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Abstract 

The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor 
microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival 
analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal 
carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, 
ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic 
risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal 
cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. 
Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy 
number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. 
Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide 
potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of 
pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer 
samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related 
ligand-receptor interactions were then exposed and a neural network-based deep learning model based on 
these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In 
conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can 
investigate the link between the tumor microenvironmental and prognostic characteristics. 
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Introduction 
Based on the current understanding, head and 

neck cancer (HNC) is the 7th most cause of 
cancer-related deaths globally [1]. About 30% of cases 
described as head and neck cancers are laryngeal 
cancer. Although the understanding of the molecular 
biology of laryngeal cancer has been deeply 
elaborated recently, the survival rate of patients with 
laryngeal cancer has not changed. So that requires us 

to screen out molecular biomarkers related to the 
prognosis of laryngeal cancer to guide individual 
treatment and improve the survival rate of patients 
with laryngeal cancer. In the future, biomarkers may 
become the gold standard in terms of the choice of 
patient treatment [2]. 

Autophagy is a progressive degradation process 
executed by lysosomes and stringently regulated by a 
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series of autophagy-related genes (ARGS). Notably, 
autophagy is key in maintaining cytoplasmic and 
genomic integrity and participate in the development 
of cancer-related abnormalities [3]. However, in 
different tumor types and stages [4], autophagy can 
either exert inducer or inhibitory roles. For instance, 
autophagy eliminates damaged organelles and DNA 
to maintain normal cell structure and metabolic 
stability, which inhibits the occurrence of cancer cells 
[5]. In tumor progression, autophagy actively 
degrades more proteins and organelles, enriching 
tumors with nutrients that promote their proliferation 
and invasion [6]. m6A-RNA methylation is among the 
most critical internal modification in eukaryotic cells. 
A wealth of evidence indicates that the expression and 
genetic changes of m6A regulatory factors are related 
to tumor malignant progression and abnormal 
immune regulation [7-9]. A study by Bo Zhang 
revealed that the m6A modification pattern in 
individual tumors can predict tumor stage, subtype, 
TME matrix activity, genetic variation and patient 
prognosis [10]. 

Additionally, tumor cell immune cells (TIIC), 
including B cells, dendritic cells, macrophages, 
neutrophils, T cells, monocytes, and mast cells, 
participate in the progression of cancer [11-14]. 
Evaluating the lymphocyte infiltration degree of the 
tumor has been proved to be a critical supplementary 
indicator of the TNM stage, recurrence and mortality 
prediction system [15-17]. Other than lymphocytes, 
tumors pose a variety of non-lymphocyte immune 
cells, [18, 19] which are believed to exhibit a particular 
effect on the prognosis of different stages of cancers 
[20]. 

Recent studies have revealed that m6A 
methylation, immune cell infiltration and autophagy 
coordinatively play a role in tumor microenvironment 
[21]. m6A modification can impact the stability of 
autophagy-related gene transcripts [21], whereas, 
m6A methylation-related proteins can reduce the 
presentation of tumor antigens and antigen-specific 
CD8 T cells anti-tumor response, leading to tumor 
immune escape and cancer development [22-24]. 
Although a highly coordinated interaction between 
autophagy, m6A methylation-related genes and 
immune infiltration exist [9], their comprehensive 
application as specific markers for the analysis of 
tumor microenvironment and predicting the 
prognosis of laryngeal cancer has not been described. 
In this study, we comprehensively analyzed the 
relationship between the degree of autophagy, 
methylation, and immune infiltration in tumor tissue 
and prognosis, aiming at identifying an ideal and 
accurate tumor prognostic markers to uncover new 
tumor treatment targets [25, 26]. 

Single-cell transcriptomic analysis is a powerful 
method that has emerged recently to explore the 
tumor microenvironment, enabling the analysis of 
cellular states and transitions from a single-cell 
perspective, thereby exploring integrated information 
across the genome of a tumor sample [27]. Recently 
developed methods for analyzing single-cell data 
provide many effective ways to explore molecular 
changes at the cellular level [28]. Sorting tumor cells 
by differentiation trajectories helps us understand the 
subset of tumor cells and their associated mechanisms 
of malignant translocation [29]. In addition, 
CellPhoneDB database (www.CellPhoneDB.org/) can 
be used to predict cell type-specific ligand-receptor 
complexes [30]. 

In this study, a systematic analysis of the 
relationship among immune/methylation/ 
autophagy signatures, laryngeal carcinoma prognosis 
and the tumor microenvironment was performed. The 
integrative microenvironment approach was 
conducted at both macro and micro-levels in order to 
find a validated prognostic scoring system and new 
targets for the treatment of laryngeal carcinoma. 

Materials and Methods 
Data retrieval and processing 

We downloaded the RNA-seq data of the 
laryngeal carcinoma queue from the TCGA database 
and standardized the combined data using the “affy” 
and “simpleaffy” packages of R software (version 
3.5.2) [31]. Additional data on simple nucleotide 
variation (SNP) and copy number variation (CNV) of 
the laryngeal carcinoma queue were downloaded for 
further analysis. GSE27020-GPL96 ([HG-U133A] 
Affymetrix Human Genome U133A Array) mRNA 
expression array dataset with high data quality and 
the large sample size was standardized by the 
“normalize between array” function of the “LIMMA” 
R package in the Bioconductor project [31]. The 
scRNA-seq data (accession number GSE150321) in 
laryngeal carcinoma were obtained from the Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm. 
nih.gov/geo/) (Table 1). All original platform files 
were saved. 

Study participants 
We used data from clinical samples to further 

validate the prediction capability of the model. The 
data were obtained from patients undergoing 
laryngeal cancer surgery at the Ninth People’s 
Hospital affiliated to Shanghai Jiaotong University. 
We collected patient-related clinical data via 
telephone and outpatient follow-up. All subjects 
signed informed consent. The study was conducted in 
accordance with the guidelines of the Declaration of 
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Helsinki and was approved by the Ethics Review 
Committee of the Ninth People’s Hospital Affiliated 
to Shanghai Jiaotong University (approval no. 
2017-323-T243). 

CIBERSORT estimation and extraction of m6A 
methylated- and autophagy- associated genes 

We uploaded the standardized annotated gene 
expression datasets to the CIBERSORT website 
(http://cibersort.stanford.edu/) and initiated the 
algorithm using the LM22 signature and 1000 
permutations [32]. Cases with a CIBERSORT output 
of p <0.05 were subjected to further analysis [33]. A 
total of 222 sites of autophagy-related genes were 
extracted from HADb (Human Autophagy Database, 
http://www.autophagy.lu/). According to 
previously published reviews [34], we collected 16 
m6A RNA methylation regulators (ALKBH5, WTAP, 
KIAA1429, METTL3, METTL14, FTO, RBM15, 
METTL16, YTHDC1, YTHDC2, YTHDF1, YTHDF2, 
YTHDF3, HNRNPA2B1, ZC3H13, and HNPC) with 
available expression data in the TCGA datasets. We 
adopted web-based tools (http://molpath.charite.de/ 
cutoff/) to calculate the entire queue and get the best 
cut-off value [35]. 

Identification and screening of differentially 
immune infiltrating cells, methylated and 
autophagy associated genes 

First, we analyzed the expression levels of LM22, 
methylated, and autophagy associated genes of the 
selected cases using the survfit function and Kaplan- 
Meier survival analysis in the “survival” software 
package of R software. Then, 126 genes and 10 types 
of immune cells related to prognosis were selected. 
Using univariate Cox regression and multivariate Cox 
regression analyses, we further screened out 16 genes 

and 2 immune cells highly correlated with prognosis. 
Thereafter, the least absolute shrinkage and selection 
operator (LASSO) and Cox method were adopted to 
reduce the dimensions, we selected immune cells, 
methylated, and autophagy associated genes with the 
most significant risk of death to establish a Cox 
prognosis model [36]. The laryngeal cancer death risk 
nomogram prediction model was established and 
verified by the receiver operating characteristic curve 
(ROC) [37, 38]. The performance of the model was 
assessed by the C index [39]. Decision curve analysis 
was used to evaluate the clinical utility of the 
nomogram [40]. Lastly, we calculated the net benefit 
according to a previously published study as previous 
report [41, 42]. 

Quantitative real-time PCR (qPCR) 
Total mRNA was extracted from cell cultures 

using the Mini-BEST Universal RNA Extraction kit 
(TaKaRa, Kyoto, Japan), followed by cDNA synthesis 
using the Prime-Script RT Master Mix (TaKaRa). 
qPCR assays were performed using SYBR Green 
Master Mix (TaKaRa) with PCR LightCycler480 
(Roche Diagnostics, Basel, Switzerland). 

Immune cellular fraction estimates and tumor 
purity analysis 

The relative proportions of immune cell types in 
the leukocyte compartment were estimated using the 
gene set introduced by Gabriela et al. as described 
earlier [43, 44]. The single sample Gene Set 
Enrichment Analysis (ssGSEA) was used to score the 
enrichment of immune cell type meta genes in the 
given sample using the TPM data of TCGA laryngeal 
cancer RNA sequence as input, as described in the 
GSVA package of the R software [45].

 

Table 1. Clinical characteristics of patients from TCGA and GEO databases. 

 TCGA cohort GEO cohort 
Alive (n=66) Dead with tumor (n=30) Total (n=96) Alive (n=73) Dead with tumor (n=34) Total (n=107) 

Gender       
Female 7 (10.6%) 8 (26.7%) 15 (15.6%) NA NA NA 
Male 59 (89.4%) 22 (73.3%) 81 (84.4%) NA NA NA 
Age       
Mean (SD) 60.8 (8) 62.8 (9.6) 61.4 (8.5) 62.9 (10.1) 64.1 (10.4) 63.3 (10.1) 
Median (min, max) 61 (41,80) 61.5 (45,82) 61 (41,82) 64 (41,82) 63.5 (41,88) 64 (41,88) 
Grade       
G1 6 (9.09%) 2 (6.67%) 8 (8.33%) 28 (38.4%) 14 (41.2%) 42 (39.3%) 
G2 38 (57.58%) 21 (70.0%) 59 (61.46%) 34 (46.6%) 15 (44.1%) 49 (45.8%) 
G3 22 (33.33%) 7 (23.3%) 29 (30.21%) 11 ([15.1%) 5 (14.7%) 16 (15.0%) 
Stage       
Stage I 2 (3.0%) 0 (0.0%) 2 (2.1%) NA NA NA 
Stage II 5 (7.6%) 3 (10.0%) 8 (8.3%) NA NA NA 
Stage III 9 (13.6%) 4 (13.3%) 13 (13.5%) NA NA NA 
Stage IV 50 (75.8%) 23 (76.7%) 73 (76.0%) NA NA NA 
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The data were then z-scored based on 
predictions of immune cell infiltration and 
enrichment. In addition, this study used unsupervised 
cluster analysis to identify different modification 
patterns in immune cells and to classify the samples 
for further study. The clustering algorithm 
determined the number and stability of clusters [46]. 
The above steps are performed using the 
consunseClusterPlus package and repeated 1000 
times to ensure stability of the classification [47]. 
Finally, the tumor purity score was estimated by the 
estimation method as described previously [48, 49]. 

Predicting pRS-related ceRNA network 
All pRS-related mRNAs, miRNAs were selected 

using “LIMMA” R package from the Bioconductor 
project [50]. The miRWalk3.0 database (http:// 
mirwalk.umm.uni-heidelberg.de/) composed of 10 
databases (PITA, Targetscan, PICTAR5, miRanda, 
miRDB, miRWalk, RNA22, RNAhybrid, PICTAR4, 
and DIANAmT), and the miRTarBase was used to 
reveal correlations between pRS-related mRNAs and 
pRS-related miRNAs [51, 52]. All circRNAs set were 
downloaded form GSE117001 database (https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE
117001). And “LIMMA” R package was also used to 
identify laryngocarcinoma-related circRNAs by 
selecting circRNAs different in expression between 
laryngeal cancer and normal samples [Adj. p value < 
0.05 and log fold change (FC) > 2 were considered as 
statistically significant]. And Circular RNA 
Interactome (https://circinteractome.nia.nih.gov/ 
index.html) was used to reveal correlation between 
laryngocarcinoma-related circRNAs and pRS-related 
miRNAs. [53] Survival analysis was then used to 
determine pRS-related mRNAs, pRS-related miRNAs 
and laryngocarcinoma-related circRNAs. To explore 
the potential pRS-related ceRNA regulatory network 
in patients with laryngeal cancer, the correlation 
between pRS-related mRNAs and laryngocarcinoma- 
related circRNAs was measured by Pearson 
correlation analysis. The structural patterns of key 
laryngocarcinoma-related circRNAs were found from 
CSCD database (https://gb.whu.edu.cn/CSCD/). A 
pRS-related ceRNA network was illustrated by using 
Cytoscape (3.8.0) [54]. And TIDE (http://tide.dfci. 
harvard.edu/setquery/) was used to compare new 
biomarkers with existed biomarkers [55, 56]. 
Furthermore, the immunofluorescent analysis of key 
pRS-related mRNAs was obtained from THE 
HUMAN PROTEIN ATLAS [57]. 

GSVA and GSEA enrichment analysis 
Here, we performed GSVA- and GSEA- 

enrichment analysis to reveal the biological processes 

and pathways associated with pRS. In most cases, 
GSVA is used to evaluate pathway variation and 
biological processes [45]. The gene sets of 
“c2.cp.kegg.v6.2.-symbols” and “c5.all.v6.2.symbols” 
were downloaded from MSigDB database for GSVA 
analysis. Gene set enrichment analysis (GSEA) was 
used to assess the potential pRS related mechanisms 
using the project of JAVA 
(http://software.broadinstitute.org/gsea/index.jsp) 
[58]. The threshold for statistical significance was set 
at P < 0.05. 

Single-cell RNA-seq analysis 
Transcriptome profles from GSE150321 were 

used to perform the single-cell RNA-seq analysis with 
the “Seurat” package [59]. The UMAP method is also 
used for nonlinear dimensionality reduction, followed 
by the “Seurat” package to discover marker genes 
between clusters [60]. The singleR package was then 
used for cell cluster annotation based on the 
composition of the marker genes, which was then 
corrected using the CellMarker database [61, 62]. 
Single-cell pseudotime trajectories of the laryngeal 
cancer scRNA-seq data were constructed by the 
monocle 2 algorithm [63]. For data interpretation of 
single-cell pseudotime trajectories, cells on different 
branches have different differentiation characteristics. 
CellPhoneDB database functionality was used to 
perform cell-to-cell interaction analysis, and 
cell-to-cell interactions with p-values <0.01 were 
considered statistically significant [30]. 

Neural network-based deep learning 
framework construction 

We constructed a neural network using Python 
(version 3.7) software’s PyTorch framework to predict 
cell types in single-cell data from screened pRS- 
related genes [64]. All cells were randomly assigned to 
the training or test groups in a 7:3 ratio. A random 
gradient descent method was used for the mechanical 
learning optimizer, while the learning rate was set to 
0.001. reLU was set as the activation function. During 
training, the dropout rate was set to 0.2 for each level. 

Statistical analysis 
All statistical data were analyzed using 

GraphPad Prism (version 7.0) software and R 
software (version 3.6.1). The Kaplan-Meier method 
was used to calculate the overall survival rate, as 
highlighted in the previous research method [65]. 
Conditional Survival (CS) was defined as the 
probability that the patient would survive for “y” 
years because the patient survived for “x” years. CS 
was calculated as CS(x|y) = S(x+y)/S(x), and S (x) 
represented the X-year overall survival estimated 
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using the Kaplan-Meier method [65-69]. Statistical 
significance between groups was determined using 
either one-way analysis of variance or two-tailed 
t-test. For correlation analysis, we used Pearson’s 
correlation. *P <0.05 was considered to be statistically 
significant. 

Results 
Identification and screening of differentially 
immune infiltrating cells, methylated and 
autophagy associated genes 

The research plan is shown in Figure 1A. A total 
of 96 laryngeal carcinoma samples were retrieved 
from the TCGA database, including 30 dead patients 
and 66 surviving patients. Survival analysis identified 
126 genes and 10 immune cells associated with the 
prognosis of laryngeal cancer. These 126 laryngeal 
cancer prognosis-related genes were enriched in BPs 
(humoral immune response, extracellular structure/ 
matrix organization), CCs (extracellular matrix, 
cell-cell junction, focal adhesion, and cell-substrate 
adherens junction), and MFs (cell adhesion molecule 
binding, serine-type endopeptidase activity, and 
serine hydrolase activity) (Figure 1C). Pathway 
analysis showed that those 126 genes were prima 
involved in the cell cycle, ras signaling pathways as 
well as in platinum drug resistance (P <0.05; Figure 
1D). Further, Cox regression analysis identified 16 
genes and 2 immune cells related to the prognosis of 
laryngeal cancer, with an 83% verification score 
(Figure 1E). The gene regulatory network described 
the interaction of methylated with autophagy 
associated genes and their impact on the prognosis of 
laryngeal cancer patients (Figure 1B). After further 
screening using Lasso regression analysis, we 
established a prediction set containing the best 
characteristics of 8 genes and 2 immune cells (Figure 
1F), (72.6% correction in GSE27020 set, and 74.6% 
correction in the clinical set). 

The prognostic risk score (pRS) for predicting 
laryngocarcinoma 

LASSO analysis aided in the identification of 8 
genes (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, 
FADD, PEX14 and TSC2) and 2 immune cells 
(Eosinophil and Mast cell) with satisfactory K-M 
curves performance (Figure 2A) after which we 
established a prognostic risk scoring model (pRS) 
using a Cox multivariate regression model. Based on 
the cut-off value (1.00) drawn from the entire cohort, 
we classified patients into high pRS group and low 
pRS group. The Kaplan-Meier curve showed that the 
risk of death in the high-pIRS group was significantly 

higher than that in the low-pRS group in TCGA 
cohort as well as the entire cohort (p <0.001) (Figure 
2B-2C). In all patient groups, pIRS as a continuous 
variable was found to be a powerful independent risk 
factor for survival (Figure 2D, 2F). According to pRS, 
the TCGA laryngeal cancer gene expression data set 
can be divided into two parts. This revealed that pRS 
can accurately be applied in the prognosis of 
laryngeal cancer (Figure 2E). 

Overall Survival 
The probability of achieving 5-year survival in 

the low-risk group increased from 69% to 74%, 87%, 
and 92% per additional year survived (i.e. 1, 2 and 4 
years, respectively) better than the probability of 
achieving 5-year survival in the high-risk group 
which increased from 31% to 40%, 57%, and 67% per 
additional year survived (i.e. 1, 2 and 4 years, 
respectively) (Figure 3A, 3B). Moreover, the survival 
rate of patients in the high pRS group was lower than 
that in the low pRS group in the 0-2 years after 
treatment, whereas the survival rate of the two groups 
of patients after 3 years of treatment was similar 
(Figure 3A, 3B). This suggests that the CS rate 
gradually improved and the survival rate of patients 
in the high/low-risk groups stabilized after 3 years of 
treatment. Thus, pRS is vital in predicting the survival 
rate of patients 0-2 years after treatment and patients 
with a higher malignant tumor microenvironment. 

Nomogram construction and validation 
A nomogram model that integrates the pRS and 

clinicopathological parameters is shown in Figure 4A. 
The calibration curves (Figure 4B) show that the 
prediction nomogram was highly efficient compared 
to the ideal model. The C-index of this pRS model 0.74 
(95% CI, 0.67-0.80) was higher than that of the 
nomogram model 0.66 (95% CI, 0.58-0.74) and the 
SEER grade-age model 0.60 (95% CI, 0.58-0.61) (the 
original data was retrieved from the SEER database, 
n=9583, Supplementary Table 1) as well as the other 
grade-age model 0.56 (95% CI, 0.55-0.57) (the original 
data retrieved from TCGA, GEO and Clinical 
database), implying that pRS has a better predictive 
ability in the prognosis of laryngocarcinoma (Table 2). 
Decision curve analyses (DCA) of the nomogram is 
shown in Figure 4C, which also revealed that pRS has 
better predictive ability than the grade-age model. 
Therefore, the nomogram is suitable for early 
intervention in predicting the death-risk of 
laryngocarcinoma. Heatmap plots of the TCGA, 
GSE27020, and clinical cohorts used in constructing 
the nomogram are presented in Figure 4B. 
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Figure 1. Identification and screening of differentially immune infiltrating cells, methylated, and autophagy associated genes. A. Schematic diagram of the 
study process. The 96 laryngeal carcinoma samples were retrieved from the TCGA database, including 30 dead patients and 66 surviving patients. Survival analysis identified 126 
genes and 10 immune cells that are associated with laryngeal cancer prognosis. Subsequent Cox regression identified 16 genes and 2 immune cells related to the prognosis of 
laryngeal cancer, at 83% corresponding verification score. The gene regulatory network outlines the interaction between methylated and autophagy associated genes and their 
impact on the prognosis of patients with laryngeal cancer. Further screening using lasso analysis established a predictive model containing 8 genes and 2 best characteristics of 
immune cells. Finally, a nomogram predictive model containing the best 10 features was constructed, and the predictive model was tested using the GSE27020 set and clinical set. 
B. Functional annotation of 126 sites methylated and autophagy associated genes was completed via GO enrichment analysis. The adjusted P-value of enriched genes is 
represented by the color depth. C. KEGG Cluster: The inner ring shows the color-coded logFC and the outer ring is the enriched KEGG pathway. D. The AUC curve showing 
the predictive ability of the 16 genes and 2 immune cells screened via multifactor COX regression. E. Best features selection using the LASSO regression model. The selection 
of the optimal parameters (lambda) in the LASSO model applied the minimum criterion of 5-fold cross-validation. The dashed line was plotted at the best value using the minimum 
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criterion and the 1se (standard error) of the minimum criterion. F. The AUC curve of the laryngeal cancer prognosis prediction model demonstrates the accuracy of the 
prediction model. 

 
Figure 2. The OS-associated factors for the prognostic prediction of laryngocarcinoma. A-C. K-M analyses. K-M curves of OS-associated factors as detected by 
Lasso Regression analyses (A); The K-M curves of OS survival as per the prognostic risk score (pRS) groups in the TCGA cohort (B); K-M curves of OS survival as per the pRS 
groups in the entire cohort (C). D. Difference levels of pRS in TCGA cohort, GEO cohort and clinical cohort (P < 0.001, K-W test). E. Principal component analysis (PCA) 
reveals that the TCGA laryngeal cancer gene expression data set can be divided into two parts according to pRS. This indicates that pRS has a good prognosis differentiation in 
laryngeal cancer. The blue dots represent dead samples, while the red dots indicate the survival samples. F. Different expression levels between high-risk and low-risk groups. 
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Figure 3. A-B. Estimated survival rates in patients given 0-5 years’ survival in low/high-risk groups. Each column represents the survival years from surgery and each row 
represents the percentage of attaining certain total survival time from the survived years point. 

 

Tumor characteristics analysis of pRS 
Figure 5A showed that pRS had A significant 

correlation with the ImmuneScore, ESTIMATEScore 
and TurmorPurity (Spearman’s correlation, rho=-0.22, 
-0.15, 0.14, respectively). ssGSEA method was then 
used to predict the abundance of immune cells in each 
sample to further study those correlation relationship 
and a heat map was constructed to visualize the 
features (Supplementary Figure 1A). It was shown 
that the pRS score was closely related to a series of 
microenvironment characteristics (such as 
TurmorPurity and immune infiltration). 

Furthermore, we separately analyzed OS- 
associated methylated and autophagy associated 
genes for laryngeal carcinoma with differences in SNP 
and CNV in the high and the low pRS groups. We 
found that the pRS-related genes (PEX14, ST13, 
STK11, TSC2, and CAPN10) exhibited a higher 
mutation frequency than IKBKB. The location of CNV 
alteration of OS-associated methylated and 
autophagy on chromosomes was significantly 

different between the high pRS group and the low 
pRS group (Supplementary Figure 1B). Laryngeal 
cancer patients with high FADD expression exhibited 
a high mortality rate (Figure 2A). Among these genes, 
we found that the copy number of FADD was 
positively correlated with the expression of FADD 
(Figure 5B). Interestingly, the copy number of FADD 
was also positively correlated with pRS value (Figure 
5C). High pRS group presented less extensive SNP 
burden than that of the low pRS group (Figure 
5D-5E), with the rate of the 10th most significantly 
mutated genes 18.1% versus 35.8%. These findings 
suggest that pRS values may be associated with SNP 
and CNV in laryngeal cancer. 

Table 2. Harrell’s concordance indexes of the pRS, stage, and 
nomogram in different cohorts 

Cohort C-index 
pRS 0.74 (0.67-0.80) 
Grade (SEER) 0.60 (0.58-0.61) 
Grade (TCGA+GEO+Clinical data) 0.56 (0.55-0.57) 
Nomogram 0.66 (0.58-0.74) 
pRS: prognostic risk score. 
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Figure 4. Nomogram construction and validation. A. Nomogram for predicting 1-, 3-, and 5-year OS of laryngocarcinoma patients in the entire cohort based on pRS and 
clinicopathological factors. B. A calibration curve of the laryngocarcinoma nomogram. Note: The y-axis is the actual incidence of death whereas the x-axis represents the risk of 
death. The closer the solid line (the prediction ability of nomogram) matches the dotted line (represents a perfect prediction model), the higher the prediction ability. C. Decision 
curve analyses (DCA) of the prediction model for death-risk in the Grade model, the pRS model, and the nomogram model. D. The Heatmap plots of the entire cohort (including 
the TCGA cohort, GSE27020 cohort, and clinical cohort) for constructing the nomogram. 

 

Analysis between pRS and several important 
immune checkpoints 

We compared the expression of immune 
checkpoint molecules (programmed cell death 1 
(PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4) 
and programmed cell death 1 ligand 1 (PD-L1) and 
several important cytokines (interferon γ (IFN-γ), 
interleukin 2 (IL-2), transforming growth factor β 

(TGF-β) in the TCGA-HNSC cohort. All of them with 
satisfactory K-M curves performance (Figure 6A). 
PD-1 and IFN-γ expressions were significantly higher 
in low risk group (Figure 6B). We reported a 
significant negative correlation of pRS with PD-1 and 
IFN-γ in the TCGA cohort (Figure 6C,D). 
Furthermore, patients with better prognosis showed 
significantly high expression of PD-1 (Figure 5G), 
suggesting the potential effect of anti-PD-1 
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immunotherapy. We also rank those pRS genes 
(TSC2, DAPK2, CFLAR, CAPN10, PEX14, ST13, 
FADD and MBTPS2) based on dysfunction and risk 
score by using TIDE (Supplementary Figure 1). All of 
them were enriched in the most of those researches 
(E-MTAB-179, GSE12417_GPL570, ICD_Gide2019_ 

PD1+CTLA4, ICB_Riaz2017_PD1 Ipi_Naive, etc.) 
(Supplementary Figure 1). Notably, our work shows 
that pRS is significantly correlated with PD-1 and 
IFN-γ immunophenotype, thus establishing pRS may 
help predict the effectiveness of anti-PD-1 
immunotherapy. 

 

 
Figure 5. Tumor characteristics analysis of pRS. A. A correlations among pRS, StromalScore, ImmuneScore, ESTIMATEScore and TurmorPurity in the TCGA 
laryngocarcinoma cohort. B-C. Differences in FADD expression or pRS between different copy numbers of FADD (p < 0.0001). D-E. The waterfall plot of tumor somatic 
mutation established by genes with high pRS (D) and low pRS (E). The number on the right indicates the mutation frequency in each gene. F. Comparison of the pRS with the 
expression level of PD-1 in laryngocarcinoma. The correlations of laryngocarcinoma from the TCGA cohort are shown. 
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Figure 6. Analysis for several important immune checkpoints related with pRS. A. K-M analyses. K-M curves of immune checkpoints (PD-1, IFN-γ, CTLA4, PD-L1, 
IL-2). B. Differences in immune checkpoints (PD-1, IFN-γ, CTLA4, PD-L1, IL-2) expression between high- and low- risk groups. C-D. Comparison of expression scores of pRS 
with those of PD-1 or IFN-γ in laryngeal cancer. The correlations shown are for laryngeal cancer from TCGA cohorts. E. Correlations among pRS, PD-1, IFN-γ, CTLA4, PD-L1 
and IL-2 in laryngeal cancer (TCGA cohort; n = 96). 
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GSVA and GSEA enrichment of the pRS 
subtypes 

Using the GO function enrichment analysis of 
GSEA, we revealed pRS-related functions, such as 
autophagy, DNA methylation or demethylation, 
macrophage activation, methylation, positive 
regulation of epithelial cell proliferation, protein 
methylation, regulation of autophagy and regulation 
of mast cell activation (Figure 7A). KEGG pathways 
enrichment analysis of pRS-related pathways 
revealed the apoptosis-multiple species, autophagy, 
AMP signaling pathway, intestinal immune network 
for lgA production, microRNAs in cancer, PD-L1 
expression and PD-1 checkpoint pathway, PI3K-Akt 
signaling pathway and Th17 cell differentiation 
(Figure 7B). Additionally, we revealed a high 
correlation between pRS and PD-L1 expression as 
well as PD-1 checkpoint pathway, an indication that 
PD1-related immunotherapy may potentially exert 
positive benefits on laryngeal cancer patients. 

As we can see in the heatmap,there are 
remarkable differences between high- and low-pRS 
groups in KEGG pathways and GO function patterns, 
which are quantified by GSVA analysis (Figure 7C). It 
is worth noting that pRS was significantly correlated 
with various immune-related processes including 
primary immunodeficiency, humoral immune 
response, immunoglobulin receptor, MHC class II 
protein complex, lymphocyte migration, T cell 
migration and so on. Based on these findings, it is 
evident that the evaluation of pRS can reflect immune 
cell infiltration in laryngeal cancer, as well as the 
functions of autophagy and methylation-related 
pathways. 

Predicting pRS-related ceRNA network 
“LIMMA”R package was also used to identify 

laryngocarcinoma-related circRNAs between 
laryngeal cancer and normal samples, which were 
showed in Supplementary Figure 2A. Based on the 
miRTarBase and miRWalk databases, linkages 
between pRS-related mRNAs and pRS-related 
miRNAs are demonstrated in Supplementary Figure 
2B. In total, 10 pRS-related mRNAs (COX6B2, EGFR, 
CD274, LMOD2, CAV1, MB, CREG2, PHYHIP, 
TNNI1, and SPRR2B) were likely influenced by the 
down-regulation of hsa-miR-552. Besides, 3 pRS- 
related mRNAs (PNMAL1, UBD and ADAMTS15) 
were modulated by hsa-miR-3923. hsa-miR-548k 
targeted 15 pRS-related mRNAs (OLR1, IL33, TGFBI, 
F12A1, SPIB, WFDC12, PRSS23, MICALCL, SMPX, 
NOTUM, PPBP, HAS2, KRT38, DEFA6 and TUBB2B). 
Other pRS-related mRNAs were proposed to be 
potentially regulated by hsa-miR-599 and 

hsa-miR-592, respectively. 
After that, Circular RNA Interactome was used 

to reveal correlation between laryngocarcinoma- 
related circRNAs and pRS-related miRNAs. We 
predicted that miR-548k might target these three 
cicRNAs (hsa_circ_0002951, hsa_circ_0000233 and 
hsa_circ_0001105). Based on this the regulatory 
network between laryngocarcinoma-related 
circRNAs, pRS-related mRNAs and pRS-related 
miRNAs was constructed (Figure 8A). Among those 
genes, hsa_circ_0002951, hsa-miR-548k, HAS2, 
NOTUM and SPIB were found to be with satisfactory 
K-M curves performance (Figure 8B). HAS2, 
hsa_circ_0002951, NOTUM and SPIB expressions 
were significantly higher in low risk group (Figure 
8C). Those results suggesting a potential positive 
correlation between HAS2, hsa_circ_0002951, 
NOTUM and SPIB. 

Hyaluronan Synthase 2 (HAS2) is a key 
ubiquitous enzyme located at the plasma membrane 
that synthesizes hyaluronan and extrudes these long 
polysaccharides into the extracellular space. We 
found that HAS2 was highly expressed in tumor 
samples (Figure 9A). The basic structural pattern of 
hsa_circ_0002951 is shown in Figure 9B. Besides, the 
immunofluorescent analysis of HAS2 was carried out 
in two different cell lines (U-2 OS and RH-30) (Figure 
9D). And HAS2 was found mainly localized to the 
nuclear speckles, which suggests HAS2 may be 
involved in tumor proliferation. As previous 
researches indicate, HAS2 related pathway represents 
promising novel anti-cancer therapy targets [70-73], 
which is similar to our conclusion (Supplementary 
Figure 3). Studies have shown that 4-MU inhibits 
HAS2 not only by decreasing the levels of the 
enzymes involved with its synthesis but also by 
sequestering glucuronic acid, ultimately inhibiting 
proliferation, invasion, and migration in prostate, 
breast, ovarian and melanoma carcinomas [74]. 
Further analysis indicated that hsa_circ_0002951 and 
HAS2 have a strong positive correlation with 
p-value<0.0011 (Figure 9C). In the TCGA cohort, 
correlation analysis showed a significant positive 
correlation among pRS, hsa_circ_0002951 and HAS2 
(Figure 9E). Therefore, a model showing the 
inhibitory effect of circ_0002951/miR-548k/HAS2 
pathway in laryngeal cancer was established (Figure 
9F). We suggested that hsa_circ_0002951 as a 
miR-548k sponge may regulate HAS2 expression and 
affect the survival rate of patients with laryngeal 
cancer. In conclusion, the identified pRS-related 
ceRNA network provides potential therapeutic 
targets and biomarkers of laryngocarcinoma. 
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Figure 7. GSEA (A and B) and GSVA (C) analysis displaying the biological processes and pathways associated with pRS. There is a significant correlation 
between the low and high pRS groups. A. GO function enrichment analysis. B. KEGG enrichment analysis. C. The heatmap was used to visualize the KEGG pathways and 
GO function in laryngocarcinoma between high- and low-pRS groups (p<0.05). 
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Figure 8. A. A ceRNA network is constructed. The regulatory network between laryngocarcinoma-related circRNAs, pRS-related mRNAs and pRS-related miRNAs. B. K-M 
curves of genes from the ceRNA network (hsa_circ_0002951, hsa-miR-548k, HAS2, NOTUM and SPIB). C. Differences in genes (hsa_circ_0002951, HAS2, NOTUM and SPIB) 
expression between high- and low- risk groups. 
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Figure 9. A. Differences in HAS2 expression between tumor samples and normal samples. B. hsa_circ_0002951 structures were obtained from the circRNA website. Yellow 
represents the open reading frame, red represents the miRNA bind position and blue represents the position where the protein may bind. C. Correlations among HAS2 and 
hsa_circ_0002951 expression in laryngeal cancer. D. The immunofluorescent analysis of HAS2 is carried out in two different cell lines (U-2 OS and RH-30). And HAS2 was found 
mainly localized to the nuclear speckles. E. Correlations among pRS, HAS2 and hsa_circ_0002951 in laryngeal cancer (TCGA cohort; n = 96). F. A model showing the inhibitory 
effect of circ_0002951/miR-548k/HAS2 pathway in laryngeal cancer was established. hsa_circ_0002951 as a miR-548k sponge regulates HAS2 expression and affects the survival 
rate of patients with laryngeal cancer. 
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Single-cell RNA-seq analysis reveals high cell 
heterogeneity 

Seurat package in R3.6.3 was used for quality 
control and the remaining 1229 cells were normalized 
by Seurat package and PCA was completed for 
preliminary dimension reduction (Supplementary 
Figure 4A, C, D). ANOVA revealed 2000 
corresponding marker genes in all laryngeal cancer 
cells and labeled the top 20 marker genes in each cell 
cluster (Supplementary Figure 4B, E). According to 
the expression patterns of the marker genes (Figure 
10A), annotation of the clustering results of the 
UMAP method downscaled with singleR and 
CellMarker. 

Trajectory analysis shows significant 
differentiation cell heterogeneity in laryngeal cancer 
tissues (Supplementary figure 4F and Figure 10B). In 
laryngeal cancer tissues, fibroblasts and endothelial 
cells have a much later pseudotime, while 
keratinocytes have a much earlier pseudotime (Figure 
10B). Moreover, trajectory analysis also demonstrates 
that the expression of genes (CFLAR, DAPK2, TSC2, 
CAPN10, MBTPS2, PEX14, FADD, ST13 and HAS2) 
change with pseudo-time (Figure 10 C,D). The 
expression of pRS-related genes (CFLAR, DAPK2, 
TSC2, CAPN10, MBTPS2, PEX14, FADD, ST13 and 
HAS2) in different cells is shown in Figure 10E. 

Clustering analysis of eight pRS-related genes 
(CFLAR, DAPK2, TSC2, CAPN10, MBTPS2, PEX14, 
FADD and ST13) divided laryngocarcinoma cells into 
low and high risk cell clusters (Figure 10F). 
Interestingly, fibroblasts were found mainly located 
in laryngocarcinoma cells (Figure 10G). This suggests 
that a high degree of fibroblasts may be responsible 
for the poor prognosis of high pRS in 
laryngocarcinoma. 

Fibroblasts-related intercellular interactions 
and ligand-receptors analysis 

From the previous analysis, we found that 
fibroblasts may be associated with high pRS scores 
and fibroblasts were predominantly distributed in 
regions with a pseudotime greater than 35 (Figure 
11A). We performed a correlation analysis of cell-to- 
cell interactions for cells in this region (Figure 11B). 
Fibroblasts were found to have a significant positive 
correlation with endothelial cells and a significant 
negative correlation with macrophages. This suggests 
that macrophages increase first as the tumor 
progresses malignantly, whereas infiltration of 
fibroblasts and endothelial cells may signify failure of 
the body’s immune defenses and the occurrence of 

malignant tumor progression. To further examine the 
differences and commonalities in information 
exchange between cells, we used CellPhoneDB to 
infer cell-to-cell communication. Figure 11C shows 
the most critical receptor-ligand interactions in the 
fibroblasts. A Venn diagram shows the intersection of 
six genes (BMP4, CXCL2, IL-1B, SELE, EGFR and 
INHBA) in pRS-related DEGs (TCGA cohort) and 
ligand receptor-related genes in the fibroblasts. 
Among them, EGFR and INHBA were found to be 
significantly correlated with laryngeal cancer patient 
prognosis, HSA2 expression and pRS score (Figure 11 
E-G and Supplementary Figure 5). This suggests that 
EGFR and INHBA can serve as prognostic hub genes 
for laryngeal cancer collectively with pRS genes 
(CFLAR, DAPK2, TSC2, CAPN10, MBTPS2, PEX14, 
FADD and ST13). A more visual representation of the 
interrelationship diagram of these genes can be found 
in Figure 11H. 

Hub pRS-related gene signatures predict 
laryngocarcinoma cell types 

Since these pRS-related hub genes (EGFR, 
INHBA, CFLAR, DAPK2, TSC2, CAPN10, MBTPS2, 
PEX14, FADD and ST13) show strong heterogeneity 
in different cells, we speculate that these genes alone 
can predict cellular composition to reflect the 
microenvironment of tumor tissues. Therefore, we 
developed a neural network-based model to predict 
cell types in laryngeal cancer tissues using these hub 
genes. The construction of the neural network is 
shown in Figure 12A. The area under the curve (AUC) 
of ROCs performed well (Figure 12B-H). This 
suggests that this model has good predictive power, 
especially in predicting fibroblasts (AUC ≈ 0.99), DC 
(AUC ≈ 0.985) and endothelial cells (AUC ≈ 0.975). 
This signifies that these genes have great potential to 
map the tumor microenvironment. 

Discussion 
The comprehensive application of methylation/ 

autophagy-related genes (MARGs) and immune cells 
as specific markers for the analysis of laryngeal cancer 
microenvironment has not been previously described. 
Here, 8 MARGs and 2 immune cells were selected for 
constructing the prognostic risk scoring system (pRS). 
It could provide intelligent advice for clinicians 
legitimately tailor the treatment plan and help 
researchers understand the microenvironment of 
laryngocarcinoma using simple laboratory detection, 
which could greatly promote individualized therapy 
and provides immunotherapy strategies. 
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Figure 10. Single-cell RNA-seq analysis reveals high cell heterogeneity. A. Cells from laryngeal cancer were all annotated by CellMarker and singleR. B. Trajectory 
analysis revealed laryngocarcinoma cells with distinct differentiation patterns. C-D. Trajectory analysis revealed the differential expression of pRS-related genes (CFLAR, DAPK2, 
TSC2, CAPN10, MBTPS2, PEX14, FADD, ST13 and HAS2) at different pseudo-time. E. 8 pRS-related genes (CFLAR, DAPK2, TSC2, CAPN10, MBTPS2, PEX14, FADD and 
ST13) clustering analysis divided laryngocarcinoma cells into two clusters (the low risk cell cluster and the high risk cell cluster) with a well discriminatory power. F. A bar chart 
of cell classification percentage in the low risk cell cluster and the high risk cell cluster. 
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Figure 11. Fibroblasts related intercellular interactions and ligand-receptors analysis. A. Trajectory analysis revealed laryngocarcinoma cells with distinct 
differentiation patterns. B. Correlation analysis of intercellular interactions in regions with a pseudotime greater than 35. C. The receptor-ligand interaction within fibroblasts. 
D. Veen diagram showed intersection of genes between pRS-related DEGs (TCGA cohort) and ligand receptor-related genes in fibroblasts. E. Survival analysis of EGFR and 
INHBA based on TCGA laryngeal cancer samples. F. Correlation analysis of HAS2 with EGFR and INHBA respectively based on TCGA database. G. Correlations among pRS, 
IL-1B, INHBA, BMP4, EGFR, CXCL2 and SELE in the TCGA cohort. H. Diagram of the relationship between genes in this paper. 
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Figure 12. Hub pRS-related genes signature predict laryngocarcinoma cell types. A. A Schematic diagram of the neural network. B-H. The ROC plot in the traning 
set and the validation set validated the accuracy of those network’s prediction capacity. 

 
A systematic analysis of the relationship 

between immune/methylation/autophagy signa-
tures, laryngeal carcinoma prognosis and the tumor 
microenvironment was performed in this study. The 
combination of single-cell and transcriptome 
laryngeal carcinoma landscape analyses explores the 
link between the tumor microenvironmental and 
prognostic characteristics. 

In brief, 8 MARGs (CAPN10, DAPK2, MBTPS2, 
ST13, CFLAR, FADD, PEX14 and TSC2) and 2 
immune cells (Eosinophil and Mast cell) were 
obtained to establish the pRS scoring system. The pRS 
was used to establish a risk prediction model for the 
prognosis of laryngeal cancer. Furthermore, pRS was 
found highly associated with SNP, CNV, ICB therapy 
and the tumor microenvironment. The circ_0002951/ 
miR-548k/HAS2 pathway was also brought up, 
which indicates potential therapeutic targets and 
biomarkers of laryngocarcinoma. Single cells were 

then genotyped and fibroblasts were found enriched 
in high risk cell clusters at the scRNA-seq level. 
Fibroblast-related ligand-receptor interactions were 
revealed to define hub genes. A neural network-based 
deep learning model based on these pRS-related hub 
gene signatures was also established with a high 
accuracy in cell type prediction. 

Our study screened out molecular markers 
associated with the prognosis of laryngeal cancer and 
established a risk scoring system (pRS) to predict its 
prognosis. Relying on transcriptomics data to describe 
the tumor microenvironment computationally is a 
promising approach that overcomes the technical 
limitations of IHC, and can further characterize 
diverse immune populations with multiple functional 
phenotypes in a large patient cohort much more 
readily than with IHC. In this work, we applied the 
newly developed algorithm “CIBERSORT” in 
establishing a prognostic risk score (pRS) based on 8 
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m6A-RNA methylation/autophagy-related genes 
(CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, 
PEX14 and TSC2) and 2 immune cells (Eosinophil and 
Mast cell). The excellent predictive ability of pRS for 
laryngeal cancer was further confirmed through 
subsequent C-index analysis and using the ROC 
curve. However, according to the guidelines 
established by Altman et al. [75], only signatures 
validated in independent cohorts of patients with full 
clinical annotation available could be applied 
clinically. Therefore, the prognostic value of pRS 
model is to be validated. Since the current 
high-throughput gene expression measurement 
technology has been well developed, we believe that 
our pRS classifier has a higher potential to be 
translated into clinical practice. 

Moreover, based on our findings, we revealed 
that the immune system and cellular autophagy 
process influence the prognosis of laryngeal cancer. 
The prognostic model of pRS can stratify laryngeal 
cancer patients and effectively identify patients with a 
high risk of death, thereby promoting individualized 
treatment based on patient risk and revealing possible 
new targets for laryngeal cancer treatment. In 
addition, we found that in 0-2 years after treatment, 
the survival rate of patients in the high pRS group was 
lower than that in the low pRS group, and there were 
almost indistinguishable survival rates between the 
two groups after 3 years of treatment. This suggests 
that the CS rate gradually improves over time, and the 
survival rate of patients in both groups will gradually 
stabilize. Most importantly, since patients prefer clear 
survival information, the intuitive display of this 
information helps them cope with the fear of relapse 
or death, and pave the way for personalized 
follow-up plans [76-78]. 

In this study, a sharp link between immune cell 
infiltration, the expression of autophagy genes and 
m6A methylation related genes were reported. 
Notably, 8 autophagy-related genes (CAPN10, 
DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and 
TSC2) and 2 immune cells (Mast cells and 
Eosinophils) were revealed to be highly associated 
with tumor prognosis. Furthermore, a comprehensive 
analysis showed that the pRS composed of the above 
8 genes and 2 immune cells can independently predict 
the prognosis of laryngeal carcinoma. A higher pRS 
score of patients with laryngeal cancer implied worse 
prognosis. We noted that pRS scores were 
significantly associated with differences in mRNA 
transcriptome, immune infiltration, autophagy, and 
methylation biological pathways. Therefore, a 
comprehensive assessment of the state of autophagy, 
methylation and immune infiltration will improve the 
understanding of the tumor microenvironment of 

laryngeal cancer cells [10]. 
In addition, our work showed a significant 

negative correlation between pRS and tumor 
mutation burden, and a positive correlation between 
pRS and DNA copy number variation [10]. Consistent 
with previous studies, genetic aberrations, such as 
DNA copy number variation (CNV) and single 
nucleotide mutation (SNP), have strong links with the 
occurrence and prognosis of head and neck squamous 
cell carcinoma [79]. 

PD-1 expression is negatively correlated with 
pRS. Therefore, patients with low PD-1 expression 
have a worse prognosis. This reveals that PD-1 may 
play a strong part in the prognosis of laryngeal cancer 
patients, consistent with previous researches [80]. We 
also found that pRS scores are significantly associated 
with numerous immune checkpoint markers, 
inflammatory factors, and immune activation 
pathways. Thus, the immunotherapy effect of the 
patient group with high pRS may be advanced. 
However, there is an urgent need to explore the 
potential value of pRS scores in predicting the 
response of laryngeal cancer patients to 
immunotherapy. 

Researchers have explored the importance of 
immune cell infiltration in predicting the prognosis of 
various solid tumor types [81-83]. In our survival 
analysis, we found that Mast cell activation and 
eosinophils are associated with poor prognosis [1]. To 
our knowledge, eosinophils have been implicated in 
angiogenesis and tumor metastasis [84], and elevated 
levels of eosinophils suggest poor prognosis for 
cancer patients, which is consistent with previous 
findings [85]. Of note, mast cells can participate in the 
formation of blood vessels and lymphatic vessels [86, 
87] as well as the occurrence and progression of 
tumors [88-90]. Previous studies have also found that 
mast cells can promote the proliferation of thyroid 
cancer cells [91], and may play an important role in 
the process of Epithelial-to-mesenchymal (EMT) [92]. 
Our research further validated these findings. 

Most genes constituting the pRS component are 
closely related to the prognosis of various malignant 
tumors [93]. Consistent with previous studies, FADD 
gene copy number variation and protein expression 
are potential prognostic markers for squamous cell 
carcinoma of the head and neck. Notably, patients 
with FADD copy number amplification and high 
protein expression have the shortest disease-free 
survival [93]. Down-regulation of the TSC2 gene can 
result in the accumulation of Rheb-GTP, consequently 
activating classic mTORC1 and promotes the growth 
and proliferation of cells, which causes tumors [94, 
95]. In tumors such as B-lymphoma and myeloma, 
silencing of DAPK2 methylation is associated with 
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poor tumor prognosis [96]. In neuroblastoma, PEX14 
down-regulation was found to be associated with 
tumor progression and poor prognosis [97]. In a study 
by Nader Shakibazad et al., they found that IFAP 
syndrome caused by the MBTPS2 gene may be a risk 
factor for malignant tumors [98]. However, the role of 
some genes still needs further exploration, for 
instance, the role of ST13 and CAPN10 in cancer 
development should be elucidated [99, 100]. Another 
study by Simone Fulda revealed that CFLAR 
participates in the regulation of various cell death 
signaling pathways such as apoptosis, necrosis, and 
autophagic cell death. Besides, CFLAR abnormal 
expression is related to the prognosis of human 
cancer. Thus, targeted therapy CFLAR may offer a 
feasible anti-cancer treatment strategy. 

The study of tumor cell heterogeneity allows for 
better understandings of tumor progression [101]. 
Laryngeal cancer single-cell data was clustered by 
pRS genes and fibroblasts associated with poor 
prognosis were postulated in this research. Malignant 
proliferating cells and fibroblasts share the tumor 
margin in laryngeal cancer [101]. Numerous previous 
studies have confirmed that fibroblasts are one of the 
major components of TME and can establish 
dangerous associations with other TME cells, thereby 
creating a tumor-supporting environment in 
laryngeal cancer [102]. Our research suggests that 
fibroblasts have a significant positive correlation with 
endothelial cells. As result, CellPhoneDB was used to 
infer the cell-cell communication of each subtype by 
receptor-ligand interaction. Our study suggests that 
EGFR and INHBA from fibroblasts may lead to 
malignant transformation of laryngeal cancer. 
Survival analysis suggests that high expression of 
EGFR and INHBA is significantly associated with 
poor prognosis for laryngeal cancer [2]. Additionally, 
INHBA-AS1 also shows to be a possible target and 
prognostic marker for the treatment of multiple 
cancers [103-105]. Furthermore, a neural 
network-based deep learning model was also 
established to predict laryngocarcinoma cell types 
using pRS-related hub gene signatures. Remarkably, 
the pRS-related hub genes-based neural network 
showed high accuracy in the training set as well as the 
testing set. Therefore, those results highlighted the 
importance of pRS-related hub genes for exploring the 
tumor microenvironment. 

In this work, we revealed that the pRS score can 
be used to comprehensively evaluate the prognosis of 
patients with laryngeal cancer and guide on more 
effective treatment strategies in clinical practice. Also, 
pRS can be used to assess the tumor 
microenvironment, DNA copy number variation, and 
tumor mutation burden in patients with laryngeal 

cancer. The ceRNA network and the hsa_circ_ 
0002951/hsa-miR-548k/HAS2 pathway constructed 
based on pRS may help in revealing the tumor lethal 
mechanism. Of note, a high correlation between pRS 
and PD-1 expression may provide insights into 
devising new drug combination strategies or new 
immunotherapy drugs. In particular, fibroblasts were 
found enriched in high pRS cluster and more hub 
genes (EGFR and INHBA) were then defined by 
ligand-receptor analysis. Those pRS-related hub genes 
(EGFR, INHBA, CFLAR, DAPK2, TSC2, CAPN10, 
MBTPS2, PEX14, FADD and ST13) were found can 
predict cellular composition to reflect the 
microenvironment of tumor tissues with high 
accuracy. Our findings, therefore, provide new ideas 
for identifying high-risk laryngeal cancer patients, 
improving their clinical response to immunotherapy 
and promoting future personalized cancer treatments. 

However, this research inevitably has some 
limitations. First, the amount of data published in the 
public data set is limited, thus the clinical and 
pathological parameters analyzed are not 
comprehensive, which may lead to potential errors or 
biases. Second, all data series downloaded to 
construct the pRS model were retrieved from the 
TCGA and GSE27020 data sets. Therefore, caution 
should be exercised when applying the conclusions of 
this study to patients in Asian countries. However, 
pRS can be optimized in the future to make it more 
suitable for clinical use. Third, the prognostic model 
still needs further validation in other independent 
queues. Fourth, future functional experiments are 
needed to further uncover the underlying mechanism 
of pRS-related ceRNA networks as well as the 
circ_0002951/miR-548k/HAS2 pathway. 

Conclusions 
This study established a pRS scoring system 

based on the comprehensive analysis of the 
autophagy effects, methylation and immune 
infiltration on tumor microenvironment, and the 
prognosis of laryngeal cancer at both macrolevel and 
microlevel. The differences in pRS were found to be 
closely related to the SNP, CNV and immunotherapy 
targets of laryngeal cancer cells. The screened ceRNA 
network and circ_0002951/miR-548k/HAS2 pathway 
based on pRS differences may reveal the potential 
molecular mechanism of laryngeal cancer lethality. 
Moreover, single-cell RNA-seq and ligand receptor 
analysis shows that excessive infiltration of fibroblasts 
is associated with poor prognosis. Finally, a neural 
network-based deep learning model was also 
established to predict laryngocarcinoma cell types 
using pRS-related hub gene signatures. Overall, a 
comprehensive evaluation of individual tumor 
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autophagy, methylation and immune infiltration 
enables better understanding of the tumor 
microenvironment and provides individualized 
immunotherapy strategies. 

Highlights 
• We found that the prognostic risk scoring system 

(pRS) can be used to comprehensively evaluate 
the prognosis of patients with laryngeal cancer 
as well as assess the tumor microenvironment, 
DNA copy number variation and tumor 
mutation burden in patients with laryngeal 
cancer; 

• A high correlation between pRS and PD-1 
expression may provide insights into devising 
new drug combination strategies or new 
immunotherapy drugs; 

• The ceRNA network and circ_0002951/miR- 
548k/HAS2 provide potential therapeutic 
targets and biomarkers of laryngocarcinoma; 

• Single-cell RNA-seq and ligand receptor analysis 
showed that excessive infiltration of fibroblasts 
was associated with poor prognosis; 

• A neural network-based deep learning model 
was also established to predict 
laryngocarcinoma cell types using pRS-related 
hub gene signatures. 
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