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Abstract 

Background: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system. 
The ubiquitin proteasome system (UPS) plays an important role in the generation, metabolism and survival of 
tumor. We are aimed to make a comprehensive exploration of the UPS’s role in ccRCC with bioinformatic 
tools, which may contribute to the understanding of UPS in ccRCC, and give insight for further research. 
Methods: The UPS-related genes (UPSs) were collected by an integrative approach. The expression and 
clinical data were downloaded from TCGA database. R soft was used to perform the differentially expressed 
UPSs analysis, functional enrichment analysis. We also estimated prognostic value of each UPS with the help of 
GEPIA database. Two predicting models were constructed with the differentially expressed UPSs and 
prognosis-related genes, respectively. The correlations of risk score with clinical characteristics were also 
evaluated. Data of GSE29609 cohort were obtained from GEO database to validate the prognostic models. 
Results: We finally identified 91 differentially expressed UPSs, 48 prognosis related genes among them, and 
constructed a prognostic model with 18 UPSs successfully, the AUC was 0.760. With the help of GEPIA, we 
found 391 prognosis-related UPSs, accounting for 57.84% of all UPSs. Another prognostic model was 
constructed with 28 prognosis-related genes of them, and with a better AUC of 0.825. Additionally, our models 
can also stratify patients into high and low risk groups accurately in GSE29609 cohort. Similar prognostic values 
of our models were observed in the validated GSE29609 cohort. 
Conclusions: UPS is dysregulated in ccRCC. UPS related genes have significant prognostic value in ccRCC. 
Models constructed with UPSs are effective and applicable. An abnormal ubiquitin proteasome system should 
play an important role in ccRCC and be worthy of further study. 

Key words: the ubiquitin proteasome system (UPS); clear cell renal cell carcinoma (ccRCC); prognosis; 
bioinformatics 

Introduction 
Renal cell carcinoma (RCC) is a type of 

malignant tumor originating from the renal tubular 
epithelium and accounts for about 3-5% of all adult 
malignancies [1]. Clear cell renal cell carcinoma 
(ccRCC) is the most common histological subtype and 
accounts for approximately 75% of RCC [2]. Surgical 
resection is the main treatment for ccRCC, but ccRCC 
is likely to recur and threatens patient’s life [3-5]. 
Therefore, the exploration of new molecular targets in 

ccRCC is essential as well as valuable for the 
development of more accurate diagnosis and more 
effective treatment. The ubiquitin proteasome system 
(UPS) seems a promising candidate [6]. 

The UPS is a specialized proteolysis system 
which is responsible for protein degradation and 
plays an essential role in the regulation of abundant 
biological processes [7, 8]. It consists of a series of key 
components: ubiquitin, ubiquitin activating enzymes 
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(E1s), ubiquitin conjugating enzymes (E2s), ubiquitin 
ligases (E3s), deubiquitinating enzymes (DUBs), and 
the proteasome [9]. The UPS controls the degradation 
of more than 80% of cellular proteins and plays an 
indispensable role in a wide range of biological 
processes including cell proliferation, development, 
immune responses, and a variety of human diseases 
including tumor [10, 11]. Dysregulation of UPS is 
closely related to tumor and tumor cells are highly 
dependent on a functional UPS [12]. Considering the 
current evidence indicates aberrancies in the UPS 
pathway play an important role in cancer, 
development of drugs targeting different components 
of the UPS has been proposed as a promising 
therapeutic strategy [13-17]. An inspiring example is 
the success of proteasome inhibitors used in multiple 
myeloma treatment [18, 19]. 

Previous researches suggest ccRCC is dominated 
by inactivating mutations in Von-Hippel Lindau 
(VHL). The protein encoded by VHL is involved in 
assembling a protein complex possessing ubiquitin 
ligase E3 activity. It is responsible for the 
ubiquitination and degradation of hypoxia-inducible- 
factor (HIF), which plays a central role in the control 
of gene expression by oxygen [20]. Besides VHL, there 
are also some other UPS genes have been reported to 
be involved in ccRCC such as USP2 [21], USP44 [22], 
CUL5 [23], SPOP [24] and UHRF1 [25]. Additionally, 
UPS was also found to be involved in papillary renal 
cell carcinoma [26]. However, there are few researches 
focusing on exploring the potential of the whole 
ubiquitin proteasome system in ccRCC. In this study, 
we are aimed to make a comprehensive exploration of 
the ubiquitin proteasome system’s role in ccRCC, 
mainly focus on the prognostic value of UPS-related 
genes (UPSs) with the assistance of bioinformatic 
tools. 

Materials and Methods 
Collection of UPSs 

We collected and confirmed the genes encoding 
the ubiquitin proteasome system (UPS) by an 
integrative approach. Coding genes of ubiquitin were 
obtained from the Uniport database, while the gene 
lists of ubiquitin activating enzymes (E1s) [27], 
ubiquitin conjugating enzymes (E2s) [28] and 
deubiquitinating enzymes (DUBs) [29] were collected 
from the reliable published literatures. There are 
several online databases for ubiquitin ligases (E3s), 
among them we select the database named UbiNet, 
for it have collected abundant members of E3 ligases 
in human, about 500 genes [30]. As for the 
proteasome, which is a relatively conservative 
component of UPS, we get its genes from GSEA 

website, by downloading the gene set named 
KEGG_PROTEASOME [31, 32]. Finally, we get the 
UPS-related gene set containing 676 UPSs in total. 
Details of gene set are shown in Table S1. 

Samples and data retrieval 
We acquired both the FPKM-standardized 

RNA-seq data and the clinical information from the 
KIRC cohort in the TCGA database. All patients in 
TCGA-KIRC cohort are involved into our study when 
doing expression related analyses, while patients with 
unknow clinical features were excluded in Cox 
regression analysis. Finally, we extracted an 
expression matrix of 670 UPSs in 72 normal samples 
and 539 tumor samples, and obtain a file containing 
complete clinical information without missing values 
in 248 patients. 

Identification of differentially expressed UPSs 
R software (version 4.0.2) and “limma” package 

were used to make the analysis of differentially 
expressed UPSs. We set a false discovery rate (FDR) < 
0.05 and a | log2 fold change (FC) | > 1 as screening 
criteria to obtain the differentially expressed UPSs. 
We also visualized them by the heatmap and boxplot. 

Enrichment analysis of differentially expressed 
UPSs 

To have a better understanding of differentially 
expressed UPSs in ccRCC, we carried out a series of 
gene functional enrichment analyses to determine the 
major biological attributes, including the gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses. The “GOplot” package 
was employed to visualize the enrichment terms [33]. 

Construction of prognostic model (Model 1) 
with differentially expressed UPSs 

We obtained 48 prognostic related UPSs in 
ccRCC by univariate Cox regression analysis, and 
these prognosis-related genes were used to construct 
a prognostic model by multivariate Cox regression 
with the step function in R. This model was used to 
calculate the risk score for every ccRCC patient, and 
the patients were divided into the low-risk group and 
high-risk group. Survival analysis was made by 
Kaplan-Meier method. Cox regression analysis was 
performed to demonstrate whether the UPS related 
risk score was an independent prognostic factor in 
ccRCC patients. Heatmap was employed to visualize 
the expression pattern between two groups. We also 
made GSEA analysis in GSEA software (version 4.0.1) 
to analyze which pathways genes are primarily 
enriched in high- and low-risk groups [32]. 
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Exploration of all 676 UPSs in GEPIA 
GEPIA, which is an interactive web server 

developed for exploring the RNA sequencing 
expression data from the TCGA and the GTEx 
projects, was used in this part [34]. The excellent 
function of patient survival analysis provided by 
GEPIA was used to estimate each prognostic value of 
all 676 UPSs. With the log-rank p < 0.05 and | log2 
hazard rate (HR) | > 1, we got 69 prognosis-related 
genes with outstanding prognostic value. The 
correlations of gene expression and tumor stage were 
also explored with the stage plot function of GEPIA. 

Construction of prognostic model (Model 2) 
with 28 prognosis related UPSs 

Considering the extraordinary significance of 69 
prognosis-related genes, we constructed another 
prognostic model with these genes by multivariate 
Cox regression with the step function in R. 28 UPSs 
were involved in the Model 2. We also got a risk score 
formula and made survival analysis between two 
groups separated by calculated risk score value. Cox 
regression analysis was performed to support this risk 
score as an independent prognostic factor. 

Estimation and external validation of Model 1 
and Model 2 

Finally, we estimated these two models by 
drawing receiver operating characteristic (ROC) curve 
with the “survivalROC” package. Correlation of risk 
score with clinical characteristics were also evaluated. 
Additionally, we downloaded data of GSE29609 from 
GEO database, GSE29609 provided data of whole 
genome expression of 39 clear-cell renal cell 
carcinomas patient as well as survival state and 

survival time [35]. This 39 ccRCC patients were used 
for external validation and their risk scores were 
calculated with the formulas of Model 1 and Model 2, 
respectively. Kaplan-Meier curve was plotted with R 
software. 

Statistical Analysis 
Statistical analyses were performed with R 

software (Version 4.0.2). The Wilcox signed-rank test 
was used to compare the expression levels of 
differentially expressed UPSs between cancer tissues 
and normal tissues. Cox regression analyses were 
employed to filter genes to build risk score models. 
Differences between survival curves generated by the 
Kaplan-Meier method were defined by log-rank tests. 
Receiver operating characteristic (ROC) curve 
analysis was performed with the “survivalROC” 
package. The Wilcoxon rank sum test was used in 
estimating the correlations of risk score with clinical 
characteristics. All statistical tests were bilateral, with 
p < 0.05 being statistically significant. 

Results 
Differentially expressed UPSs in tumor 
samples comparing with normal samples 

The flowchart of our research was showed in 
Figure 1, detailed clinical parameters of patients were 
shown in Table 1. The expression values of UPSs were 
extracted from normal and tumor samples. With FDR 
< 0.05 and | log2 FC | > 1 as the screening criteria, 91 
differentially expressed UPSs were obtained. 
Compared with normal samples, there were 32 
downregulated UPSs and 59 upregulated UPSs in 
tumor samples, details are shown in Table 2. Many of 

 

 
Figure 1. Overview flowchart of this study. Exploration of the prognostic role of UPS in ccRCC from a bioinformatic perspective. 
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them are not clearly elucidated and waiting for more 
extensively studies. We also visualized the expression 
pattern of these genes below (Figure 2). It is not 
difficult to find that there are more upregulated genes 
than downregulated genes in tumor samples. These 
findings may show that tumor needs a relatively high 
activity of UPS to survive and imply these UPSs are 
potential novel targets for treatment. 

 

Table 1. Clinical parameters of patients in TCGA-KIRC cohorts 

Parameters Cases Proportion (%) 
Age (y)   
≤65 352 65.55 
>65 185 34.45 
Gender   
Male 346 64.43 
Female 191 35.57 
Stage   
I 269 50.37 
II 57 10.67 
III 125 23.41 
IV 83 15.55 
T stage   
T1 275 51.21 
T2 69 12.85 
T3 182 33.89 
T4 11 2.05 
N stage   
N0 240 93.39 
N1 17 6.61 
M stage   
M0 426 84.36 
M1 79 15.64 
Grade   
G1 14 2.65 
G2 230 43.48 
G3 207 39.13 
G4 78 14.74 

 

Functional enrichment of the differentially 
expressed UPSs 

Functional enrichment analysis was performed 
with 91 differentially expressed UPSs. The GO term 
functional enrichment and the KEGG pathway 
enrichment analysis of these genes were summarized 
in Figure 3. In the GO terms in biological processes, 
differentially expressed UPSs were mainly enriched in 
protein polyubiquitination, proteasome-mediated 
ubiquitin-dependent protein catabolic process, 
proteasomal protein catabolic process, protein 
deubiquitination, protein modification by small 
protein removal. In the cellular components, 
differentially expressed UPSs were mainly enriched in 
ubiquitin ligase complex, cullin-RING ubiquitin ligase 
complex, proteasome core complex, proteasome core 
complex (beta-subunit complex), nuclear ubiquitin 
ligase complex. The top enriched GO terms in the 
molecular functions were ubiquitin-protein 
transferase activity, ubiquitin-like protein transferase 

activity, ubiquitin protein ligase activity, 
ubiquitin-like protein ligase activity, thiol-dependent 
ubiquitin-specific protease activity. In the KEGG 
pathway enrichment analysis, the UPSs were mainly 
enriched in Ubiquitin mediated proteolysis, 
Proteasome, Small cell lung cancer, Necroptosis, IL-17 
signaling pathway, NOD-like receptor signaling 
pathway. The z scores of these pathways were > 0, 
indicating that the UPSs were upregulated in these 
pathways, which indicated a relatively high activity of 
these pathways in tumor samples. More details are 
shown in Table S2. 

 

Table 2. Differentially expressed UPSs in tumor samples 
comparing with normal samples 

Dysregulation Differentially expressed UPSs 
Downregulated  ASB15, HECW1, RNF150, USP44, FBXO2, RNF43, DTX1, 

KLHL13, MARCH10, CBLC, UCHL1, USP2, TRIM2, 
TRIM40, CADPS2, RHOBTB3, LNX1, IRF2BPL, AMFR, 
USP46, RNF182, ZNRF3, PELI2, KLHL21, AREL1, 
PDZRN3, DCAF11, RNF152, NEDD4L, BRCC3, ASB9, 
NEURL3 

Upregulated MDM4, KCTD13, TRAF2, PCGF1, TRAF3IP2, WSB1, 
TRIM31, UBE2L6, FBXL6, LRRC41, CHFR, KLHL17, 
NEURL1B, RBCK1, TRIM59, SH3RF3, RACK1, PML, 
SPSB1, RFPL4A, TRIM36, DTX2, TRIM15, TNFAIP3, 
USP41, RNF149, PRC1, BCL6B, PSMB10, TRIM22, PSMA8, 
ASB2, MARCH3, HECW2, MYC, CORO7, FBXO17, 
PSMB8, MARCH1, CDC20, CDCA3, TRIM46, DDB2, 
TRIM73, DTL, TRIM74, PSMB9, BIRC3, TRIML1, 
STAMBPL1, UHRF1, TRIML2, RNF113B, MARCH4, 
UBE2C, TRIM9, RASD2, IFNG, BIRC7 

 

Model 1: construction of a prognostic 
signature with differentially expressed UPSs 

In order to construct a prognostic signature, we 
first made univariate Cox regression analysis of 
survival with 91 differentially expressed UPSs, and 48 
UPSs were found to be associated with the prognosis. 
In other words, more than half of the differentially 
expressed UPSs, up to 52.75%, have statistical 
significance with ccRCC patients’ survival, which 
have surprised us a lot. After multivariate Cox 
regression analysis, 18 UPSs were identified and they 
were used to construct a prognostic signature. We 
named this prognostic signature “Model 1”. The risk 
score formula, shown in Table 3, was used to 
calculate the risk score of each patient, and patients 
were classified into the high-risk group (n = 265) and 
the low-risk group (n = 265) comparing with the 
median risk score. The different expression pattern of 
these 18 UPSs in two groups was shown by a heatmap 
(Figure 4B). It is obvious that the expression pattern 
proves essentially different in two groups. 
Particularly, we can easily find that the CDC20 and 
UBE2C are highly expressed in the high-risk group, 
while in the low-risk group, USP2 is highly expressed. 
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Figure 2. The expression profiles of UPSs between tumor samples and normal samples in TCGA cohort of ccRCC. (A) Volcano plot of 676 UPSs. The vertical 
axis indicates the -log10 False Discovery Rate (FDR), and the horizontal axis indicates the log2 fold change (FC). The red dots and the green dots represent up- and 
down-regulated genes, respectively (P-value < 0.05 and |log2(FC)| > 1). (B) Heatmap of 91 differentially expressed UPSs. Red and green indicate higher expression and lower 
expression, respectively. (C) Box plot of the expression of 91 differentially expressed UPSs between tumor and normal tissues, tumor in red and normal in green. 

 
Kaplan-Meier analysis was performed to 

evaluate the overall survival (OS) in the two groups. 
As is shown, a significant difference in the survival 
rate between the high- and low-risk groups was 
observed (P = 3.775e−15, Figure 4A). Patients in the 
high-risk group had a worse OS than those in the 
low-risk group. The survival rates of 1, 3, 5 years in 
low-risk group are about 95.0%, 87.2%, 81.2%, while 
in the high-risk group, they are significantly reduced 
to only about 83.7%, 62.6%, 37.8%. We also visualized 
the relationship between risk score and patients’ 
survival state. As is shown in the dot plot, there is an 
increasing number of patients died with the increase 
of risk score (Figure 4D). These results support the 
presume that the risk score accurately reflect the 
survival of patients. In order to determine whether the 
UPS-related signature for OS is an independent 
prognostic factor, univariate and multivariate Cox 
regression analyses were performed. As the results of 
univariate Cox regression analysis suggested, age, 
stage, grade, T stage, N stage, M stage and risk score 

were all significantly associated with OS in ccRCC 
patients. Multivariate Cox regression analysis showed 
that age and risk score were significantly associated 
with OS. These results support risk score as an 
independent prognostic factor in ccRCC patients. 

In order to have a more comprehensive 
understanding of the difference between high and 
low-risk groups, we performed GSEA analysis. 
Results suggested that the pathways enriched in the 
two groups were really different (Figure 5). The 
following pathways were mostly enriched in the 
low-risk group: proximal tubule bicarbonate 
reclamation, vasopressin regulated water 
reabsorption, propanoate metabolism, pyruvate 
metabolism, tight junction. And in the high-risk 
group, the following pathways were mostly enriched: 
intestinal immune network for IgA production, 
cytokine-cytokine receptor interaction, homologous 
recombination, primary immunodeficiency, asthma. 
We can roughly conclude that the tumor tissues in 
low-risk group may have a better histologic 
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differentiation and a lower malignancy phenotype, 
for its main enrichment pathways are more likely to 
occur in normal renal cells which may means the 
low-risk group tumor samples are more like normal 
tissues. On the contrary, the pathways enriched in the 
high-risk group are more related to immune response 
which may means the tumor tissues are worse 
differentiated and have a higher malignancy which 
have induced a relatively more violently immune 
response against the tumor in the body. 

Prognostic value of all UPSs 
Apart from constructing a prognostic signature 

with differentially expressed UPSs, in order to have a 
more comprehensive understanding of the UPSs’ role 
in ccRCC, we also analyze the prognostic value of all 
676 UPSs with the help of GEPIA (Figure 6). With 
log-rank p < 0.05, we found 391 prognosis-related 
UPSs in total among 676 UPSs, which means 57.84% 
UPSs had a significant relationship with the overall 

survival of ccRCC patients in TCGA cohort. 
Considering the fact that such a large proportion of 
UPSs had a significant correlation with the prognosis 
of ccRCC, we infer that the dysregulation of ubiquitin 
proteasome system should play a vital role in the 
occurrence and development of ccRCC. 

With the convenience of GEPIA, we also made 
an exploration of the correlation of the expression of 
69 most prognosis related genes and tumor stage. To 
our surprise, most of them have a significance 
relationship with tumor stage. If we see genes as 
“good genes” when high expression followed with 
better survival, and “bad genes” when high 
expression comes with worse survival. Then we can 
find there are 65 “good genes” among them, and most 
of 65 “good genes” are negatively correlate with 
tumor stage, while the only 4 “bad genes” (CDC20, 
CDCA3, FBXL6, UBE2C) are positively correlate with 
tumor stage (Figure 7). 

 

 
Figure 3. Functional enrichment of the differentially expressed UPSs. (A) The top 30 significant terms of GO function enrichment. BP biological process, CC cellular 
component, MF molecular function. (B) The GO circle shows the scatter map of the log FC of the specified gene. (C) The terms of KEGG analysis with statistical significance. (D) 
The KEGG circle shows the scatter map of the log FC of the specified gene. The higher the z-score value indicated, the higher expression of the enriched pathway. 
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Figure 4. Model 1: prognostic signature constructed with 18 differentially expressed UPSs. (A) Kaplan-Meier curves of OS in the high- and low-risk groups stratified 
by the median risk score. (B) Heatmap of the expression profile of the model genes in two groups. (C) Distribution of the risk scores of ccRCC patients. (D) Survival status of 
patients in different groups, red dots denote patients that are dead, and green dots denote patients that are alive. (E) A forest plot of univariate Cox regression analysis in the 
cohorts. (F) A forest plot of multivariate Cox regression analysis in the cohorts. 

 
Figure 5. Gene set enrichment analysis in different groups identified by Model 1. The top 5 pathways enriched in the high-risk group and low-risk group, respectively. 

 

Model 2: construction of prognostic model 
with 28 prognosis-related UPSs 

Making a prognostic model with genes selected 

from differentially expressed UPSs may reject some 
candidates which have outstanding prognostic value 
but without differentially expressed significance. 
Considering this fact, we assume that a better 
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prognostic predicting model may be constructed with 
these 391 prognosis-related genes recognized above 
without considering whether there are differentially 
expressed significances or not. With the standard 
log-rank p < 0.05 and | log2 hazard rate (HR) | > 1, 
we get 69 most prognosis-related genes with the help 
of GEPIA (Figure 6B). Our new prognostic model was 
formed with 28 genes of these 69 most 
prognosis-related UPSs by Cox regression analysis, 
we named it “Model 2”, shown in Table 3, and 
patients were classified into the high-risk group (n = 
265) and the low-risk group (n = 265), survival 
analysis show that the survival rate of 1, 3, 5 years in 
low-risk group are about 96.7%, 89.8%, 83.9%, while 
in the high-risk group, the survival rate of 1, 3, 5 years 
are significantly reduced to only about 81.8%, 60.1%, 
37.8%. The difference of survival rate is more obvious 
between two groups comparing with Model 1. We 
also visualized the relationship between risk score 
and patients’ survival state as what we had done with 
Model 1, Cox regression analysis was also made in 
Model 2 (Figure 8). 

 
 

Table 3. Risk score formula of Model 1 and Model 2 

Model 1 Model 2 
Genes Coefficient Genes Coefficient 
CDCA3 0.647733 CDCA3 0.813077 
CADPS2 -0.34575 RHOBTB1 -0.24355 
USP2 -0.16609 FBXL5 -0.52466 
PSMB10 -0.32733 PJA2 0.480908 
CDC20 0.572892 FBXO7 0.57878 
DTX1 0.257956 KLHL9 -1.31442 
SPSB1 -0.19703 RNF20 -1.46314 
PELI2 -0.40024 CDC20 0.596902 
RNF149 0.506406 SOCS6 -0.57623 
UBE2C -0.43403 UBE2D3 -1.08593 
CHFR 0.886869 OTUD7A -1.42335 
RNF43 -0.44588 PDE4D -0.61161 
BCL6B 0.293386 PELI2 -1.01604 
HECW2 -0.49501 TOPORS 0.660042 
RASD2 0.34123 PEX12 0.770969 
MARCH4 -1.06908 UBE2C -0.62467 
ZNRF3 3.390968 TRIM2 -0.5344 
TRIM15 -0.14047 EP300 -1.08857 
  BFAR -0.61988 
  RAG1 -1.53854 
  RNF38 0.751749 
  MYLIP 0.50646 
  KLHL8 1.201221 
  TBL1X 0.309252 
  TRAF6 0.762172 
  FBXL4 0.962905 
  FBXW2 1.622785 
  ZNRF3 4.939872 

 

 
Figure 6. Prognostic value of all UPS-related genes exploring with GEPIA. (A) Dot plot to show the large proportion of UPSs with significant prognostic value, 
significant genes are shown in orange. (B) Dot plot to show the UPSs with outstanding prognostic value, red dots represent genes when log2 hazard rate (HR) > 1, green dots 
represent genes when log2 hazard rate (HR) < -1. (C-F) Kaplan-Meier curves of OS of representative genes with outstanding prognostic value. 
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Figure 7. Correlation of the expression of UPSs with tumor stages. (A-D) 4 representative genes that have negative correlations with tumor stages. They are TRIM2 
(A), OTUD7A (B), RCHY1 (C), DCAF11 (D). (E-H) 4 representative genes that have positive correlations with tumor stages. They are CDCA3 (E), UBE2C (F), CDC20 (G), 
FBXL6 (H). 

 
Figure 8. Model 2: prognostic signature constructed with 28 prognosis related UPSs. (A) Kaplan-Meier curves of OS in the high- and low-risk groups stratified by the 
median risk score. (B) Heatmap of the expression profile of the model genes in two groups. (C) Distribution of the risk scores of ccRCC patients. (D) Survival status of patients 
in different groups, red dots denote patients that are dead, and green dots denote patients that are alive. (E) A forest plot of univariate Cox regression analysis in the cohorts. 
(F) A forest plot of multivariate Cox regression analysis in the cohorts. 
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Figure 9. Correlations of risk score with clinical parameters with statistical significance. Correlations of risk score with grade in Model 1 (A) and Model 2 (B). 
Correlations of risk score with stage in Model 1 (C) and Model 2 (D). Correlations of risk score with T stage in Model 1 (E) and Model 2 (F). Correlations of risk score with N 
stage in Model 1 (G) and Model 2 (H). Correlations of risk score with M stage in Model 1 (I) and Model 2 (J). 

 

Table 4. Correlations of risk score with clinical parameters (p 
value) 

Clinical parameters Models 
Model 1 Model 2 

Age 0.208 0.262 
Gender 0.105 0.23 
Grade 4.049e−07 5.03e−07 
Stage 9.222e−09 2.05e−10 
T 1.842e−08 7.45e−10 
N 7.397e−04 3.763e−04 
M 1.072e−05 6.473e−06 

 

Estimation and external validation of Model 1 
and Model 2 

Correlations of the risk score with clinical 
parameters were shown in Table 4, and correlations 
with statistical significance were shown in Figure 9. 
Results show that the risk score is strongly correlated 
with tumor grade, tumor stage, T stage, N stage and 
M stage. And the higher the risk score is, the higher 
the tumor grade and the later the tumor stage is likely 
to be. 

ROC curves were constructed to determine the 
predictive accuracy of the two different models. The 
area under the curve (AUC) for OS was 0.760 in 
Model 1, and 0.825 in Model 2, indicating both of 
them had good predictive accuracy, and Model 2 may 
be better (Figure 10). In order to further validate the 
prognostic predicting ability of our models, we 
downloaded expression and clinical data of 39 ccRCC 
patients in GSE29609 from GEO database, and 

calculated their risk scores with the formulas of Model 
1 and Model 2, respectively. Patients in GSE29609 
were classified into high and low risk groups with the 
median risk score of Model 1 and Model 2, 
respectively. As Kaplan–Meier curves in Figure 10 
show, the p values are as small as 3.069e-06 and 
1.079e-04, indicating that our models remain 
effectively in this external cohort. All in all, the 
success of construction and validation of prognostic 
model with UPSs by two different approaches has 
strengthened our belief that the ubiquitin proteasome 
system (UPS) is of great importance in ccRCC, and 
models made with UPSs could predict the prognosis 
of patients effectively. 

Discussion 
As early as 1991, Kanayama had explored the 

changes in expressions of ubiquitin and proteasome 
genes in renal cancer cells by Northern blot as well as 
immunochemical analysis, and they drew a 
conclusion that the ubiquitin and proteasome system 
should play a role in the renal cancer [36]. In the past 
few decades, researchers have made great efforts to 
uncover the underlying mechanism of the UPS in the 
development of ccRCC [37-41]. It is indisputable that 
we have made tremendous achievements in this field, 
however, on the other hand, it is unanimously agreed 
that there remain enormous appealing mechanisms 
waiting us to uncover. At the same time, there are 
some attempts trying to translate experimental 
findings of ccRCC into clinical applications. For 
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instance, some UPS components are identified as 
pharmaceutical target to inhibit. Given bortezomib as 
an example, which is a proteasome inhibitor, the 
clinical trials have been done, but results are not very 
satisfactory [42, 43]. There is no doubt that there is still 
a long way to go. Our results suggest there are more 
upregulated UPSs in tumor and UPS related 
pathways are highly enriched, while prognosis 
analysis implies there are more UPSs whose high 
expression followed with better survival. This seems 
paradoxical and indicates us UPS is definitively 
complicated and we should keep open-minded with 
UPS in searching potential targets and solutions [44, 
45]. Our differentially expressed analysis has 
identified some novel UPSs, for instance, RNF150, 
TRIM40, IRF2BPL, AREL1, NEURL3, FBXL6, LRRC41, 
KLHL17, RFPL4A, USP41, RNF149, PSMA8, CORO7, 
TRIM73, TRIM74, TRIML1, TRIML2, RNF113B and 
MARCH4. These UPSs have not been intensively 
studied and should be worth of further research. 

When it comes to the prognostic value of UPS in 
ccRCC, there are researches focusing on specific UPS 
related genes, such as USP2 [21] and SMURF1 [46]. 
But there are less systematically estimations of the 

whole ubiquitin proteasome system. With the 
development of the high-throughput sequencing and 
emergence of bioinformatic methods, such an 
exploration is practicable as well as attractive. Our 
study initially was aimed to draw a vivid picture of 
UPS in ccRCC from a bioinformatic perspective. 
Firstly, we conducted bioinformatic analysis of 
differential expression, functional enrichment and 
constructed Model 1 in a traditional way. 18 UPSs 
were involved in this prognostic predicting model. 
Some genes in Model 1 have been extensively studied 
such as CDC20 and ZNRF3. CDC20 was found to 
promote tumor cell migration and invasion for it was 
involved in the degradation of SMAR1, and SMAR1 is 
a tumor suppressor [47]. The coefficient of CDC20 in 
our model is positive which means the higher CDC20 
expression is, the higher the risk score will be, which 
is consistent with the previous researches. As for 
ZNRF3, a higher expression of ZNRF3 was found to 
be related with a better survival in colorectal 
carcinoma [48], while its role in ccRCC has not been 
elucidated. As its coefficient in our model is not only 
positive but also large, ZNRF3 may also play an 
important role in ccRCC. 

 

 
Figure 10. ROC curves and external validations of Model 1 and Model 2. ROC curves of Model 1 (A) and Model 2 (C). Kaplan–Meier curves of OS in the high- and 
low-risk groups stratified by the median risk score of Model 1 (B) and Model 2 (D) in GSE29609 cohort. 
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With the help of GEPIA, we made a 
comprehensive analysis of the prognostic value of all 
676 UPSs. Results show that 391 of them, which 
accounts for 57.84%, have significant difference 
between two groups separated by the expression 
value. It is so amazing to find such a big proportion of 
UPSs is strongly related with prognosis. This may at 
least suggest that there is an extensive dysregulation 
of UPS in ccRCC tissues. Additionally, we found 
many UPSs also have a strong relationship with 
tumor stage. These results indicate that the prognosis 
difference of UPSs may be partially explained by 
tumor stage, and some UPSs indeed have a good 
prediction of tumor stage. Furtherly, with the 69 most 
prognosis-related genes found in GEPIA, we 
constructed another prognostic model which was 
named Model 2. Model 2 is more exciting for it has a 
better predicting ability and with AUC up to 0.825. 
Model 2 is not only a better model maybe useful for 
further clinical diagnosis, but also strong evidence 
implying that the dysregulation of UPS must have 
something to do in ccRCC. Recently, research 
suggests that ccRCC is a metabolic disease with 
metabolic reprogramming covering a wide range of 
biological processes, such as fatty acid metabolism, 
aerobic glycolysis and amino acid metabolism [49]. As 
a key pathway for protein degradation, UPS is also 
reported to be an essential modulator of cancer 
metabolism [50]. Obviously, there requires more 
studies and efforts focusing on this field to develop 
novel diagnostic and therapeutic methods. 

Finally, we estimated the relationship of the risk 
score with clinical parameters, and risk score was 
shown to have positive correlations with traditional 
parameters that can indicate the tumor malignancy. 
And further external validation with GSE29609 cohort 
successfully showed similar prognostic values of our 
models. However, our research also has some 
limitations. Firstly, our models seem to be a little 
complex for there are many genes involved in them. 
Secondly, further experiments in vivo and in vitro are 
still needed to validate the diagnostic and therapeutic 
value of these genes and our models. Additionally, 
there are some good prognosis models for ccRCC 
already [51-55]. However, our models are very 
different from each other for the focus of our 
researches varies, and all signatures are treasures for 
they have enhanced our understanding of ccRCC. 
And in this study, we mainly focus on the ubiquitin 
proteasome system. If the small steps of our 
exploration do benefit patients suffering from ccRCC, 
we will feel gratified. 

Conclusion 
In conclusion, we made a comprehensive 

exploration of the prognostic role of UPS in ccRCC 
from a bioinformatic perspective. UPS is dysregulated 
in ccRCC. UPS related genes have significant 
prognostic value in ccRCC. Models constructed with 
UPSs are effective and applicable. An abnormal 
ubiquitin proteasome system should play an 
important role in ccRCC. The ubiquitin proteasome 
system is a promising target for ccRCC and deserves 
further study. 
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