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Abstract 

Aims: To identify the hub genes and prognostic indicators of gastric cancer (GC) and determine the 
correlation between prognostic indicators and the tumor-infiltrating immune cell levels so as to provide 
useful information for future GC diagnosis and treatment. 
Methods: The Cancer Genome Atlas (TCGA) stomach adenocarcinoma dataset and two microarray 
datasets were used to screen the overlapping differentially expressed genes (DEGs) between normal 
gastric and GC tissue samples. Hub genes were screened via protein–protein interaction networks and 
module analysis of the overlapping DEGs. Their expression was validated at the cell level and tissue level 
using the ONCOMINE database. The prognostic indicators of overall survival (OS) and disease-free 
survival was identified by Cox proportional hazards regression analysis based on tumor grade and cancer 
stage. The expression of hub genes was validated at the cell level. The correlation of prognostic indicators 
with the tumor-infiltrating immune cell levels was analyzed using Tumor IMmune Estimation Resource. 
Results: Ten hub genes, namely CDC6, CDC20, BUB1B, TOP2A, CDK1, AURKA, CCNA2, CCNB1, MAD2L1, 
and KIF11, were screened and their upregulation in the GC tissue was verified. Three prognostic factors, 
namely LUM, VCAN, and EFNA4, were identified; their expression was higher in GC cells than in normal 
cells. LUM, VCAN, and EFNA4 were correlated with tumor-infiltrating immune cell levels in GC. 
Significance: The identified hub genes and prognostic indicators of GC could be useful indicators for 
future GC diagnosis and treatment. 

Key words: gastric cancer; differentially expressed genes; Hub gene; prognostic indicators; tumor-infiltrating 
immune cells 

Introduction 
Gastric cancer (GC) is one of the most common 

malignant tumors worldwide and the third leading 
cause of cancer-related mortality after lung and breast 
cancers [1]. The Global Cancer Statistics 2018 report 
stated that there were over 1,000,000 new GC cases 
and that approximately 8% of patients with GC died 
in 2018 [2]. The high mortality rate associated with GC 
is owing to its insidious onset, i.e., early symptoms are 

not obvious. Most patients with GC are diagnosed at 
the advanced stage; their 5-year overall survival (OS) 
is only 28.3% [3]. However, to date, the aspects 
ultimately affecting the occurrence, development, and 
prognosis of GC remain unclear. 

Most researchers use bioinformatic methods to 
study microarray and RNA-sequencing (RNA-seq) 
data to identify the prognostic indicators and 
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therapeutic targets associated with GC. Cao et al. used 
the Gene Expression Omnibus (GEO) dataset and 
subsequently identified key diagnostic genes and 
determined the pathways playing significant roles in 
GC progression [4]. Fei et al. identified the important 
prognostic indicators and pathways for GC treatment 
using the GEO dataset by identifying overlapping 
differentially expressed genes (DEGs) [5]. However, 
analysis on the related makers are inadequate and 
even contradictory owing to their different data 
processing methods or different sample sizes [6, 7]. 
Nevertheless, a comprehensive bioinformatic method 
has been applied in the research of various cancers 
and a large amount of valuable biological information 
has been discovered; this has made it possible to find 
useful and reliable molecular markers [8]. 

In this study, we performed comprehensive 
bioinformatics analysis to simultaneously analyze two 
microarray datasets and RNA-seq data of human GC 
and normal gastric tissue samples so as to identify the 
hub genes and prognostic indicators of GC. Further, 
the correlation between the identified novel 
prognostic indicators and tumor-infiltrating immune 
cell levels was verified to identify the possible role of 
these indicators in cancer immunoregulation. 

Methods 
Data and sources 

A set of RNA-seq data of GC was downloaded 
from The Cancer Genome Atlas (TCGA). UCSC Xena 
database (http://xena.ucsc.edu/) which contains 
normal stomach tissues and TCGA-STAD tissues was 
utilized. Another three gene expression arrays of 
human GC datasets (GSE13911, GSE79973 and 
GSE56807) [9-11] were obtained from GEO. Further, 
the clinicopathological information and survival data 
of 443 patients with GC were obtained from TCGA. 
For further analysis, considering the factors that are 
not associated with disease mortality may bias the 
survival analysis, samples with a survival time of less 
than 90 days as well as those without gender, age, 
tumor pathological stage, and corresponding 
transcriptome data were eliminated. Finally, 317 
samples that met the admission criteria were included 
in this study. Additionally, the disease-free survival 
(DFS) data of 246 patients with stomach 
adenocarcinoma (STAD) were acquired from 
cBioPortal (https://www.cbioportal.org/). 

Identification of DEGs 
DEGs were identified by comparing the 

normalized expression data of GC and adjacent 
normal tissues using the limma package in R 
software. DEG intersection was performed in three 
datasets, and |log2FC| ≥ 1, P-value of <0.05, and 

adjusted P-value of <0.05 were considered statistically 
significant. The method of adjusted P-value was 
Benjamini & Hochberg (BH). The expression of 
overlapping DEGs was based on that of STAD in 
TCGA. 

Functional enrichment analysis of overlapping 
DEGs 

To determine the biological functions and 
potential signaling pathways of overlapping DEGs, 
Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analyses were performed using the clusterProfiler [12] 
and org.Hs.eg.db [13] packages in R. The cutoff 
criteria were a P-value of <0.01 and an adjusted 
P-value of <0.05. 

Hub genes and module analysis 
The protein-protein interaction (PPI) network 

analysis of overlapping DEGs was performed using 
the STRING database [14]. A confidence score of ≥0.41 
was selected to construct the PPI network with 
overlapping DEGs in Cytoscape version 3.7.1. 
CytoHubba [15] and Molecular Complex Detection 
[16] were used to screen the hub genes and perform 
module analysis, respectively. 

ONCOMINE analysis 
The ONCOMINE (www.oncomine.org) database 

was used to validate the expression of the 10 hub 
genes at the tissue level. In this study, a P-value of 
0.05, a fold change of 2, and a gene rank in the top 10% 
were set as the significance thresholds. The data type 
was mRNA, and the Student’s t-test was used to 
analyze the differences in the expression of the 10 hub 
genes in GC. 

Survival analysis and establishment of the 
prognostic model 

The data of 317 patients with GC, including the 
expression of overlapping DEGs, survival time (>90 
days), and survival rate, were analyzed using the R 
package “survival” (R package version 2.38, 
https://CRAN.R-project.org/package=survival) in 
order to perform univariate Cox proportional hazards 
regression analysis. To identify prognostic indicators, 
overlapping DEGs with a P-value of <0.05 related to 
survival were selected as candidate genes and used 
for multiple Cox proportional hazards regression 
analysis. The following function was used: risk score 
= expression of gene1 × β1gene1 + expression of 
gene2 × β2gene2 + … expression of gene(n) × 
β(n)gene(n) [17]. Patients were classified into low-risk 
and high-risk groups based on their median 
prognostic risk score. Protective genes [hazard ratio 
(HR) < 1] or risk genes (HR > 1) were identified by 
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calculating HR and 95% confidence interval (CI). The 
R package “survivalROC,” which performs 
time-dependent receiver operating characteristic 
curve analysis on 5-year OS data, was used to 
evaluate the performance of the prognostic model. A 
survival curve was generated using “survival” and 
“survminer.” The R software (version 3.6.1) was used 
for all statistical analyses. The survival package in R 
was used to explore the DFS of single gene signatures 
as potential prognostic genes. Based on the median 
expression of target genes, patients were divided into 
low-expression and high-expression groups. 

UALCAN analysis and Gene Expression 
Profiling Interactive Analysis (GEPIA2) 

The relative expression of three prognostic 
genes, namely VCAN, EFNA4, and LUM, in different 
tumor subgroups based on clinicopathological 
criteria, such as tumor stage and tumor grade, were 
analyzed using UALCAN [18] (http://ualcan.path. 
uab.edu/). GEPIA2 was used to study the survival 
rate of patients based on the expression of 13 
prognostic genes, including the three prognostic 
genes with different isoforms (VCAN, EFNA4, and 
LUM) [19]. 

Analysis of tumor-infiltrating immune cells 
Tumor IMmune Estimation Resource (TIMER), 

an online tool, with Spearman’s method, was used to 
determine the potential correlation between 
prognostic genes and tumor-infiltrating immune cells, 
including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells [20] 
(https://cistrome.shinyapps.io/timer/). 

Cell lines and cell culture 
Two GC cell lines (SGC-7901 and MGC-803) and 

a normal human gastric mucosal cell line (GES-1) 
were purchased from the Chinese National 
Infrastructure of Cell Line Resource. The MGC-803 
and GES-1 cell lines were cultured in 90% Dulbecco's 
Modified Eagle’s medium (Invitrogen, Carlsbad, 
USA) supplemented with 10% fetal bovine serum 
(HyClone, USA). The SGC-7901 line was cultured in 
90% RPMI-1640 (Invitrogen, Carlsbad, USA), 
supplemented with 10% fetal bovine serum (HyClone, 
USA). 

Real-time quantitative PCR 
Total RNA was isolated from whole-cell lysates 

using the TRIzol reagent (Solarbio, China). cDNAs 
were synthesized using the PrimeScriptTM RT Reagent 
Kit (TaKaRa, USA) with the gDNA Eraser. Real-time 
quantitative PCR was performed using TB Green 
Premix Ex TaqTM II (Tli RNaseH Plus, TaKaRa, USA). 
GAPDH was used as an endogenous control. The 

details of the primers are outlined in Additional file 1: 
Supplementary Table S1. 

Results 
DEG identification from the three datasets 

The DEGs obtained from GSE79973 included 
1268 upregulated genes and 330 downregulated genes 
(Figure 1A). The DEGs obtained from the TCGA GC 
dataset included 5593 upregulated genes and 1146 
downregulated genes (Figure 1B). Further, the DEGs 
obtained from GSE13911 included 1558 upregulated 
genes and 196 downregulated genes (Figure 1C). A 
total of 435 overlapping DEGs, including 356 
upregulated genes (Figure 1E) and 79 downregulated 
genes, were identified by intersecting the DEGs 
obtained from the two microarrays and RNA-seq data 
analysis (Figure 1D). 

Functional enrichment analysis of DEGs 
GO enrichment analysis of the biological 

processes indicated that the overlapping DEGs were 
mainly enriched in organelle fission, nuclear division, 
chromosome segregation, extracellular structure 
organization, and extracellular matrix organization 
(Figure 2A). Enrichment of cellular component GO 
terms showed that the 435 overlapping DEGs were 
mainly enriched in the chromosomal regions, 
extracellular matrix, and spindle cell components 
(Figure 2B). In addition, enrichment of molecular 
function GO terms showed that the main molecular 
functions of these overlapping DEGs were cytokine 
activity, glycosaminoglycan binding, and structural 
component formation in the extracellular matrix 
(Figure 2C). KEGG pathway analysis revealed that the 
overlapping DEGs participate in diverse metabolism- 
associated signaling pathways, including the cell 
cycle, DNA replication, protein digestion and 
absorption, p53 signaling, gastric acid secretion, and 
ECM-receptor interactions. The cell-cycle pathway is 
the main pathway enriched by the overlapping DEGs 
(Figure 2D). 

Identification of hub genes and key module 
The overlapping DEGs were analyzed via PPI 

network analysis and 380 nodes and 5491 edges were 
identifieds. Topological feature analysis of the 
overlapping DEGs led to the identification of 10 hub 
genes, namely CCNB1, CDK1, MAD2L1, AURKA, 
BUB1B, CCNA2, CDC6, KIF11, TOP2A, and CDC20 
(Figure 3A). Within this PPI network, 13 modules 
were obtained via module analysis. The highest 
scoring module was module 1 (Figure 3A), with a 
score greater than five times that of the other 
modules. Additionally, the 10 candidate hub nodes 
were mainly included in module 1 with all 
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overexpressed genes. This indicates that module 1 
represents the key biological characteristics of the PPI 
network. 

GO enrichment analysis revealed that the 
functions of the genes involved in module 1 are 
notably enriched in ATPase activity, histone kinase 
activity, nuclear division, chromosome segregation, 
the chromosome centromeric region, and spindles. 
KEGG enrichment analysis revealed that the cell 
cycle, DNA replication, and oocyte meiosis pathways 
are the main pathways enriched by the genes in 
module 1. Among the 10 hub genes, 7 (CCNB1, CDK1, 
MAD2L1, BUB1B, CCNA2, CDC6, and CDC20) are 
included in module 1 and are enriched in the 
cell-cycle pathway (Figure 3B and C). This finding 
further verifies that the hub genes in module 1 could 
be closely correlated with the cell cycle. 

Verification of the expression levels of the 10 
hub genes 

The expression of the 10 hub genes identified for 
GC was analyzed at the tissue level via using the 
ONCOMINE database. As shown in Figure S1, these 
10 hub genes were shown to be obviously 
upregulated in GC samples, except for KIF11. The 
expression of KIF11 in GC tissue is not particularly 
significant, although its FC (2.04 listed in Table S2) is 
still more than 2. Therefore, the expression of KIF11 
indicates that it is still upregulated in GC tissue, even 
though the expression is not significant. Moreover, 
the expression of these 10 hub genes was verified 
using GSE56807 dataset and the dataset from UCSC 
Xena database which is integrated with TCGA and 
GTEx. As shown in Figure 4, the expression of all the 
10 hub genes were demonstrated to be significantly 
upregulated in GC samples. 

 

 
Figure 1. Identification of DEGs in GC (|log2FC| ≥ 1, P < 0.05). (A) The volcano maps of 1268 up-regulated genes (red dots) and 330 down-regulated genes (blue dots) in the 
microarray dataset GSE79973; (B) The volcano maps of 5593 up-regulated genes (red dots) and 1146 down-regulated genes (green dots) from the TCGA GC dataset; (C) The 
volcano maps of 1558 up-regulated genes (red dots) and 196 down-regulated genes (blue dots) in the microarray dataset GSE13911; (D) Venn diagrams of the DEGs between the 
microarray dataset GSE79973, the microarray dataset GSE13911 and the TCGA GC dataset. (E) Venn diagrams of the up-regulated DEGs between the microarray dataset 
GSE79973, the microarray dataset GSE13911, and the TCGA GC dataset. 
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Figure 2. GO enrichment and KEGG pathway analysis of the overlapping DEGs. Biological process GO terms for overlapping DEGs (A), Cellular component GO terms for 
overlapping DEGs, and (B) Molecular function GO terms for overlapping DEGs (C).The y-axis shows significantly enriched GO terms, and the x-axis shows different gene ratios. 
The different colors and sizes of the circles represent different P-value ranges and contents. The rich factor refers to the ratio of the number of DEGs enriched in a GO term to 
the number of all the annotated genes enriched in the GO term. In enriched KEGG pathways of DEGs, (D) the y-axis shows enriched pathways, and the x-axis shows different 
gene ratios; the different colors and sizes of the circles represent different P-value ranges and contents. The rich factor refers to the ratio of the number of DEGs enriched in a 
KEGG pathway to the number of all the annotated genes enriched in the KEGG pathway. 

 
In addition, the expression of these 10 hub genes 

was verified in MGC-803 and GES-1 cells, as shown in 
Figure 5. All the 10 hub genes were demonstrated to 
be significantly upregulated in GC cells compared 
with that in normal cells. Their expression in GC cells 
was consistent with that in GC tissues, confirming 
that these genes are upregulated in GC. 

Identification of prognostic gene signatures 
The results of univariate Cox proportional 

hazard regression model analysis revealed that 
approximately 42 genes were found to be significantly 
related to survival time (P < 0.05). Multivariate Cox 
proportional hazard regression model analysis 
revealed that the prognostic gene signature contained 
the following 13 genes: LINC01094, CKMT2, LUM, 
PSCA, TFF1, FAP, VCAN, FEN1, CTHRC1, CDC6, 

PRRX1, EFNA4, and PMEPA1 (Table 1). 
 

Table 1. Prognostic value of the 13 genes in the GC patients of 
the TCGA cohort 

Gene 
symbol 

Univariate analysis  Multivariate analysis 
HR (95% CI) P- 

value 
HR (95% CI) P- 

value 
Coefficient 

LINC01094 1.771 (1.322-2.372) <0.001 1.803 (1.247-2.606) 0.002 0.589 
CKMT2 1.118 (1.029-1.216) 0.009 1.152 (1.041-1.275) 0.006 0.141 
LUM 1.001 (1.000-1.002) 0.020 0.997 (0.995-1.000) 0.022 -0.003 
PSCA 1.001 (1.000-1.001) 0.002 1.001 (1.000-1.001) 0.093 0.001 
TFF1 1.000 (1.000-1.000) 0.003 1.000 (1.000-1.000) 0.077 0.0002 
FAP 1.071 (1.006-1.142) 0.033 0.835 (0.697-0.999) 0.048 -0.181 
VCAN 1.022 (1.008-1.036) 0.002 1.027 (1.001-1.053) 0.044 0.026 
FEN1 0.968 (0.943-0.994) 0.015 0.969 (0.941-0.997) 0.032 -0.032 
CTHRC1 1.011 (1.004-1.018) 0.001 1.016 (1.003-1.028) 0.012 0.016 
CDC6 1.004 (1.001-1.007) 0.015 1.007 (1.004-1.011) 0.000 0.007 
PRRX1 1.052 (1.010-1.096) 0.015 1.083 (0.979-1.197) 0.120 0.080 
EFNA4 0.965 (0.935-0.997) 0.031 0.970 (0.935-1.005) 0.096 -0.031 
PMEPA1 1.003 (1.000-1.006) 0.037 1.003 (1.000-1.006) 0.070 0.003 
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Figure 3. Hub clustering module1and KEGG analysis. (A) Module 1 (MCODE score = 77.095). (B, C) KEGG analysis for genes in Module 1. All circles represent up-regulated 
genes, and red circles represent hub genes. 

 
Among these 13 genes, LUM, EFNA4, FEN1, and 

FAP had an HR of <1 and were considered protective 
prognostic genes, whereas LINC01094, CKMT2, 
PRRX1, VCAN, CTHRC1, CDC6, PMEPA1, PSCA, and 
TFF1 had an HR of >1 and were considered risk 
prognostic genes. Figure 6A-C shows the prognostic 
risk score results. OS was significantly different 
between the high-risk and low-risk groups (P < 
0.0001, Figure 6D). In particular, the 5-year OS was 
53.52% (95% CI = 40.40-70.90%) in the low-risk group 
and 12.43% (95% CI = 4.02-38.50%) in the high-risk 
group. The AUC was 0.74 for 5-year OS, implying that 
the prognostic gene signature performed well in 

survival prediction (Figure 6E). 

OS and DFS analyses of the 13 genes 
OS analysis of the GC samples in TCGA 

consistently revealed that the OS with VCAN, LUM, 
EFNA4, and CTHRC1 in low-candidate-gene content 
groups and high-candidate-gene content groups were 
different (P < 0.05) (Figure 7A-D). 

However, there was no difference in the OS with 
CKMT2, FEN1, PRRX1, LINC01094, FAP, PMEPA1, 
PSCA, TFF1, and CDC6 (P > 0.05) (Figure S2). 
Interestingly, DFS analysis of 246 GC samples in 
TCGA revealed that between the low-candidate-gene 
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content groups and high-candidate-gene content 
groups, the DFS with VCAN, LUM, and EFNA4 was 
different (P < 0.05) (Figure 7A-C). Except for FEN1, 
there was no difference in the DFS with CKMT2, 
CTHRC1, PRRX1, LINC01094, FAP, PMEPA1, PSCA, 

TFF1, and CDC6 (P > 0.05) (Figure S3). 
Therefore, LUM, VCAN, and EFNA4, with 

obvious differences in their OS and DFS, were 
considered potential prognostic genes. 

 

 
Figure 4. The expression of the 10 hub genes in GC and normal gastric tissues datasets. (A) The expression of the 10 hub genes in GSE56807 dataset with paired 5 GC and 5 
normal gastric tissues samples. (B) The expression of the 10 hub genes in the integrated 206 normal gastric tissues samples and 375 GC tissues samples from UCSC Xena 
database. Expression values of genes are log2-transformed. *P< 0.05; **P < 0.01; ***P < 0.001. 

 
Figure 5. The expression of the 10 hub genes in the GES-1 and MGC-803 cell lines. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 6. 13 prognostic signatures identified from the overlapping 435 DEGs. (A) The risk score distribution. (B) The patients’ survival status distribution. (C) The heat map of 
the 13 genes for low- and high-risk groups. In the heat map, each column represents one sample, and each row represents one gene, and the color gradient ranging from 
cyan-green to red represents the changing process from down- to upregulation. (D) The Kaplan-Meier curves for low- and high-risk groups. (E) The ROC curves for predicting 
OS in GC patients by the risk score. 

 
Figure 7. OS and DFS analysis. (A) OS and DSF analysis of VCAN. (B) OS and DFS analysis of LUM. (C) OS and DFS analysis of EFNA4. (D) OS and DFS analysis of CTHRC1. 
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Figure 8. Expression of the potential prognostic genes in GC subgroup. (A) Expression of VCAN in STAD based on tumor grade and individual cancer stage. (B) Expression of 
EFNA4 in STAD based on tumor grade and individual cancer stage. (C) Expression of LUM in STAD based on tumor grade and individual cancer stage. *P<0.05; **P<0.01; 
***P<0.001; NS: not significance. 

 

Expressions of the potential prognostic genes 
in the GC subgroup 

Among the 13 genes, the following three genes 
had significant differences in both OS and DFS: LUM, 
EFNA4, and VCAN. Therefore, they were defined as 
the potential prognostic genes. Based on subgroup 
analysis using clinicopathological features (tumor 
grade and cancer stage), we found that VCAN, 
EFNA4, and LUM have significantly higher 
expressions in patients with tumor grade than in 
healthy individuals (Figure 8A-C). Additionally, the 
expression of VCAN, EFNA4, and LUM was analyzed 
in each GC stage (I, II, III, and IV). EFNA4 was highly 
overexpressed in all GC stages, whereas VCAN and 
LUM were highly overexpressed in GC stages II, III, 
and IV (Figure 8A-C). Therefore, LUM, EFNA4, and 

VCAN are considered useful prognostic indicators. 

Construction of prognostic model with three 
prognostic genes 

To explore whether the combination of these 
three genes performed well in survival prediction, the 
prognostic model was constructed with three 
prognostic genes. Figure 9A-C shows the prognostic 
risk score results. OS was significantly different 
between the high-risk and low-risk groups (P < 0.01, 
Figure 9D). The 5-year OS was 50.21% (95% CI = 
37.17-67.82%) in the low-risk group and 20.70% (95% 
CI = 10.17-42.05%) in the high-risk group. Besides, the 
AUC was 0.71 for 5-year OS, which implied that the 
prognostic model constructed with the three 
prognostic genes had a good accuracy for survival 
prediction (Figure 9E). 
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Figure 9. Construction of progonostic model with 3 prognostic genes identified. (A) The risk score distribution. (B) The patients’ survival status distribution. (C) The heat map 
of the 3 genes for low- and high-risk groups. In the heat map, each column represents one sample, and each row represents one gene, and the color gradient ranging from purple 
to red represents the changing process from down- to upregulation. (D) The Kaplan-Meier curves for low- and high-risk groups. (E) The ROC curves for predicting OS in GC 
patients by the risk score. 

 

Verification of the expression of the prognostic 
factors 

To verify the expression of LUM, VCAN, and 
EFNA4, real-time quantitative PCR analysis of GES-1 
and SGC-7901 and MGC-803 cells was performed. The 
results revealed that the expression of VCAN, LUM, 
and EFNA4 were higher in SGC-7901 and MGC-803 
cells than in GES-1 cells, as shown in Figure 10. In 
addition, the expression of the 3 prognostic genes was 
also verified using GSE56807 dataset and the 
integrated dataset from UCSC Xena database, as 
shown in Figure S4. The results displayed that the 3 
prognostic genes were significantly upregulated in 
GC samples. 

OS analysis of the prognostic indicator gene 
isoforms 

Alternative splicing results in different 
transcripts; these transcripts are translated to different 
proteins and perform different biological functions. 

Therefore, we analyzed the isoforms of the three 
useful prognostic indicators of GC. Their isoforms 
were obtained via GEPIA2 analysis (Table 2). All 
transcripts of the three useful prognostic indicators 
were selected to explore their OS using GEPIA2 
analysis. Two isoforms of LUM, five of VCAN, and 
one of EFNA4 showed significant differences in terms 
of OS (P < 0.05) (Figure 11). 

 

Table 2. The isoforms of three prognostic genes 

LUM_isoform EFNA4_isoform VCAN_isoform 
ENST00000548071.1 ENST00000427683.2 ENST00000515397.1 
ENST00000546642.1 ENST00000368409.7 ENST00000513984.5 
ENST00000266718.4 ENST00000359751.8 ENST00000513960.5 
 ENST00000243364.7 ENST00000513016.5 
  ENST00000512590.6 
  ENST00000507162.1 
  ENST00000505615.1 
  ENST00000503923.1 
  ENST00000502527.2 
  ENST00000343200.9 
  ENST00000342785.8 
  ENST00000265077.7 
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Figure 10. The expression of useful prognostic indicators in cell lines. *P<0.05; **P<0.01; ***P<0.001. 

 
Figure 11. OS analysis of the capable prognostic gene isoforms. (A) VCAN. (B) LUM. (C) EFNA4. 

 
Therefore, the transcripts of the three useful 

prognostic indicators (VCAN, LUM, and EFNA4) that 
showed a difference in OS were defined as the valid 
prognostic indicators of GC (Table 2, bold). 

Correlation analysis between the useful 
prognostic indicators and tumor-infiltrating 
immune cells 

The tumor microenvironment mainly contains 
tumor-infiltrating immune cells. Several studies have 
documented the presence of an association between 
tumor-infiltrating immune cell levels and tumor cell 
proliferation and metastasis, therapeutic response, 

and prognosis [21-23]. They are thought to have a 
critical relationship with therapeutic response and 
prognosis [24]. Therefore, the correlation of the useful 
prognostic indicators verified above with six types of 
tumor-infiltrating immune cells (B cells, CD4+ T cells, 
CD8+ T cells, neutrophils, macrophages, and dendritic 
cells) was investigated using TIMER. 

The expression of LUM and VCAN negatively 
correlated with tumor purity, whereas the expression 
of EFNA4 positively correlation with tumor purity 
(Figure 12). The expression of LUM, and VCAN had a 
noticeable positive correlation with infiltrating levels 
of CD8+ T cells, CD4+ T cells, macrophages, 
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neutrophils, and dendritic cells in GC but had no 
apparent correlation with B cells (Figure 12A-B). A 
negative correlation was observed between the 
expression of EFNA4 and the six types of tumor- 
infiltrating immune cells (Figure 12C). 

Discussion 
Using integrative bioinformatics, 10 hub genes 

were identified in the PPI network of GC and their 
upregulation was validated in GC tissues and cell 
lines. Most of these genes closely correlated with the 
cell cycle. As hub genes, these genes may also have 
the potential to act as diagnostic genes. It has been 
reported that CCNB1 [25], CDK1 [26], MAD2L1 [27], 
CDC20 [28], and CDC6 [29] could be essential genes 
for GC diagnosis and that they directly or indirectly 
contribute toward cell proliferation and metastasis as 
well as toward other biological functions associated 
with the cell cycle. The regulatory role of CCNA2 in 
the MET-mediated cell-cycle pathway is reportedly 
blocked by miR-381-3p, which promotes the 
proliferation and metastasis of bladder cancer cells 
[30]. BUB1B can also be activated by Forkhead box 
protein M1 to promote cell proliferation in 
glioblastoma [31]. Nevertheless, studies on the 
regulatory mechanisms of CCNA2 and BUB1B in GC 
are scarce. Regarding the other three genes, the 
upregulation of TOP2A enhanced the recurrence risk 
in patients with stage II/III GC, whereas its 
downregulation may play a significant role in 
chromosome instability and tumorigenesis. The 

expression of TOP2A is commonly altered at both the 
gene copy number and gene expression levels in 
cancer cells [32]. KIF11 is overexpressed in GC [33]; its 
knockdown via RNAi inhibits the number and size of 
spheres formed in gastric cancer stem cells [34]. 
AURKA activates HDM2, leading to the 
ubiquitination of p53; its inhibition markedly 
decreases cell survival in vitro, and in vivo in a 
xenograft tumor growth model, suggesting that 
AURKA expression can indicate a poor response to 
chemotherapy in GCs [35]. All these genes appear to 
be promising candidate markers for GC therapy or 
diagnosis. 

The three prognostic genes (LUM, VCAN, and 
EFNA4), with an obvious difference in OS and DFS, 
were highly expressed in patients with II, III, and IV 
GC. VCAN is highly expressed in advanced-stage GC 
and VCAN contributes to cell proliferation, cell 
differentiation, and tumor growth in GC [36]. 
Interestingly, VCAN can control tumor metastasis and 
may identify previously undetected therapeutic 
targets to treat metastatic diseases in patients with 
breast cancer [37]. The expression of LUM is closely 
associated with organ metastasis, lymphatic 
metastasis, and histological type in GC [38, 39]. 
EFNA4 encodes the human protein ephrin-A4, a 
member of the ephrin family [40]. Ephrins are the 
ligands to Eph receptors and stimulate bi-directional 
signaling of the Eph/ephrin axis [41]. Eph receptor 
and ephrin overexpression can result in tumorigenesis 
as related to tumor growth and survival and is 

 

 
Figure 12. Association of VCAN (A), LUM (B), EFNA4 (C) with tumor-infiltration immune cells in GC. P <0 05 denotes significance. Each dot represents a sample in the 
TCGA-STAD dataset. 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

4037 

associated with angiogenesis and metastasis in many 
types of human cancer [42]. EFNA4 upregulation in 
GC tissues has been identified using integrated 
transcriptomic and computational analysis methods 
[43]. Ephrin-A4 binds to and phosphorylate the 
receptor Eph A2-8 and is significantly overexpressed 
in liver cancer and glioblastoma [42]. In addition, the 
elevated expression of Eph-A4 in non-small cell lung 
carcinoma patients is also found to be significantly 
associated with favourable prognosis [44], which is 
similar to our finding about ephrin-A4. However, the 
detail mechanism of EFNA4 influencing the 
tumorgenesis, development and prognostic of GC 
needs further study. Our finding about LUM, VCAN, 
and EFNA4 that are highly expressed in GC cells 
proves they could be useful prognostic indicators of 
GC. 

The effectiveness of the isoforms of LUM, VCAN, 
and EFNA4 as the prognostic indicators of GC was 
also confirmed by OS analysis. However, to the best of 
our knowledge, the feasibility of the isoforms of LUM, 
VCAN, and EFNA4 as prognostic indicators of GC has 
not been reported to date. Further studies are needed 
to verify these findings. 

Because tumor-infiltrating immune cells have a 
clear relationship with tumor diagnostic and 
prognostic assessment [45], we explored the 
correlation between the three useful prognostic 
indicators and six types of tumor-infiltrating immune 
cells using TIMER. LUM and VCAN positively 
correlated with CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells. In 
contrast, EFNA4 negatively correlated with the six 
types of tumor-infiltrating immune cells. LUM and 
VCAN are mainly expressed on both T cells (CD8+ T 
cells and CD4+ T cells) and antigen-presenting cells 
(macrophages, neutrophils, and dendritic cells). 
EFNA4 is not expressed on immune cells but is 
expressed on tumor cells. Therefore, all those three 
useful prognostic indicators, LUM, VCAN, and 
EFNA4 are considered to have a relationship with the 
immunoregulation of the tumor environment. 

Conclusion 
By analyzing the GC data from TCGA and two 

microarrays with combined bioinformatics tools, 10 
hub genes and 3 useful prognostic indicators were 
identified as the possible indicators for future GC 
diagnosis and treatment. Identification of the 
correlation between the prognostic indicators and 
tumor-infiltrating immune cell levels in GC showed 
that three prognostic indicators play a role in cancer 
immunoregulation, which may be useful in cancer 
immunotherapy. 
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