression of WIPF3 and RBPMS2 in 

normal tissues were increased (P<0.05). It is worth 
noting that DAZ1 and NOVA1 were higher in normal 
tissues, but they were not statistically significant. 
rt-PCR verified the expression of hubRBPs in 10 pairs 
of clinical samples. The results showed that (Fig. 9C) 
DAZ1, WIPF3, RBPMS2, and NOVA1 were low 
expressed in gastric cancer (P<0.05), and KIAA0101 
and COL5A2 were highly expressed (P<0.05).

 

 
Figure 4. Prognostic analysis of 6-RBPs signature in the test cohort. A The survival analysis of 6-RBPs signature in the testing cohort. B 5-year time-dependent ROC for survival 
prediction models. C The distribution of risk score, OS and OS status of prognostic 6-RBPs signature in the testing cohort. D Univariate Cox regression analysis on the prognosis 
of clinicopathological characteristics and risk scores in patients with gastric cancer. E Multivariate Cox regression analysis on the prognosis of clinicopathological characteristics 
and risk scores in patients with gastric cancer. 
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Figure 5. Prognostic analysis of 6-RBPs signature in the complete cohort. A The survival analysis of 6-RBPs signature in the testing cohort. B 5-year time-dependent ROC for 
survival prediction models. C The distribution of risk score, OS and OS status of prognostic 6-RBPs signature in the testing cohort. D Univariate Cox regression analysis on the 
prognosis of clinicopathological characteristics and risk scores in patients with gastric cancer. E Multivariate Cox regression analysis on the prognosis of clinicopathological 
characteristics and risk scores in patients with gastric cancer. 

 

Discussion 
RBPs have diverse structures and functions, 

which regulate several necessary cellular processes. 

Some of these RBPs are usually expressed and 
conservatively evolved to maintain the basic 
processes of the cell. Unregulated expression of RNAs 
can cause many diseases, including cancer [26]. The 
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abnormality of RBPs has an important influence on 
tumor phenotype. Such as, mutations in TRBP lead to 
abnormal expression of miRNA and cancer cell 
proliferation and differentiation [27]. hnRNPs 
promote the synthesis of PKM2, thereby enhancing 
the Warburg effect [28]. RBM38 can inhibit breast 
cancer metastasis by promoting STARD13-related 
competitive endogenous RNA network [29]. In GC, 
only a few literatures have reported that RBPs are 
dysregulated in GC, there are also reports that RBPs 
are involved in tumor cell proliferation, metastasis 
and other phenotypes [16-18]. To this end, we 
collected 13 GPL570 platform microarray data in the 
GEO database to systematically identify the 
differentially expressed RBPs in GC. We have 
identified 25 up-regulated and 26 down-regulated 
RBPs. These DERBPs have been reported to be 
abnormally expressed in GC and play an important 
role. Among them, EZH2 is up-regulated in GC and is 
a good prognostic marker, which can inhibit p21 and 
promote the proliferation of GC [30]. In addition, it 
can also inhibit FBXO32 epigenetically and contribute 
to the resistance of GC [31]. However, some studies 
suggest that it plays a tumor suppressor effect in GC. 
Research by Zhao et al. suggested that EZH2- 
mediated epigenetic suppression of EphB3 can down- 
regulate E-cadherin and vimentin and inhibit GC 
metastasis [32]. This indicates that the role of RBPs in 
tumors is heterogeneous. 

In order to further understand the possible 
mechanism of DERBPs affecting the progression of 
GC, we performed enrichment analysis on 51 RBPs. 
The results show that these DERBPs are mainly 
enriched in items such as posttranscriptional 
regulation of gene expression, mRNA binding, RNA 

catabolic process, RNA modification, and mRNA 
processing, some of them have been considered to 
play an important role in cancer progression. The 
most important thing in these processes is that RBPs 
can bind to mRNA, promote its stability, and regulate 
target gene expression. For example, PTBP3 can 
regulate the expression of the transcription factor 
ZEB1 by binding to the 3'UTR of its mRNA, thereby 
preventing its degradation, inducing the epithelial- 
mesenchymal transition of breast tumor cells and 
promoting their invasive growth and metastasis [33]. 
In addition, RBPs can also promote the degradation of 
mRNA. IGF2BP3 can accelerate the degradation of 
EIF4E-BP2 mRNA, thereby promoting the 
proliferation of cervical cancer cells [34]. RBP- 
mediated selective splicing is a post-transcriptional 
regulatory mechanism that contributes to protein 
diversity and mRNA stability. Abnormal or wrong 
splicing is the main cause of abnormal function of 
RBPs, which promotes cancer [35]. Research by Liu et 
al. showed that SNRPB, the core component of 
alternative splicing, regulates the alternative splicing 
of intron 7 and its expression in RAB26 mRNA by 
activating NMD, mediating tumor growth and 
metastasis [36]. RBPs also participate in the addition 
of a poly(A) tail to the 3'end of the mRNA. Among 
them, alternative polyadenylation is a widespread 
basic regulatory mechanism in eukaryotes. This 
process can promote mRNA maturation, stability, 
nuclear transport and efficient translation. In cancer, 
research suggests that RBPs can regulate 
polyadenylation of transcripts, extend poly(A) tails 
and improve translation efficiency of target genes, 
and promote tumor progression [37]. 

 

 
Figure 6. The relationship between different risk groups and 6hub-RBPs and clinicopathological characteristics. A The relationship between different risk groups and 6hub-RBPs 
and clinicopathological characteristics. B The relationship between 6-hub RBPs and clinicopathological characteristics. 
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Figure 7. Gene set enrichment analysis of functional gene set differences between high and low risk groups. 

 
In addition, RBPs can not only affect tumor 

occurrence and development, but also serve as 
prognostic markers. We performed univariate Cox 
regression, Lasso regression and multivariate Cox 
regression analysis on all RBPs probe probes, and 
obtained 4 RBPs (DAZ1, KIAA0101, WIPF3, COL5A2, 

RBPMS2, NOVA1) that independently predict the 
prognosis of GC. In addition, we also analyzed their 
relationship with clinicopathological characteristics, 
suggesting that they are closely related to T staging 
and Lauren classification. There are reports that GC 
patients with high expression of KIAA0101 showed a 
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high recurrence rate, and accompanied by a poor 
prognosis, the vitality of GC cells was significantly 
inhibited after inhibiting its expression [38]. Research 
by Li et al. suggested that the low expression of 
NOVA1 in GC is related to lymphatic metastasis and 
poor prognosis [39]. Inhibiting the expression of 
NOVA1 in cells promotes the epithelial-mesenchymal 
transition of GC cells [39, 40]. Although some genes 
have not been studied in GC, they have been reported 
in other tumors. Research by Hapkova et al. 
suggested that RBPMS2 is highly expressed in 
gastrointestinal stromal tumors, and indicated that it 

is a new diagnostic marker and a potential cancer 
treatment target [41]. Among them, some reports are 
different from our conclusions. COL5A2 is considered 
to be a favorable prognostic factor for tongue 
squamous cell carcinoma [42]. However, high 
expression of this gene in muscle-invasive bladder 
cancer suggests that the prognosis is poor, and it is 
closely related to tumor invasion [43, 44]. DAZ1 and 
WIPF3 have not been reported in tumors, which 
suggests that they may be new predictive markers 
and therapeutic targets for GC and require more 
in-depth research. 

 

 
Figure 8. The nomogram and the calibration chart are used to predict the OS survival rate of gastric cancer patients. A Nomogram for the prediction of OS at 1-5 year. B 
Calibration plots for predicting OS at 5 year. 

 
Figure 9. Verify the prognosis and expression of 6 hub-RBPs. A K-M plotter verifies the prognosis of 6 hub-RBPs. B GEPIA verifies the expression level. C rt-PCR verifies the 
expression of hub RBPs in clinical samples. 
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Our other result is the construction of a 
prognostic signature based on RBPs. First we divide 
the whole cohort into a train set and a test set, build a 
prognostic signature in the train set based on hub 
RBPs, and verify it in the test set. The results show 
that the survival rates of the two concentrated 
high-risk groups are lower than those of the low-risk 
group, and the risk scores obtained are independent 
prognostic factors. The 5-year AUC calculated by the 
ROC curve is not 0.713 and 0.681, respectively, 
indicating that the model has broad applicability and 
accuracy. We also integrated the two sets into a 
complete prognostic signature, and obtained the same 
result as the training set after analysis, with a 5-year 
AUC value of 0.702. We further used the chi-square 
test to analyze the relationship between 
clinicopathological characteristics between high and 
low risk groups. The results show that it is related to 
AJCC stage, N stage, T stage, gender and survival 
status. We also used GSEA to analyze the differences 
in mechanisms affecting GC between high and low 
risk groups. The results suggest that high-group GC 
samples are mainly enriched in epithelial- 
mesenchymal transition (EMT), Kras, Notch, TGF-β, 
angiogenesis, Hedgehog, IL2-Stat5, hypoxia and other 
signals. Multiple reports suggest that RBPs mediate 
the above related signals to affect tumor progression. 
EMT is a biological process in which differentiated 
epithelial cells lose their epithelial characteristics and 
gain mesenchymal cell migration. Tumor cells with 
this characteristic exhibit high invasiveness and 
antagonistic ability to radiotherapy and chemo-
therapy. There are many ways to participate in EMT, 
including Notch, TGF-β, Hedgehog, Wnt, etc. [45]. It 
is reported that KIAA0101 can participate in the EMT 
of liver cancer and induce tumor cell migration and 
angiogenesis [46]. This may be triggered by the 
activation of Wnt signal conduction [47-49]. NOVA1 
can also participate in EMT transition, which may be 
triggered by direct binding to β-catenin RNA [50]. 
Other ways have played an indispensable role in 
tumor development, so won’t repeat them. 

We used the nomogram to optimize the 
prognostic signature and visualized it. Clinicians can 
detect the expression of hub RBPs and obtain the 
corresponding total score, which can predict the 
survival rate of GC patients in 1-5 years. In addition, 
we drew a calibration chart. Through the calibration 
chart, we can find that the predicted 5-year survival 
rate is almost the same as the actual survival rate, 
which shows the precise predictive ability of the 
nomogram. To verify the expression and prognosis of 
hub-RBPs. We verified the expression of hub RBPs in 
GEPIA, suggesting that their expression trends are 
consistent with our analysis. The results of K-M 

plotter suggest that the predictive ability of hub RBPs 
for GC is consistent with our analysis. 

In a word, we have integrated 13 microarrays on 
the GPL570 platform, and after systematic 
bioinformatics analysis, we have identified the 
differentially expressed RBPs in GC and analyzed 
their potential mechanisms affecting GC. We also 
constructed a GC prognostic signature based on RBPs, 
analyzed and verified its good predictive abilityWe 
also verified the expression of hub RBPs that construct 
the prognostic signature through external databases 
and clinical samples. We found that some RBPs are 
related to the pathogenesis of GC, but there is a lack of 
relevant literature reports and further studies on GC. 
This is the limitation of our research. 
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