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Abstract 

Purpose: This study aims to develop a liquid biopsy assay to identify HCC and differentially diagnose 
hepatocellular carcinoma (HCC) from colorectal carcinoma (CRC) liver metastasis. Methods: Thirty-two 
microRNAs (“HallMark-32” panel) were designed to target the ten cancer hallmarks in HCC. Quantitative PCR 
and supervised machine learning models were applied to develop an HCC-specific diagnostic model. One 
hundred thirty-three plasma samples from intermediate-stage HCC patients, colorectal cancer (CRC) patients 
with liver metastasis, and healthy individuals were examined. Results: Six differentially expressed microRNAs 
(“Signature-Six” panel) were identified after comparing HCC and healthy individuals. The microRNA 
miR-221-3p, miR-223-3p, miR-26a-5p, and miR-30c-5p were significantly down-regulated in the plasma of HCC 
samples, while miR-365a-3p and miR-423-3p were significantly up-regulated. Machine learning models 
combined with HallMark-32 and Signature-Six panels demonstrated promising performance with an AUC of 
0.85-0.96 (p ≤ 0.018) and 0.84-0.93 (p ≤ 0.021), respectively. Further modeling improvement by adjusting 
sample quality variation in the HallMark-32 panel boosted the accuracy to 95% ± 0.01 and AUC to 0.991 (95% 
CI 0.96-1, p = 0.001), respectively. Even in alpha fetoprotein (AFP)-negative (< 20ng/mL) HCC samples, 
HallMark-32 still achieved 100% sensitivity in identifying HCC. The Cancer Genome Atlas (TCGA, n=372) 
analysis demonstrated a significant association between HallMark-32 and HCC patient survival. Conclusion: 
To the best of our knowledge, this is the first report to utilize circulating miRNAs and machine learning to 
differentiate HCC from CRC liver metastasis. In this setting, HallMark-32 and Signature-Six are promising 
non-invasive tests for HCC differential diagnosis and distinguishing HCC from healthy individuals. 
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1. Introduction 
Hepatocellular carcinoma (HCC) is a highly fatal 

cancer with a death toll over 810,000 deaths every 
year worldwide [1]. Most HCC patients are detected 
only in advanced stages with a dismal prognosis of 
less than one-year overall survival [2-4]. Diagnostic 
and treatment delays are often linked to worse 
survival outcomes in HCC [5, 6]. Nearly 20% of 
patients wait for more than three months from clinical 

presentation to diagnosis, which is close to the tumor 
volume doubling time of HCC [6, 7]. Therefore, early 
diagnosis is the pivotal key to improving outcomes 
for HCC. Over the last decade, the advent of 
biotechnology has been expediting liquid biopsy 
application in various clinical settings.  

Developing a liquid biopsy assay for HCC 
diagnosis is clinically useful for several reasons. First, 
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liquid biopsy could potentially complement 
conventional tissue biopsy for HCC diagnosis. Tissue 
biopsy has common pitfalls including sampling bias 
and inaccessibility for safe biopsy. For instance, 
invasive biopsy procedures are sometimes not 
feasible for HCC patients with tumors located 
adjacent to major blood vessels or patients with 
coagulopathy due to imposing high intra-abdominal 
bleeding risk [8, 9]. In contrast, liquid biopsy 
technology is non-invasive, repeatable and thus can 
provide a safe and timely diagnosis of early HCC. 

Second, liquid biopsy could potentially 
complement the detection limit in the traditional 
approaches for non-invasive HCC surveillance and 
diagnosis. For screening early-stage HCC, liver 
ultrasound combined with AFP testing could only 
achieve 63% sensitivity [10]. The sensitivity could be 
further reduced by 19 – 56% in obesity and chronic 
liver disease conditions [11]. Computed tomography 
(CT) and Magnetic Resonance Imaging (MRI) 
sensitivities for 1-2 cm HCC are 65% and 80%–92%, 
respectively, but the sensitivities plummet to 10% and 
34%–71% for early HCC tumors <1 cm [12]. An 
additional liquid biopsy technology may improve the 
performances of current HCC surveillance strategy. 

Third, liquid biopsy could aid the differential 
diagnosis of liver nodules, especially those with 
equivocal imaging features and those not accessible to 
biopsy. Since the liver is a common site for metastasis, 
differentiating HCC from liver metastasis patients is 
essential for treatment guidance. For instance, 
gastrointestinal cancers are known to have a high 
tendency to metastasize to the liver through the portal 
vein. Furthermore, patients with underlying chronic 
liver diseases may have a higher risk of HCC and 
CRC [13], making the differential diagnosis more 
essential. More confusingly, a subset of CRC is 
indistinguishable from HCC with respect to the 
serological AFP and carcinoembryonic antigen (CEA) 
levels. Approximately 2.6% (5/193) of CRC patients 
are positive in the AFP test [14] and 45% (9/20) of 
AFP-positive CRC patients are negative in the CEA 
test [15]. Therefore, it is an unmet need to develop a 
liquid biopsy test to differentiate HCC from colorectal 
cancer liver metastasis (CRCLM). 

This study aims to develop a non-invasive liquid 
biopsy microRNA (miRNA) assay for HCC diagnosis. 
We began by selecting 32 miRNAs (“HallMark-32” 
panel) known to regulate the ten hallmarks in HCC. 
Subsequently, we identified six signature miRNAs 
(“Signature-Six” panel) based on their expression 
profiles. HCC-specific diagnostic models were then 
developed by supervised machine learning. The 
model diagnostic performances were evaluated using 
133 plasma samples from HCC, CRCLM, and healthy 

individuals. The goal of this study is to develop a 
reliable liquid biopsy for HCC identification and 
differential diagnosis. 

2. Methodology 
2.1. Patient & blood collection  

Patients diagnosed with HCC and CRCLM from 
July 2015 to Dec 2019 at Queen Mary Hospital were 
recruited. All HCC samples were from patients 
diagnosed with Barcelona Clinic Liver Cancer (BCLC) 
intermediate stage B. All CRCLM samples were from 
patients diagnosed with CRC having synchronous 
liver metastasis. All blood samples were obtained 
after written informed consent. A total of 133 samples 
were collected including 22 healthy individuals, 63 
CRCLM, and 48 HCC patients. Eight milliliters of 
peripheral blood samples were collected in the Streck 
Cell-Free DNA tubes (Streck Inc., USA). The study 
was approved by the Institutional Review Board of 
the University of Hong Kong. 

2.2. Sample preparation and miRNA isolation 
Blood sample were spun down at 2,000g for 20 

minutes at 18°C, followed by 16,000rpm 
centrifugation for 10 minutes at 10°C. The plasma was 
then transferred to a new 1.5mL centrifuge tube and 
stored at –20°C. After centrifugation, the supernatant 
was further precipitated by isopropanol, followed by 
RNA purification using a column-based silica 
membrane technology (MACHEREY-NAGEL, 
Germany). The eluted RNA was subjected to PolyA 
tailing reaction with PolyA polymerase and ATP and 
incubated for 60 minutes at 37°C, followed by 
5-minute deactivation at 70°C. Subsequently, cDNA 
synthesis was performed by adding oligo-dT adapter 
primer, miRNA-specific forward primer (Table S1), 
reverse transcriptase and then the reaction was 
incubated for 20 minutes at 42°C, followed by 5 
minutes at 85°C.  

2.3. miRNA analysis  
Roche LightCycler 480 was used for qPCR 

reactions. The CT values for microRNA targets were 
generated by the second derivative maximum of the 
fluorescence curve. For the miRNAs that have no CT 
value after calculation, a CT value of 45 was filled to 
indicate low expression level for the subsequent 
diagnostic modeling, and the CT values were 
converted to fold differences by the equation 
2^(-ΔCt). Samples missing more than 50% of miRNA 
CT values were excluded from this study. Analysis of 
variance (ANOVA) and Student’s T-test was applied 
to examine the difference of miRNA expression 
between HCC, healthy, and CRCLM groups using the 
statistic package in python. The p-values <0.05 were 
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considered statistically significant. The seaborn and 
matplotlib package in python were used for results 
visualization. 

2.4. Data preprocessing and machine learning 
models  

Data were split into training (n=106) and test 
(n=27) sets with an 80% splitting ratio. Samples were 
balanced by using the imblearn package and 
Scikit-learn library in the python environment. Four 
supervised classifier algorithms: Artificial Neural 
Network, Random Forest, Gradient Boosting 
Classifier, and Logistic Regression were tested for 
their performances to distinguish HCC samples from 
healthy and CRCLM samples. The diagnostic model 
prediction outcome is binary; HCC samples were 
assigned as one, while CRCLM and healthy 
individuals were assigned as zero. For model 
improvement, the sample quality data included RNA 
concentration and their 260/280 and 260/230 
absorbance ratios, cDNA concentration and their 
260/280 and 260/230 absorbance ratios, and the 
specificity of each miRNA melting curve. All features 
were standardized by the StandardScaler package in 
python. For each algorithm, 30 models were first 
developed, and their mean accuracy was taken for 
evaluation. To further examine the performance of the 
algorithms, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), area 
under curve (AUC), receiver-operating-characteristic 
(ROC) curves were computed in python. All 
experiments, analysis, and machine learning 
modelling for the healthy, HCC, and CRCLM were 
repeated at least three times. 

2.5. Establishing HallMark-32 panel 
To select the miRNA candidates for HCC 

detection, we reviewed literature that reported 
miRNA in HCC and then selected miRNAs 
accordingly to ten hallmark properties proposed by 
Hanahan and Weinberg [16]. The hallmarks included 

sustaining proliferation signaling, evading growth 
suppressor, avoiding immune destruction, enabling 
replicative immortality, tumor-promoting 
inflammation, activating invasion and metastasis, 
inducing angiogenesis, genome instability, resisting 
cell death, and deregulating cellular energetics. All 
hallmarks of HCC were covered by at least one of the 
miRNAs in the HallMark-32 panel (Table 1) (Table 
S2).  

2.6. TCGA miRNA expression and survival 
data analysis 

The liver hepatocellular carcinoma (LIHC) 
dataset (version 2016-01-28, n=372) from TCGA 
database was downloaded. The vital status (dead vs. 
alive), survival days (days to death or days to last 
follow-up), and miRNA expressions (reads per 
million miRNA mapped) were analyzed. 
Kaplan-Meier (KM) survival curve analysis was 
performed in SPSS software. Cox proportional 
hazards analysis was computed in python. 

3. Results  
3.1. Discovery of HCC-specific Signature-Six 

miRNA panel 
To identify signature miRNAs that express 

differently between HCC and healthy individuals for 
HCC detection, we examined the expression profiles 
of 32 miRNAs by qPCR in 70 plasma samples (48 
HCC and 22 healthy individuals) (Table S3 and Figure 
S1). Six signature miRNAs (miR-221-3p, miR-223-3p, 
miR-26a-5p, miR-30c-5p, miR-365a-3p and 
miR-423-3p) were identified. The level of miR-365a-3p 
and miR-423-3p was significantly elevated in the 
plasma of HCC samples compared to healthy 
samples, while miR-221-3p, miR-223-3p, miR-26a-5p, 
and miR-30c-5p were significantly down-regulated 
(Table 2 and Figure 1). These miRNAs were then 
consolidated to be the “Signature-Six” panel.  

Table 1: HallMark-32 panel design based on the published miRNA HCC studies. 

HCC Hallmarks MicroRNA Candidates [References are shown in Supplementary Table 3] 

Sustaining Proliferative Signaling 150-5p, 125b-5p, 101-3p, 1246, 21-5p, 145-5p, 214-3p, 320d, 18a-5p, 26a-5p, 193a-5p, 19a-3p, 222-3p, 486-5p, 223-3p, 374a-5p, 424-5p, 
122-5p, 29a-3p, 451a 

Evading Growth Suppressors 574-3p, 125b-5p, 23a-3p, 145-5p, 214-3p, 423-3p, 423-5p, 424-5p 

Avoiding Immune Destruction 23a-3p, 423-5p, 424-5p 

Enabling Replicative Immortality 1246, 21-5p, 192-5p, 148a-3p 

Tumor Promoting Inflammation 148a-3p, 30c-5p 

Activating Invasion And Metastasis 150-5p, 125b-5p, 191-5p, 101-3p, 1246, 21-5p, 145-5p, 125a-5p, 214-3p, 26a-5p, 19a-3p, 148a-3p, 486-5p, 374a-5p, 221-3p, 424-5p, 
122-5p, 29a-3p, 451a 

Inducing Angiogenesis 148a-3p, 423-3p, 424-5p 

Genome Instability And Mutation 374a-5p, 221-3p 

Resisting Cell Death 125b-5p, 101-3p, 1246, 145-5p, 125a-5p, 192-5p, 18a-5p, 26a-5p, 193a-5p, 222-3p, 223-3p, 423-5p 

Deregulating Cellular Energetics 101-3p, 22-5p 
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Table 2: Expression level of miRNAs in Signature-Six, fold-change relative to healthy, and the p-value results in t-test and ANOVA 
analyses. 

miRNA Mean (CT values) SEM (CT values) Fold-Change relative to Healthy HCC vs. 
CRCLM 
(p-value) 

HCC vs. 
Healthy 
(p-value) 

HCC vs. CRCLM vs. 
Healthy 
(p-value) 

HCC Healthy CRCLM HCC Healthy CRCLM HCC Healthy CRCLM 

221-3p 28.15 27.27 26.29 0.21 0.36 0.25 0.55 1 1.97 0.000** 0.042* 0.000** 

223-3p 25.72 24.14 22.81 0.25 0.73 0.28 0.33 1 2.51 0.000** 0.045* 0.000** 

26a-5p 28.14 26.77 26.1 0.26 0.62 0.25 0.39 1 1.6 0.000** 0.046* 0.000** 

30c-5p 25.85 25.04 25.05 0.17 0.31 0.17 0.57 1 0.99 0.001** 0.026* 0.004** 

365a-3p 28.63 29.2 28.75 0.12 0.2 0.09 1.48 1 1.37 0.474 0.018* 0.027* 

423-3p 29.51 30.35 29.54 0.23 0.23 0.19 1.79 1 1.75 0.917 0.012* 0.062 

Notes: * p-value ≤ 0.05; ** p-value ≤ 0.01; High CT value means low miRNA expression. 
 

 
Figure 1: Bar chart showing the expression of Signature-Six in HCC, Healthy and CRCLM specimens, and their fold change relative to healthy. The p-values at the upper right 
corner represent p-value in ANOVA test comparing the CT values in three groups (HCC, Healthy and CRCLM). The p-values at the top of the bars represent p-value in t-test 
comparing HCC and healthy individuals. 

 
Next, we investigated whether Signature-Six 

expressed differently among three groups of 
specimens (HCC, CRCLM, and Healthy) using 
ANOVA analysis. Five miRNAs in Signature-Six 
consistently showed statistical significance (Table 2). 
The expression of miR-223-3p in the Signature-Six 
panel achieved the highest significance (p-value=8.56 
x 10-9). Furthermore, when comparing the miRNA 
expressions between HCC and CRCLM, four miRNAs 
in Signature-Six were significantly different (Table 2). 
As expected, the internal control miR-451a exhibited 
no difference in all statistical tests (Table S3). Taken 
together, the differential expression profile of 
miRNAs provided a strong foundation for building 
the HCC diagnostic model. 

3.2. HCC Diagnostic Model development with 
Signature-Six and HallMark-32  

To develop an HCC diagnostic model, four 
supervised machine learning classification models 

(Neural Network, Random Forest, Gradient Boosting 
Classifier, and Logistic Regression) were applied. One 
hundred thirty-three plasma samples (48 HCC, 63 
CRCLM, 22 healthy individuals) were utilized. Each 
machine learning model was developed using a 
training dataset (n=106), and then the performance 
was validated in a test dataset (n=27). Performance 
indices such as accuracy, AUC score, p-value for AUC, 
sensitivity, specificity, PPV, and NPV were evaluated 
for each model and are summarized in Table 3. ROC 
curves are shown in Figure 2. All the AUC scores in 
both HallMark-32 and Signature-Six are statistically 
significant (p ≤ 0.021) (Table 3 and Figure 2). In 
HallMark-32, the average AUCs from the four 
algorithms in the test set (n=27) and the whole dataset 
(n=133) were 0.92 and 0.99 (Table 3A), which were 
slightly higher than that in Signature-Six (Table 3B, 
average AUC is 0.88 and 0.96). In both HallMark-32 
and Signature-Six, the Random Forest model 
outperformed other machine learning models based 
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on mean accuracy. In HallMark-32, the Random 
Forest model provided 91% accuracy compared to 
86%, 89%, 84% accuracy in Neural Network, Gradient 
Boosting Classifier, and Logistic Regression models, 
respectively (Table 3). The Signature-Six Random 
Forest model exhibited an AUC score of 0.93 (95% CI: 
0.83-1, p-value = 0.003), 100% sensitivity, and 86% 
specificity; the HallMark-32 Random Forest model 
exhibited an AUC score of 0.95 (95% CI: 0.86-1, 
p-value = 0.002), 91% sensitivity, and 91% specificity. 
Taken together, the HallMark-32 Random Forest 
model provided the best performance for proceeding 
further model improvement. 

3.3. Model improvement by sample quality 
adjustment 

Sample quality variation may influence the 
miRNA detection and, thus, the result of the 
diagnostic model. To further improve the 
HallMark-32 HCC diagnostic model, we integrated 
the sample quality variation into the models. The 
sample quality features involved 38 parameters 
covering RNA concentration, RNA 260/280 and 

260/230 absorbance ratios, cDNA concentration, 
cDNA 260/280 and 260/230 absorbance ratios, and 
the specificity of melting curves (Table S4). After 
combining these sample quality parameters and the 
miRNA expression levels, the improved HallMark-32 
model contained 70 features in total. After model 
improvement, the accuracy and AUC of the 
HallMark-32 Random forest model were increased 
from 91% to 95% and from 0.945 (95% CI 0.86-1) to 
0.991 (95% CI 0.96-1), respectively (Table 4B and 
Figure 3A). The AUC score of the improved model is 
more significant than the model before improvement, 
with a p-value of 0.001 and 0.002, respectively. To 
prove that the success of model improvement was not 
a random chance, we generated a negative control for 
the improvement strategy, by replacing the sample 
quality features with random numbers. As expected, 
the negative control did not improve accuracy, but 
conversely, reduced the accuracy from 95% to 84% 
(Table 4B). The result demonstrated that the 
integration of sample quality parameters is 
instrumental and specific for the HCC identification. 
In summary, with a 0.55 probability cut-off, the test 

set validation (n=27) demonstrated 
an AUC value of 0.991 (95% CI 0.96-1, 
p = 0.001), 100% sensitivity, 91% 
specificity, 0.92 PPV, 1 NPV, and 95% 
accuracy. By applying the whole 
dataset (n=133; Table 4A and Figure 
3A) to the improved HallMark-32 
model, the HCC diagnostic model 
demonstrated an AUC value of 0.999 
(95% CI 0.99-1, p=0.000), 100% 
sensitivity, 98% specificity, 0.96 PPV, 
and 1 NPV. 

3.4. Identifying HCC in 
alpha-fetoprotein-negative 
samples 

Although AFP has been widely 
used for facilitating HCC screening 
and diagnosis, the sensitivity only 
ranged from 41% to 65% [14]. 
Therefore, we interrogated whether 
HallMark-32 could identify HCC in 
AFP-negative (< 20ng/mL) samples. 
To test this, we examined the 
predicted HCC probability in the 
AFP-negative samples available in 
our HCC dataset (n = 17; Figure 3B). 
The AFP-negative HCC samples were 
predicted with a high HCC 
probability (0.76 – 1) by the 
HallMark-32 model. The improved 
HallMark-32 Random forest model 

 
Figure 2: Receiver operating characteristic (ROC) curves of the neural network, random forest, gradient boost 
classifier, and logistic regression models applied to Signature-Six and HallMark-32 panel in test set (n=27) and the 
whole dataset (n=133). 
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could identify HCC in AFP-negative samples with 
100% sensitivity with a 0.55 probability cut-off (Figure 
3B). Collectively, the HallMark-32 model can also 
identify HCC in AFP-negative samples, suggesting a 
potential application of HallMark-32 for HCC 
identification irrespective of serum AFP level. 

3.5. Clinical association between HallMark-32 
panel and patient survival 

To test if the HallMark-32 panel is associated 
with HCC patient survival, we analyzed miRNA 
expression data available in the TCGA database. In 
the TCGA LIHC dataset, 100, 90, 90, and 10 HCC 
patients belonged to the pathological stages I, II, III, 
and IV, respectively. Using random forest and a 
probability cut-off of 0.55, HCC patients with positive 
prediction results showed a lower survival rate 
(p<0.004 in log-rank test). Using a probability cut-off 
of 0.7, the clinical association with survival rate is 
more significant (p<0.0001 in log-rank, Breslow, and 
Tarone-Ware test, Figure 4). HCC patients with 
positive results have a significantly higher risk of 
death than patients with negative results (HR = 3.78, 
95% CI = 1.70-5.43, p = 0.0002 in Cox proportional 

hazards test, Figure 4). The median survival days for 
HCC patients with positive and negative results are 
770 days (SE 133.7 days) and 2131 days (SE 314.8 
days), respectively. 

4. Discussion  
In summary, this study highlighted five key 

findings: 1) Six signature miRNAs (miR-221-3p, 
miR-223-3p, miR-26a-5p, miR-30c-5p, miR-365a-3p, 
and miR-423-3p) were identified. Their expression 
profiles differed significantly in HCC and healthy 
individuals, providing a good diagnostic model for 
non-invasive HCC identification. 2) We reported a 
strategy to optimize the miRNA-based diagnostic 
model performance by adjusting sample quality 
variation. 3) The improved HallMark-32 random 
forest model demonstrated outstanding performance 
for identifying HCC, as well as differentiating HCC 
from CRCLM and healthy individuals. 4) 
HallMark-32 allowed HCC identification even in 
AFP-negative samples. 5) TCGA analysis illustrated 
the clinical association between the HallMark-32 
panel and HCC patient survival.  

Table 3: Performance of four machine learning algorithms in HallMark-32 and Signature-Six assays. 

A) HallMark-32 

 Test set (n = 27) All data (n=133) 

Model Mean 
Accuracy ± SD 

AUC 
(95% CI) 

p-value  
for AUC 

Sensitivity Specificity PPV NPV AUC 
(95% CI) 

p-value  
for AUC 

Sensitivity Specificity PPV NPV 

Neural Network 0.86 ± 0.04 0.92 (0.811-1) 0.004 1 0.86 0.88 1 0.98 (0.96-1) 0.000 0.96 0.95 0.92 0.98 

Random Forest 0.91 ± 0 0.95 (0.86-1) 0.002 0.91 0.91 0.91 0.91 1 (0.99-1) 0.000 0.98 0.98 0.96 0.99 

Gradient Boosting 0.89 ± 0 0.96 (0.88-1) 0.002 0.91 0.86 0.87 0.9 1 (0.996-1) 0.000 0.98 0.96 0.94 0.99 

Logistic Regression 0.84 ± 0 0.85 (0.69-1) 0.018 0.91 0.77 0.8 0.89 0.96 (0.93-1) 0.000 0.92 0.88 0.81 0.95 

B) Signature-Six 

 Test set (n = 27) All data (n=133) 

Model Mean 
Accuracy ± SD 

AUC 
(95% CI) 

p-value  
for AUC 

Sensitivity Specificity PPV NPV AUC 
(95% CI) 

p-value  
for AUC 

Sensitivity Specificity PPV NPV 

Neural Network 0.82 ± 0.04 0.84 (0.66-1) 0.021 0.73 0.86 0.84 0.76 0.96 (0.92-1) 0.000 0.77 0.94 0.88 0.88 

Random Forest 0.93 ± 0.02 0.93 (0.83-1) 0.003 1 0.86 0.88 1 0.98 (0.96-1) 0.000 1 0.96 0.94 1 

Gradient Boosting 0.9 ± 0.03 0.89 (0.77-1) 0.007 1 0.82 0.85 1 0.98 (0.96-1) 0.000 0.98 0.94 0.9 0.99 

Logistic Regression  0.82 ± 0 0.85 (0.68-1) 0.018 0.91 0.73 0.77 0.89 0.91 (0.86-1) 0.000 0.83 0.81 0.71 0.9 
 

 
Figure 3: ROC curves of the improved HallMark-32 random forest model and the predictive HCC probability for each sample. A) ROC curves for the test set (n=27) and the 
whole dataset (n=133). B) The HCC probability predicted by the improved HallMark-32 random forest model (n=133). 
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Table 4: Comparison of performance before and after improvement of HallMark-32 model. A) Performance indexes of the sample 
quality-adjusted HallMark-32 Random Forest model. B) Accuracy and AUC after model improvement (i.e. sample quality-adjusted), before 
improvement (No adjustment), and negative control for improvement. 

A)  Sample quality-adjusted HAllMark-32 

Model Test set (n = 27) All data (n=133) 

Mean 
accuracy 

AUC (95% CI) P value for AUC Sensitivity Specificity PPV NPV AUC Sensitivity Specificity PPV NPV 

Random Forest 0.95±0.01 0.991 (0.96-1) 0.001 1 0.91 0.92 1 1 1 0.98 0.96 1 

B) HallMark-32 (Test set, n = 27) 

Sample quality-adjusted No adjustment Negative control for improvement 

Accuracy 0.95 0.91 0.84 

AUC(95% CI) 0.991 (0.96-1) 0.945 (0.86-1) 0.936 (0.836-1) 

P value for AUC 0.001 0.002 0.003 
 
 

 
Figure 4: KM survival and Cox proportional hazards analyses of TCGA LIHC dataset 
(n=372). 

 
Virtually all cancer progresses with ten cancer 

hallmarks proposed by Hanahan and Weinberg [16]. 
The development of HCC in hepatitis B virus 
(HBV)-infected patients, for example, involves 
dysregulation in p53, PI3K, TGF-β, IL-6, VEGF, and 
TERT pathways [17, 18], thereby acquiring oncogenic 
hallmarks for HCC development (Table S5). To 
develop an HCC-specific assay, we selected miRNA 
candidates that regulate ten hallmark properties in 

HCC based on the literature (Table S2). In the 
expression profiling comparing HCC and healthy 
individuals, six signature miRNAs (miR-221-3p, 
miR-223-3p, miR-26a-5p, miR-30c-5p, miR-365a-3p, 
and miR-423-3p) were identified. Intriguingly, the 
expression levels of miR-221-3p, miR-223-3p, and 
miR-26a-5p were significantly lower in HCC and 
higher in CRCLM than in healthy individuals (Figure 
1). The differences of this expression pattern may in 
part be explained by the cancer stage in HCC and 
CRCLM patients. For the intermediate-stage of HCC, 
cancer cells tend to progress by activating 
angiogenesis and extravasation. Whereas in CRCLM, 
the extravasation, intravasation, and colonization 
signaling pathways are activated to develop distant 
organ metastasis. The differences of the activated 
signaling pathways may explain the distinct 
expression patterns. In fact, miR-221-3p, miR-223-3p, 
and miR-26a-5p are functionally linked to 
proliferation, invasion, and metastasis in both HCC 
[19-23] and CRC [24-26]. The miR-221 is known to 
regulate epithelial-mesenchymal transition (EMT) by 
regulating zinc finger E-box binding homeobox 2 
(ZEB2) pathway in HCC. Both miR-223 and miR-26a 
are linked to invasion and metastasis in HCC. 
Whereas, in CRC, miR-223 and miR-26a promote 
proliferation and cell invasion. The miR-221 enhances 
the cancer stem cell property in CRC by targeting 
human Quaking (QKI) gene. The signaling interaction 
between these miRNAs warrants further 
investigation, but their differential expression pattern 
could provide an important fingerprint to distinguish 
primary liver cancer against secondary liver 
metastases, as demonstrated in this study. 

When diagnosing HCC, tissue biopsy 
procedures are needed, especially when CT and MRI 
fail to show typical HCC features. However, tissue 
biopsy may lead to clinical complications and 
sampling bias. Liquid biopsy may serve as a 
non-invasive and complementary approach to 
improve the HCC diagnosis and surveillance. In this 
study we demonstrated the performance of 
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Signature-Six and HallMark-32 miRNA panel to 
identify HCC and differentiate HCC from liver 
metastasis. We also illustrated the capability of 
HallMark-32 to complement AFP for HCC detection. 
Taken together, we demonstrated potential 
applications of Signature-Six and HallMark-32 in 
supporting HCC surveillance and diagnosis.  

Future work with an increased sample size of 
HCC is needed to evaluate the performance of these 
models to predict HCC at different stages. Our group 
has previously conducted technical validation and 
established clinical utilities of circulating tumor cells 
in colorectal, lung, breast, gastric, liver, prostate, 
esophageal, and nasopharyngeal cancers [27-29]. The 
clinical application of combining miRNA, circulating 
tumor cell [27-29], and bioinformatics technology [30, 
31] merits further exploration. To sum up, we 
discovered circulating microRNA signatures for 
identifying HCC and demonstrated the promising 
performance of the liquid biopsy assay for HCC 
identification and differential diagnosis. 
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